Socio-Demographic Determinants of Diet Quality in Australian Adults Using the Validated Healthy Eating Index for Australian Adults (HEIFA-2013)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Respondents
2.2. Dietary Data Collection
2.3. Anthropometry and Demographic Characteristics
2.4. HEIFA-2013
2.5. Misreporting
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- McGuire, S. U.S. department of agriculture and U.S. department of health and human services, dietary guidelines for Americans, 2010. 7th edition, Washington, DC: U.S. Government Printing Office, January 2011. Adv. Nutr. 2011, 2, 293–294. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Diet, Nutrition and the Prevention Of Chronic Disease; World Health Organization: Geneva, Switzerland, 2003; pp. 1–149. [Google Scholar]
- National Health and Medical Research Council. Australian Dietary Guidelines; National Health and Medical Research Council: Canberra, Australia, 2013.
- Food Standards Australia New Zealand. Australian Food, Supplement and Nutrient Database (Ausnut); Food Standards Australia New Zealand: Canberra, Australia, 2014.
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the global burden of disease study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef]
- Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes estimates for the year 2000 and projections for 2030. Diabetes Care 2004, 27, 1047–1053. [Google Scholar] [CrossRef] [PubMed]
- Agardh, E.; Allebeck, P.; Hallqvist, J.; Moradi, T.; Sidorchuk, A. Type 2 diabetes incidence and socio-economic position: A systematic review and meta-analysis. Int. J. Epidemiol. 2011, 40, 804–818. [Google Scholar] [CrossRef] [PubMed]
- McLaren, L. Socioeconomic status and obesity. Epidemiol. Rev. 2007, 29, 29–48. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.B.; Hoffmann, K. Methodological approaches to study dietary patterns in relation to risk of coronary heart disease and stroke. Br. J. Nutr. 2006, 95, 860–869. [Google Scholar] [CrossRef] [PubMed]
- Gerber, M. The comprehensive approach to diet: A critical review. J. Nutr. 2001, 131, 3051S–3055S. [Google Scholar] [PubMed]
- Kant, A.K. Indexes of overall diet quality: A review. J. Am. Diet. Assoc. 1996, 96, 785–791. [Google Scholar] [CrossRef]
- Wirt, A.; Collins, C.E. Diet quality—What is it and does it matter? Public Health Nutr. 2009, 12, 2473–2492. [Google Scholar] [CrossRef] [PubMed]
- Reedy, J.; Krebs-Smith, S.M.; Miller, P.E.; Liese, A.D.; Kahle, L.L.; Park, Y.; Subar, A.F. Higher diet quality is associated with decreased risk of all-cause, cardiovascular disease, and cancer mortality among older adults. J. Nutr. 2014, 144, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Mai, V.; Kant, A.K.; Flood, A.; Lacey, J.V.; Schairer, C.; Schatzkin, A. Diet quality and subsequent cancer incidence and mortality in a prospective cohort of women. Int. J. Epidemiol. 2005, 34, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Hoffmann, G. Adherence to mediterranean diet and risk of cancer: An updated systematic review and meta-analysis of observational studies. Cancer Med. 2015, 4, 1933–1947. [Google Scholar] [CrossRef] [PubMed]
- Ley, S.H.; Pan, A.; Li, Y.; Manson, J.E.; Willett, W.C.; Sun, Q.; Hu, F.B. Changes in overall diet quality and subsequent type 2 diabetes risk: Three U.S. Prospective cohorts. Diabetes Care 2016, 39, 2011–2018. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Hebden, L.; Rangan, A.; Allman-Farinelli, M. The development, application, and validation of a healthy eating index for Australian adults (HEIFA-2013). Nutrition 2016, 32, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Allman-Farinelli, M.A. Adherence to Dietary Guidelines and Risk of Chronic Disease in the Blue Mountains Eye Study Cohort. M.Sc. Thesis, Department of Public Health, Faculty of Medicine, University of Sydney, Sydney, Australia, 2005. [Google Scholar]
- Australian Bureau of Statistics. Australian Health Survey: User’s Guide, 2011–2013; Australian Government Publishing Service: Canberra, Australia, 2013.
