Perceptions of Romanian Physicians on Lockdowns for COVID-19 Prevention
Abstract
:1. Introduction
2. Methods
2.1. Survey Design and Study Participants
2.2. Ethics Approval
2.3. Statistical Analysis
3. Results
3.1. Demographic Profile of Respondents
3.2. Impact of COVID-19 on a Personal Level
3.3. Diagnosis and Clinical Features of Covid-19
3.4. Treatment Options and Prognosis in COVID-19
3.5. Perspectives on COVID-19 Prevention and Knowledge
4. Discussion
4.1. Epidemiology of SARS-CoV-2 Infection
4.2. Pathogenesis and Clinical Features of SARS-CoV-2 Infection
4.3. Diagnosis of SARS-CoV-2 Infection
4.4. Treatment of SARS-CoV-2 Infection
4.5. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pascarella, G.; Strumia, A.; Piliego, C.; Bruno, F.; Del Buono, R.; Costa, F.; Scarlata, S.; Agrò, F.E. COVID-19 diagnosis and management: A comprehensive review. J. Int. Med. 2020, 288, 192–206. [Google Scholar] [CrossRef] [PubMed]
- Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. J. Am. Med. Assoc. 2020, 324, 782–793. [Google Scholar] [CrossRef] [PubMed]
- WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19–11-march-2020 (accessed on 2 December 2020).
- Dong, E.; Du, H.; Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 2020, 20, 533–534. [Google Scholar] [CrossRef]
- Dima, A.; Balaban, D.V.; Jurcut, C.; Berza, I.; Jurcut, R.; Jinga, M. Physicians’ Perspectives on COVID-19: An International Survey. Healthcare 2020, 8, 250. [Google Scholar] [CrossRef] [PubMed]
- Decret 240 14/04/2020—Portal Legislativ. Available online: http://legislatie.just.ro/Public/DetaliiDocumentAfis/224849 (accessed on 2 January 2021).
- Decret 195 16/03/2020—Portal Legislativ. Available online: http://legislatie.just.ro/Public/DetaliiDocumentAfis/223831 (accessed on 2 January 2021).
- Lege 55 15/05/2020—Portal Legislativ. Available online: http://legislatie.just.ro/Public/DetaliiDocument/225620 (accessed on 2 January 2021).
- Rello, J.; Storti, E.; Belliato, M.; Serrano, R. Clinical phenotypes of SARS-CoV-2: Implications for clinicians and researchers. Eur. Respir. J. 2020, 55, 2001028. [Google Scholar] [CrossRef] [PubMed]
- Feinhandler, I.; Cilento, B.; Beauvais, B.; Harrop, J.; Fulton, L. Predictors of Death Rate during the COVID-19 Pandemic. Healthcare 2020, 8, 339. [Google Scholar] [CrossRef] [PubMed]
- Dascalu, S. The Successes and Failures of the Initial COVID-19 Pandemic Response in Romania. Front. Public Health 2020, 8, 1–6. [Google Scholar] [CrossRef]
- Hâncean, M.G.; Perc, M.; Lerner, J. Early spread of COVID-19 in Romania: Imported cases from Italy and human-to-human transmission networks: Early spread of COVID-19 in Romania. R. Soc. Open Sci. 2020, 7, 200780. [Google Scholar] [CrossRef]
- Streinu-Cercel, A.; Apostolescu, C.; Săndulescu, O.; Oţelea, D.; Streinu-Cercel, A.; Vlaicu, O.; Paraschiv, S.; Benea, O.E.; Bacruban, R.; Niţescu, M.; et al. Sars-COV-2 in Romania—analysis of the first confirmed case and evolution of the pandemic in Romania in the first three months. Germs 2020, 10, 132–134. [Google Scholar] [CrossRef]
- Stoian, A.P.; Pricop-Jeckstadt, M.; Pana, A.; Ileanu, B.V.; Schitea, R.; Geanta, M.; Catrinoiu, D.; Suceveanu, A.I.; Serafinceanu, C.; Pituru, S.; et al. Death by SARS—CoV 2: A Romanian COVID—19 multi—centre comorbidity study. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Radu, M.C.; Schnakovszky, C.; Herghelegiu, E.; Ciubotariu, V.A.; Cristea, I. The impact of the COVID-19 pandemic on the quality of educational process: A student survey. Int. J. Environ. Res. Public Health 2020, 17, 7770. [Google Scholar] [CrossRef] [PubMed]
- Dimitriu, M.C.; Pantea-Stoian, A.; Smaranda, A.C.; Nica, A.A.; Carap, A.C.; Constantin, V.D.; Davitoiu, A.M.; Cirstoveanu, C.; Bacalbasa, N.; Bratu, O.G.; et al. Burnout syndrome in Romanian medical residents in time of the COVID-19 pandemic. Med. Hypotheses 2020, 144, 109972. [Google Scholar] [CrossRef] [PubMed]
- Coronavirus Update (Live): 84,473,450 Cases and 1,837,442 Deaths from COVID-19 Virus Pandemic—Worldometer. Available online: https://www.worldometers.info/coronavirus/ (accessed on 2 January 2021).