- Subar, A.F.; Kirkpatrick, S.I.; Mittl, B.; Zimmerman, T.P.; Thompson, F.E.; Bingley, C.; Willis, G.; Islam, N.G.; Baranowski, T.; McNutt, S. The automated self-administered 24-hour dietary recall (asa24): A resource for researchers, clinicians and educators from the national cancer institute. J. Acad. Nutr. Diet. 2012, 112, 1134–1137. [Google Scholar] [CrossRef] [PubMed]
- Food Standards Australia New Zealand. Ausnut 2011–2013 Food Nutrient Database; Food Standards Australia New Zealand: Canberra, Australia, 2014.
- World Health Organization. Length/Height-for-Age, Weight-for-Age, Weight-for-Length, Weight-for-Height and Body Mass Index-for-Age: Methods and Development; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Australian Bureau of Statistics. Socio-Economic Indexes for Areas; Australian Government Publishing Service: Canberra, Australia, 2013.
- National Health and Medical Research Council. Eat for Health-Educator Guide; National Health and Medical Research Council: Canberra, Australia, 2013.
- National Health and Medical Research Council. Australian Guide to Healthy Eating; National Health and Medical Research Council: Canberra, Australia, 2013.
- Food Standards Australia New Zealand. Assigning NNPAS Foods to ADG Classifications. Available online: http://www.foodstandards.gov.au/science/monitoringnutrients/australianhealthsurveyandaustraliandietaryguidelines/assigningnnpas/Pages/default.aspx (accessed on 15 August 2016).
- Food Standards Australia New Zealand. Determining the Amount of Added Sugars and Free Sugars in Foods Listed in the Ausnut 2011–2013 Dataset; Food Standards Australia New Zealand (FSANZ): Canberra, Australia, 2016.
- Gemming, L.; Jiang, Y.; Swinburn, B.; Utter, J.; Mhurchu, C.N. Under-reporting remains a key limitation of self-reported dietary intake: An analysis of the 2008/09 New Zealand adult nutrition survey. Eur. J. Clin. Nutr. 2014, 68, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Rennie, K.L.; Coward, A.; Jebb, S.A. Estimating under-reporting of energy intake in dietary surveys using an individualised method. Br. J. Nutr. 2007, 97, 1169–1176. [Google Scholar] [CrossRef] [PubMed]
- Samuel-Hodge, C.D.; Fernandez, L.M.; Henriquez-Roldan, C.F.; Johnston, L.F.; Keyserling, T.C. A comparison of self-reported energy intake with total energy expenditure estimated by accelerometer and basal metabolic rate in African-American women with type 2 diabetes. Diabetes Care 2004, 27, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Black, A.E. The sensitivity and specificity of the goldberg cut-off for EI : BMR for identifying diet reports of poor validity. Eur. J. Clin. Nutr. 2000, 54, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, M.B.E.; Black, A.E. Markers of the validity of reported energy intake. J. Nutr. 2003, 133, 895S–920S. [Google Scholar] [PubMed]
- Hiza, H.A.B.; Casavale, K.O.; Guenther, P.M.; Davis, C.A. Diet quality of americans differs by age, sex, race/ethnicity, income, and education level. J. Acad. Nutr. Diet. 2013, 113, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Arabshahi, S.; Lahmann, P.H.; Williams, G.M.; Marks, G.C.; Van Der Pols, J.C. Longitudinal change in diet quality in australian adults varies by demographic, socio-economic, and lifestyle characteristics. J. Nutr. 2011, 141, 1871–1879. [Google Scholar] [CrossRef] [PubMed]
- McNaughton, S.A.; Ball, K.; Crawford, D.; Mishra, G.D. An index of diet and eating patterns is a valid measure of diet quality in an australian population. J. Nutr. 2008, 138, 86–93. [Google Scholar] [PubMed]
- Nour, M.M.; McGeechan, K.; Wong, A.T.; Partridge, S.R.; Balestracci, K.; Roy, R.; Hebden, L.; Allman-Farinelli, M. Diet quality of young adults enrolling in TXT2BFIT, a mobile phone-based healthy lifestyle intervention. JMIR Res. Protoc. 2015, 4, e60. [Google Scholar] [CrossRef] [PubMed]
- Mishra, G.; Ball, K.; Arbuckle, J.; Crawford, D. Dietary patterns of australian adults and their association with socio-economic status: Results from the 1995 national nutrition survey. Eur. J. Clin. Nutr. 2002, 56, 687–693. [Google Scholar] [CrossRef] [PubMed]
- Thorpe, M.G.; Kestin, M.; Riddell, L.J.; Keast, R.S.; McNaughton, S.A. Diet quality in young adults and its association with food-related behaviours. Public Health Nutr. 2014, 17, 1767–1775. [Google Scholar] [CrossRef] [PubMed]
- Allman-Farinelli, M.; Chey, T.; Bauman, A.; Gill, T.; James, W. Age, period and birth cohort effects on prevalence of overweight and obesity in Australian adults from 1990 to 2000. Eur. J. Clin. Nutr. 2008, 62, 898–907. [Google Scholar] [CrossRef] [PubMed]
- Hayes, A.J.; Lung, T.W.C.; Bauman, A.; Howard, K. Modelling obesity trends in Australia: Unravelling the past and predicting the future. Int. J. Obes. 2017, 41, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Van Lee, L.; Geelen, A.; Kiefte-De Jong, J.C.; Witteman, J.C.M.; Hofman, A.; Vonk, N.; Jankovic, N.; Van Huysduynen, E.H.; De Vries, J.H.M.; Van’t Veer, P.; et al. Adherence to the dutch dietary guidelines is inversely associated with 20-year mortality in a large prospective cohort study. Eur. J. Clin. Nutr. 2016, 70, 262–268. [Google Scholar] [CrossRef] [PubMed]
- O’Mahony, B.; Hall, J. The influence of perceived body image, vanity and personal values on food consumption and related behaviour. J. Hosp. Tour. Manag. 2007, 14, 57–69. [Google Scholar] [CrossRef]
- Wardle, J.; Haase, A.M.; Steptoe, A.; Nillapun, M.; Jonwutiwes, K.; Bellisie, F. Gender differences in food choice: The contribution of health beliefs and dieting. Ann. Behav. Med. 2004, 27, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Munt, A.; Partridge, S.; Allman-Farinelli, M. The barriers and enablers of healthy eating among young adults: A missing piece of the obesity puzzle: A scoping review. Obes. Rev. 2017, 18, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Robertson, C.; Avenell, A.; Boachie, C.; Stewart, F.; Archibald, D.; Douglas, F.; Hoddinott, P.; Van Teijlingen, E.; Boyers, D. Should weight loss and maintenance programmes be designed differently for men? A systematic review of long-term randomised controlled trials presenting data for men and women: The romeo project. Obes. Res. Clin. Pract. 2016, 10, 70–84. [Google Scholar] [CrossRef] [PubMed]
- Hunt, K.; Wyke, S.; Gray, C.M.; Anderson, A.S.; Brady, A.; Bunn, C.; Donnan, P.T.; Fenwick, E.; Grieve, E.; Leishman, J.; et al. A gender-sensitised weight loss and healthy living programme for overweight and obese men delivered by scottish premier league football clubs (FFIT): A pragmatic randomised controlled trial. Lancet 2014, 383, 1211–1221. [Google Scholar] [CrossRef]
- Livingstone, K.M.; McNaughton, S.A. Diet quality is associated with obesity and hypertension in Australian adults: A cross sectional study. BMC Public Health 2016, 16, 1037–1046. [Google Scholar] [CrossRef] [PubMed]
- Whitton, C.; Ma, Y.; Bastian, A.C.; Chan, M.F.; Chew, L. Fast-food consumers in Singapore: Demographic profile, diet quality and weight status. Public Health Nutr. 2014, 17, 1805–1813. [Google Scholar] [CrossRef] [PubMed]
- Pate, R.R.; Taverno Ross, S.E.; Liese, A.D.; Dowda, M. Associations among physical activity, diet quality, and weight status in U.S. adults. Med. Sci. Sports Exerc. 2015, 47, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Warden, B.; Paeratakul, S.; Bray, G. Healthy eating index and obesity. Eur. J. Clin. Nutr. 2004, 58, 1580–1586. [Google Scholar] [CrossRef] [PubMed]