- Ungureanu, B.S.; Vladut, C.; Bende, F.; Sandru, V.; Tocia, V.; Turcu-Stiolica, R.-V. Impact of the COVID-19 Pandemic on Health-Related Quality of Life, Anxiety, and Training Among Young Gastroenterologists in Romania. Front. Psychol. 2020, 11, 579177. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, R.T.; Lynch, J.B.; del Rio, C. Mild or Moderate Covid-19. N. Engl. J. Med. 2020, 383, 1757–1766. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.Y.; Jian, S.W.; Liu, D.P.; Ng, T.C.; Huang, W.T.; Lin, H.H. Contact Tracing Assessment of COVID-19 Transmission Dynamics in Taiwan and Risk at Different Exposure Periods before and after Symptom Onset. JAMA Int. Med. 2020, 180, 1156–1163. [Google Scholar] [CrossRef]
- Cordos, A.-A.; Bolboacă, S.D. Lockdown, Social Media exposure regarding COVID-19 and the relation with self-assessment depression and anxiety. Is the medical staff different? Int. J. Clin. Pract. 2020, e13933. [Google Scholar] [CrossRef]
- Marik, P. EVMS Critical Care COVID-19 Management Protocol Developed and Updated by 2020. Available online: https://www.evms.edu/covid-19/medical_information_resources/ (accessed on 2 December 2020).
- Oran, D.P.; Topol, E.J. Prevalence of Asymptomatic SARS-CoV-2 Infection: A Narrative Review. Ann. Int. Med. 2020, 173, 362–367. [Google Scholar] [CrossRef]
- Sakurai, A.; Sasaki, T.; Kato, S.; Hayashi, M.; Tsuzuki, S.I.; Ishihara, T.; Iwata, M.; Morise, Z.; Doi, Y. Natural History of Asymptomatic SARS-CoV-2 Infection. N. Engl. J. Med. 2020, 383, 885–886. [Google Scholar] [CrossRef]
- Stokes, E.K.; Zambrano, L.D.; Anderson, K.N.; Marder, E.P.; Raz, K.M.; Felix, S.E.; Tie, Y.; Fullerton, K.E. Coronavirus Disease 2019 Case Surveillance—United States, 22 January–30 May 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 759–765. [Google Scholar] [CrossRef]
- Coronavirus Disease 2019 (COVID-19): Clinical Features—UpToDate. Available online: https://www.uptodate.com/contents/coronavirus-disease-2019-covid-19-clinical-features? (accessed on 3 December 2020).
- Lai, C.C.; Ko, W.C.; Lee, P.I.; Jean, S.S.; Hsueh, P.R. Extra-respiratory manifestations of COVID-19. Int. J. Antimicrob. Agents 2020, 56, 106024. [Google Scholar] [CrossRef]
- Ciucurel, C.; Iconaru, E.I. An epidemiological study on the prevalence of the clinical features of SARS-CoV-2 infection in Romanian people. Int. J. Environ. Res. Public Health 2020, 17, 5082. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases from the Chinese Center for Disease Control and Prevention. J. Am. Med. Assoc. 2020, 323, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Interim Guidelines for Clinical Specimens for COVID-19|CDC. Available online: https://www.cdc.gov/coronavirus/2019-ncov/lab/guidelines-clinical-specimens.html (accessed on 3 December 2020).