- Tande, D.L.; Magel, R.; Strand, B.N. Healthy eating index and abdominal obesity. Public Health Nutr. 2010, 13, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Darmon, N.; Drewnowski, A. Does social class predict diet quality? Am. J. Clin. Nutr. 2008, 87, 1107–1117. [Google Scholar] [PubMed]
- Backholer, K.; Spencer, E.; Gearon, E.; Magliano, D.J.; McNaughton, S.A.; Shaw, J.E.; Peeters, A. The association between socio-economic position and diet quality in Australian adults. Public health Nutr. 2016, 19, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A.; Darmon, N. Food choices and diet costs: An economic analysis. J. Nutr. 2005, 135, 900–904. [Google Scholar] [PubMed]
- Maillot, M.; Darmon, N.; Vieux, F.; Drewnowski, A. Low energy density and high nutritional quality are each associated with higher diet costs in French adults. Am. J. Clin. Nutr. 2007, 86, 690–696. [Google Scholar] [PubMed]
- Rao, M.; Afshin, A.; Singh, G.; Mozaffarian, D. Do healthier foods and diet patterns cost more than less healthy options? A systematic review and meta-analysis. BMJ Open 2013, 3, e004277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, A.J.; Kane, S.; Ramsey, R.; Good, E.; Dick, M. Testing the price and affordability of healthy and current (unhealthy) diets and the potential impacts of policy change in Australia. BMC Public Health 2016, 16, 315–336. [Google Scholar] [CrossRef] [PubMed]
- Center for Nutrition Policy and Promotion. Hei-2010 Total and Component Scores for Children, Adults, and Older Adults, during 2005–2006; The United States Department of Agriculture: Alexandria, VA, USA, 2016.
- Renzaho, A.M.N.; Swinburn, B.; Burns, C. Maintenance of traditional cultural orientation is associated with lower rates of obesity and sedentary behaviours among African migrant children to Australia. Int. J. Obes. 2008, 32, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Rodriguez, B.L.; Burchfiel, C.M.; Chyou, P.-H.; Curb, J.D.; Yano, K. Acculturation and prevalence of diabetes among Japanese-American men in Hawaii. Am. J. Epidemiol. 1996, 144, 674–681. [Google Scholar] [CrossRef] [PubMed]
- Pingali, P. Westernization of Asian diets and the transformation of food systems: Implications for research and policy. Food Policy 2007, 32, 281–298. [Google Scholar] [CrossRef]
- Mendez, M.; Du, S.; Popkin, B. Urbanization, income and the nutrition transition in China: A case study. FAO Food Nutr. Pap. 2004, 169–194. [Google Scholar]
- Fung, T.T.; McCullough, M.; Van Dam, R.M.; Hu, F.B. A prospective study of overall diet quality and risk of type 2 diabetes in women. Diabetes Care 2007, 30, 1753–1757. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.S.; Simas, T.A.M.; Person, S.D.; Goldberg, R.J.; Waring, M.E. Diet quality and history of gestational diabetes mellitus among childbearing women, United States, 2007–2010. Prev. Chronic Dis. 2015, 12, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Nelson, K.M.; Reiber, G.; Boyko, E.J. Diet and exercise among adults with type 2 diabetes. Diabetes Care 2002, 25, 1722–1728. [Google Scholar] [CrossRef] [PubMed]
- Evert, A.B.; Boucher, J.L.; Cypress, M.; Dunbar, S.A.; Franz, M.J.; Mayer-Davis, E.J.; Neumiller, J.J.; Nwankwo, R.; Verdi, C.L.; Urbanski, P. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care 2013, 36, 3821–3842. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Sugars Intake for Adults and Children: Guideline; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Australian Bureau of Statistics. Australian Health Survey: First Results, 2014–2015; Australian Government Publishing Services: Canberra, Australia, 2012.