- Kucirka, L.M.; Lauer, S.A.; Laeyendecker, O.; Boon, D.; Lessler, J. Variation in False-Negative Rate of Reverse Transcriptase Polymerase Chain Reaction-Based SARS-CoV-2 Tests by Time Since Exposure. Ann. Int. Med. 2020, 173, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Coronavirus Disease 2019 (COVID-19): Diagnosis—UpToDate. Available online: https://www.uptodate.com/contents/coronavirus-disease-2019-covid-19-diagnosis? (accessed on 3 December 2020).
- Dinnes, J.; Deeks, J.J.; Adriano, A.; Berhane, S.; Davenport, C.; Dittrich, S.; Emperador, D.; Takwoingi, Y.; Cunningham, J.; Beese, S.; et al. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst. Rev. 2020, 8. [Google Scholar] [CrossRef]
- Infectious Diseases Society of America Guidelines on the Diagnosis of COVID-19: Serologic Testing. Available online: https://www.idsociety.org/practice-guideline/covid-19-guideline-serology/ (accessed on 3 December 2020).
- Wu, C.; Chen, X.; Cai, Y.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; Zhang, Y.; et al. Risk Factors Associated with Acute Respiratory Distress Syndrome and Death in Patients with Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Int. Med. 2020, 180, 934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, A.; Pasea, L.; Harris, S.; Gonzalez-Izquierdo, A.; Torralbo, A.; Shallcross, L.; Noursadeghi, M.; Pillay, D.; Sebire, N.; Holmes, C.; et al. Estimating excess 1-year mortality associated with the COVID-19 pandemic according to underlying conditions and age: A population-based cohort study. Lancet 2020, 395, 1715–1725. [Google Scholar] [CrossRef]
- Acharya, D.; Lee, K.; Lee, D.S.; Lee, Y.S.; Moon, S.S. Mortality Rate and Predictors of Mortality in Hospitalized COVID-19 Patients with Diabetes. Healthcare 2020, 8, 338. [Google Scholar] [CrossRef]
- Coronavirus Disease 2019 (COVID-19): Management in Hospitalized Adults—UpToDate. Available online: https://www.uptodate.com/contents/coronavirus-disease-2019-covid-19-management-in-hospitalized-adults? (accessed on 3 December 2020).
- ORDIN 487 23/03/2020—Portal Legislativ. Available online: http://legislatie.just.ro/Public/.DetaliiDocumentAfis/224341 (accessed on 2 January 2021).
- ORDIN 1418 07/08/2020—Portal Legislativ. Available online: http://legislatie.just.ro/Public/Detalii.Document/229019 (accessed on 2 January 2021).
- Velthuis, A.J.W.; van den Worml, S.H.E.; Sims, A.C.; Baric, R.S.; Snijder, E.J.; van Hemert, M.J. Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog. 2010, 6, e1001176. [Google Scholar] [CrossRef]
- Gammoh, N.Z.; Rink, L. Zinc in infection and inflammation. Nutrients 2017, 9, 624. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Li, J.; Luo, C.; Liu, H.; Xu, W.; Chen, G.; Liew, O.W.; Zhu, W.; Puah, C.M.; Shen, X.; et al. Binding interaction of quercetin-3-β-galactoside and its synthetic derivatives with SARS-CoV 3CLpro: Structure-activity relationship studies reveal salient pharmacophore features. Bioorg. Med. Chem. 2006, 14, 8295–8306. [Google Scholar] [CrossRef]
- Abian, O.; Ortega-Alarcon, D.; Jimenez-Alesanco, A.; Ceballos-Laita, L.; Vega, S.; Reyburn, H.T.; Rizzuti, B.; Velazquez-Campoy, A. Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening. Int. J. Biol. Macromol. 2020, 164, 1693–1703. [Google Scholar] [CrossRef] [PubMed]