Total | Male | Female | |||||
---|---|---|---|---|---|---|---|
N | Mean (SD) | N | Mean (SD) | N | Mean (SD) | ||
Total Score | 9435 | 45.5 (14.7) | 4329 | 43.3 (14.7) | 5106 | 47.5 (14.4) | |
p ^ | <0.001 | ||||||
Age (year) | 18–24 | 780 | 41.6 (14.2) | 373 | 41 (14.5) | 407 | 42.2 (13.9) |
25–34 | 1617 | 43.7 (15) * | 747 | 41.9 (15.2) | 870 | 45.3 (14.6) * | |
35–44 | 1843 | 44.6 (14.7) | 846 | 42.5 (14.6) | 997 | 46.5 (14.5) | |
45–54 | 1660 | 46 (14.4) | 781 | 43.2 (14.5) | 879 | 48.5 (13.9) * | |
55–64 | 1432 | 46.9 (14.9) | 672 | 44 (15) | 760 | 49.4 (14.3) | |
65–74 | 1255 | 48.4 (14.5) | 561 | 45.6 (14.6) | 694 | 50.6 (14.1) | |
75+ | 848 | 47.3 (14) | 349 | 45.4 (14.1) | 499 | 48.6 (13.8) | |
p ^ | <0.001 | <0.001 | <0.001 | ||||
BMI (kg/m2) | <18.5 | 121 | 43.9 (15.8) | 38 | 39.9 (14.6) | 83 | 45.7 (16.1) |
18.5–24.9 | 2736 | 46.5 (14.9) | 1059 | 44 (14.8) | 1677 | 48 (14.7) | |
25.0–29.9 | 2898 | 45.5 (14.9) | 1659 | 43.7 (14.7) | 1239 | 47.8 (14.8) | |
≥30.0 | 2203 | 44.1 (14.3) * | 1030 | 42.1 (14.5) * | 1173 | 45.9 (13.8) * | |
p ^ | <0.001 | 0.004 | 0.001 | ||||
SEIFA quintiles | 1-Lowest | 1778 | 43.7 (14.9) | 796 | 41.2 (15) | 982 | 45.8 (14.4) |
2 | 1961 | 44.8 (14.6) | 898 | 42.6 (14.7) | 1063 | 46.6 (14.2) | |
3 | 1873 | 45.1 (14.4) | 860 | 43 (14.3) | 1013 | 46.8 (14.2) | |
4 | 1666 | 46.4 (14.9) | 795 | 44.3 (14.9) | 871 | 48.4 (14.7) | |
5-Highest | 2157 | 47.5 (14.6) | 980 | 44.8 (14.6) | 1177 | 49.6 (14.2) | |
p ^ | <0.001 | <0.001 | <0.001 | ||||
COB | Australia | 6714 | 44.2 (14.6) | 3043 | 41.7 (14.5) | 3671 | 46.2 (14.4) |
English speaking 2 | 1155 | 45.7 (15) * | 561 | 42.8 (14.9) | 594 | 48.4 (14.5) * | |
Others | 1566 | 51.4 (13.7) * | 725 | 50 (14) * | 841 | 52.7 (13.3) * | |
p ^ | <0.001 | <0.001 | <0.001 | ||||
Smoker | Yes | 1785 | 40 (14.2) | 931 | 37.9 (14.1) | 854 | 42.3 (13.9) |
No | 7650 | 46.8 (14.5) | 3398 | 44.7 (14.6) | 4252 | 48.5 (14.3) | |
p ^ | <0.001 | <0.001 | <0.001 | ||||
Diabetes status | No | 8844 | 45.4 (14.8) | 4019 | 43 (14.7) | 4825 | 47.3 (14.5) |
Yes | 591 | 48.4 (13.8) | 310 | 46.8 (14.5) | 281 | 50.2 (12.7) | |
p ^ | <0.001 | <0.001 | 0.001 | ||||
Misreporting 3 | Under-reporting | 1607 | 47.1 (12.4) | 730 | 45.5 (13) | 877 | 48.4 (11.6) |
Plausible report | 6263 | 45 (15.2) * | 3017 | 42.8 (15) | 3246 | 47.1 (15.2) | |
Over-reporting | 139 | 44.5 (15.5) | 68 | 41.2 (14.9) | 71 | 47.5 (15.6) | |
No valid measurement | 1426 | 46.2 (14.6) | 514 | 42.8 (15) | 912 | 48.2 (14) | |
p ^ | <0.001 | <0.001 | 0.048 |
Mean (SD) HEIFA-2013 Component Score 1 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Grain | Veg. | Fruit | Dairy | Meat | Water | D.F. | Fat | Sodium | A.S. | Alcohol | ||
Gender | ||||||||||||
Male | 2.1 (0.1) | 3.9 (0.2) | 3.1 (0.2) | 3.6 (0.2) | 4.9 (0.2) | 4.2 (0.1) | 5 (0.2) | 3.4 (0.2) | 4.2 (0.2) | 5.2 (0.3) | 4.1 (0.1) | |
Female | 2.0 (0.1) | 4.5 (0.2) | 3.8 (0.2) | 4.1 (0.2) | 5.4 (0.2) | 4.6 (0.1) | 4.8 (0.2) | 3.9 (0.2) | 4.6 (0.2) | 5.0 (0.2) | 4.4 (0.1) | |
p ^ | 0.05 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.024 | <0.001 | <0.001 | 0.009 | <0.001 | |
Age (years) | ||||||||||||
18–24R | 2 (0.3) | 3.6 (0.4) | 2.4 (0.6) | 3.7 (0.5) | 5 (0.5) | 4.2 (0.2) | 5.0 (0.5) | 3.6 (0.4) | 3.8 (0.5) | 3.9 (0.6) | 4.7 (0.2) | |
25–34 | 2.1 (0.2) | 4 (0.3) | 3 (0.4) * | 3.9 (0.3) | 5 (0.4) | 4.4 (0.1) * | 4.9 (0.4) | 3.6 (0.3) | 4.2 (0.4) * | 4.5 (0.4) * | 4.5 (0.2) * | |
35–44 | 2.0 (0.2) | 4.1 (0.2) * | 3.1 (0.4) * | 4.0 (0.3) | 5.2 (0.3) * | 4.4 (0.1) * | 4.9 (0.3) | 3.7 (0.3) | 4.3 (0.3) * | 5 (0.4) * | 4.2 (0.2) * | |
45–54 | 2.0 (0.2) | 4.1 (0.3) * | 3.5 (0.4) * | 3.9 (0.3) | 5.3 (0.4) * | 4.4 (0.1) * | 5 (0.4) | 3.8 (0.3) | 4.5 (0.4) * | 5.6 (0.4) * | 4.1 (0.1) * | |
55–64 | 2.0 (0.2) | 4.4 (0.3) * | 3.8 (0.4)* | 3.8 (0.4) | 5.4 (0.4) * | 4.4 (0.1) * | 4.8 (0.4) | 3.8 (0.3) | 4.7 (0.4) * | 5.7 (0.4) * | 3.9 (0.3) * | |
65–74 | 2.1 (0.2) | 4.6 (0.3) * | 4.3 (0.4) * | 3.8 (0.4) | 5.2 (0.4) | 4.6 (0.1) * | 5.1 (0.4) | 3.7 (0.3) | 4.8 (0.4) * | 5.6 (0.5) * | 4.1 (0.2) * | |
75+ | 2.2 (0.3) | 4.5 (0.4) * | 4.5 (0.5) * | 3.9 (0.5) | 4.8 (0.5) * | 4.5 (0.2) * | 4.9 (0.5) | 3.4 (0.4) | 4.9 (0.5) * | 4.8 (0.6) * | 4.3 (0.2) * | |
p^ | 0.144 | <0.001 | <0.001 | 0.18 | 0.1 | <0.001 | 0.36 | 0.30 | <0.001 | <0.001 | <0.001 | |
BMI 2 (kg/m2) | ||||||||||||
UW | 2.1 (0.8) * | 4.1 (1) | 3.2 (1.4) * | 4.1 (1.2) | 4.5 (1.4) * | 4.2 (0.4) * | 4.8 (1.3) * | 4.1 (1) * | 4.3 (1.3) | 4.1 (1.5) | 4.5 (0.6) * | |
Norma R | 2.3 (0.2) | 4.4 (0.2) | 3.8 (0.3) | 4.1 (0.3) | 5.1 (0.3) | 4.5 (0.1) | 5 (0.3) | 3.7 (0.2) | 4.6 (0.3) | 5.1 (0.3) | 4.3 (0.1) | |
OW | 2.1 (0.2) * | 4.2 (0.2) | 3.6 (0.3) * | 3.8 (0.3) * | 5.3 (0.3) | 4.4 (0.1) | 4.8 (0.3) * | 3.7 (0.2) | 4.3 (0.3) | 5.2 (0.3) | 4.1 (0.1) * | |
Obese | 1.8 (0.2) * | 4.1 (0.2) | 3.1 (0.3) * | 3.9 (0.3) | 5.5 (0.3) * | 4.3 (0.1) | 4.5 (0.3) * | 3.5 (0.2)* | 4.1 (0.3) | 4.8 (0.4) | 4.2 (0.1) * | |
p ^ | <0.001 | 0.30 | <0.001 | 0.052 | <0.001 | 0.06 | 0.001 | 0.002 | 0.10 | 0.22 | 0.001 | |
SEIFA 3 | ||||||||||||
1 | 1.9 (0.2) * | 4.1 (0.3) | 2.9 (0.4) * | 3.8 (0.3) | 4.9 (0.4) * | 4.3 (0.1) * | 4.8 (0.3) * | 3.6 (0.3) * | 4.4 (0.3) | 4.8 (0.4) * | 4.3 (0.2) | |
2 | 2.0 (0.2) * | 4.3 (0.2) | 3.1 (0.3) * | 3.9 (0.3) | 5.2 (0.3) | 4.4 (0.1) * | 4.8 (0.3) * | 3.5 (0.2) * | 4.5 (0.3) | 4.8 (0.4) * | 4.3 (0.2) | |
3 | 2.1 (0.2) | 4.1 (0.2) | 3.5 (0.4) * | 3.9 (0.3) | 5.1 (0.3) | 4.4 (0.1) * | 4.8 (0.3)* | 3.6 (0.2) * | 4.5 (0.3) | 4.9 (0.4) * | 4.3 (0.2) | |
4 | 2.1 (0.2) | 4.2 (0.3) | 3.9 (0.4) | 3.9 (0.3) | 5.2 (0.4) | 4.5 (0.1) | 5.1 (0.4) | 3.6 (0.3) * | 4.4 (0.4) | 5.3 (0.4) * | 4.2 (0.2) | |
5 R | 2.2 (0.2) | 4.3 (0.2) | 4.0 (0.3) | 4.0 (0.3) | 5.3 (0.3) | 4.5 (0.1) | 5.1 (0.3) | 3.8 (0.2) | 4.4 (0.3) | 5.6 (0.4) | 4.2 (0.1) | |
p ^ | <0.001 | 0.075 | <0.001 | 0.556 | 0.004 | <0.001 | 0.001 | 0.004 | 0.878 | <0.001 | 0.216 | |
COB | ||||||||||||
Australia R | 1.9 (0.1) | 4.1 (0.1) | 3.3 (0.2) | 4.0 (0.2) | 5.1 (0.2) | 4.4 (0.1) | 4.6 (0.2) | 3.5 (0.1) | 4.3 (0.2) | 4.8 (0.2) | 4.2 (0.1) | |
English 4 | 2.0 (0.2) | 4.2 (0.3) | 3.7 (0.5) * | 4.0 (0.4) | 5.0 (0.4) | 4.5 (0.1) | 4.8 (0.4) * | 3.6 (0.3) | 4.6 (0.4) * | 5.3 (0.5) * | 4.0 (0.2) * | |
Others | 2.8 (0.2) * | 4.4 (0.3) * | 4.1 (0.4) * | 3.3 (0.3) * | 5.4 (0.4) | 4.6 (0.1) * | 6.4 (0.4) * | 4.4 (0.3) * | 5.1 (0.4) * | 6.0 (0.4) * | 4.6 (0.2) * | |
p^ | <0.001 | <0.001 | <0.001 | <0.001 | 0.80 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | |
Diabetes Mellitus | ||||||||||||
No | 2 (0.1) | 4.2 (0.1) | 3.4 (0.2) | 3.9 (0.1) | 5.2 (0.2) | 4.4 (0.1) | 4.9 (0.2) | 3.7 (0.1) | 4.5 (0.2) | 5 (0.2) | 4.2 (0.1) | |
Yes | 2.2 (0.4) | 4.3 (0.4) | 4 (0.6) | 3.8 (0.6) | 5.3 (0.6) | 4.4 (0.2) | 5.3 (0.6) | 3.5 (0.4) | 4.4 (0.6) | 6.2 (0.7) | 4.3 (0.3) | |
p ^ | 0.057 | 0.247 | 0.001 | 0.64 | 0.359 | 0.67 | 0.006 | 0.334 | 0.683 | <0.001 | 0.18 |
HEIFA Score | β | SE | p | |
---|---|---|---|---|
Gender (Ref. Male) | Female | 3.2 | 0.3 | <0.001 |
Age (Ref. 18–24) | 25–34 | 1.9 | 0.6 | 0.002 |
35–44 | 3.0 | 0.6 | <0.001 | |
45–54 | 4.3 | 0.6 | <0.001 | |
55–64 | 4.9 | 0.6 | <0.001 | |
65–74 | 5.4 | 0.7 | <0.001 | |
75+ | 3.6 | 0.7 | <0.001 | |
BMI 2 (Ref. Healthy weight) | Underweight | −1.9 | 1.3 | 0.139 |
Overweight | −0.6 | 0.3 | 0.1 | |
Obesity | −2.7 | 0.4 | <0.001 | |
Country of birth (Ref. Australia) | English-speaking 3 | 1.1 | 0.4 | 0.015 |
Others | 6.5 | 0.4 | <0.001 | |
SEIFA Quintiles (Ref. 1st) | 2nd | <0.001 | <0.001 | 0.99 |
3rd | <0.001 | <0.001 | 0.99 | |
4th | <0.001 | <0.001 | 0.98 | |
5th-highest | 0.7 | 0.4 | 0.045 | |
Smoking (Ref. No smoker) | -6.0 | 0.4 | <0.001 | Smoking (Ref. No smoker) |
Diabetes (Ref. No) | 2.1 | 0.6 | 0.001 | Diabetes (Ref. No) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grech, A.; Sui, Z.; Siu, H.Y.; Zheng, M.; Allman-Farinelli, M.; Rangan, A. Socio-Demographic Determinants of Diet Quality in Australian Adults Using the Validated Healthy Eating Index for Australian Adults (HEIFA-2013). Healthcare 2017, 5, 7. https://doi.org/10.3390/healthcare5010007
Grech A, Sui Z, Siu HY, Zheng M, Allman-Farinelli M, Rangan A. Socio-Demographic Determinants of Diet Quality in Australian Adults Using the Validated Healthy Eating Index for Australian Adults (HEIFA-2013). Healthcare. 2017; 5(1):7. https://doi.org/10.3390/healthcare5010007
Chicago/Turabian StyleGrech, Amanda, Zhixian Sui, Hong Ying Siu, Miaobing Zheng, Margaret Allman-Farinelli, and Anna Rangan. 2017. "Socio-Demographic Determinants of Diet Quality in Australian Adults Using the Validated Healthy Eating Index for Australian Adults (HEIFA-2013)" Healthcare 5, no. 1: 7. https://doi.org/10.3390/healthcare5010007
APA StyleGrech, A., Sui, Z., Siu, H. Y., Zheng, M., Allman-Farinelli, M., & Rangan, A. (2017). Socio-Demographic Determinants of Diet Quality in Australian Adults Using the Validated Healthy Eating Index for Australian Adults (HEIFA-2013). Healthcare, 5(1), 7. https://doi.org/10.3390/healthcare5010007