- Dabbagh-Bazarbachi, H.; Clergeaud, G.; Quesada, I.M.; Ortiz, M.; O’Sullivan, C.K.; Fernández-Larrea, J.B. Zinc ionophore activity of quercetin and epigallocatechin-gallate: From hepa 1-6 cells to a liposome model. J. Agric. Food Chem. 2014, 62, 8085–8093. [Google Scholar] [CrossRef] [PubMed]
- Colunga Biancatelli, R.M.L.; Berrill, M.; Catravas, J.D.; Marik, P.E. Quercetin and Vitamin C: An Experimental, Synergistic Therapy for the Prevention and Treatment of SARS-CoV-2 Related Disease (COVID-19). Front. Immunol. 2020, 11, 1451. [Google Scholar] [CrossRef] [PubMed]
- Lau, F.H.; Majumder, R.; Torabi, R.; Saeg, F.; Hoffman, R.; Cirillo, J.D.; Greiffenstein, P. Vitamin D Insufficiency is Prevalent in Severe COVID-19. medRxiv 2020. [Google Scholar] [CrossRef]
- Laird, E.; Rhodes, J.; Kenny, R.A. Vitamin D and Inflammation: Potential Implications for Severity of Covid-19. Ir. Med. J. 2020, 113, 81. [Google Scholar] [PubMed]
- Reiter, R.J.; Abreu-Gonzalez, P.; Marik, P.E.; Dominguez-Rodriguez, A. Therapeutic Algorithm for Use of Melatonin in Patients with COVID-19. Front. Med. 2020, 7, 226. [Google Scholar] [CrossRef]
- Biancatelli, R.M.L.C.; Berrill, M.; Mohammed, Y.H.; Marik, P.E. Melatonin for the treatment of sepsis: The scientific rationale. J. Thorac. Dis. 2020, 2, S54–S65. [Google Scholar] [CrossRef]
- Kleszczyński, K.; Slominski, A.T.; Steinbrink, K.; Reiter, R.J. Clinical trials for use of melatonin to fight against COVID-19 are urgently needed. Nutrients 2020, 12, 2561. [Google Scholar] [CrossRef]
- Dequin, P.F.; Heming, N.; Meziani, F.; Plantefève, G.; Voiriot, G.; Badié, J.; François, B.; Aubron, C.; Ricard, J.D.; Ehrmann, S.; et al. Effect of Hydrocortisone on 21-Day Mortality or Respiratory Support among Critically Ill Patients with COVID-19: A Randomized Clinical Trial. J. Am. Med. Assoc. 2020, 324, 1298–1306. [Google Scholar] [CrossRef]
- Shukla, A.M.; Archibald, L.K.; Wagle Shukla, A.; Shukla, A.; Mehta, H.J.; Cherabuddi, K. Chloroquine and hydroxychloroquine in the context of COVID-19. Drugs Context 2020, 9, 1–8. [Google Scholar] [CrossRef]
- Sinha, N.; Balayla, G. Hydroxychloroquine and covid-19. Postgrad. Med. J. 2020, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Siemieniuk, R.A.; Bartoszko, J.J.; Ge, L.; Zeraatkar, D.; Izcovich, A.; Kum, E.; Pardo-Hernandez, H.; Rochwerg, B.; Lamontagne, F.; Han, M.A.; et al. Drug treatments for covid-19: Living systematic review and network meta-Analysis. BMJ 2020, 370, 2980. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, A.V.; Roman, Y.M.; Pasupuleti, V.; Barboza, J.J.; White, C.M. Update Alert 2: Hydroxychloroquine or Chloroquine for the Treatment or Prophylaxis of COVID-19. Ann. Int. Med. 2020, 173, W156–W157. [Google Scholar] [CrossRef] [PubMed]
- Hussain, N.; Chung, E.; Heyl, J.J.; Hussain, B.; Oh, M.C.; Pinon, C.; Boral, S.; Chun, D.; Babu, B. A Meta-Analysis on the Effects of Hydroxychloroquine on COVID-19. Cureus 2020, 12, e10005. [Google Scholar] [CrossRef] [PubMed]
- Coronavirus (COVID-19) Update: FDA Revokes Emergency Use Authorization for Chloroquine and Hydroxychloroquine|FDA. Available online: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-revokes-emergency-use-authorization-chloroquine-and (accessed on 26 June 2020).
- Horby, P.; Lim, W.S.; Emberson, J.; Mafham, M.; Bell, J.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; Elmahi, E.; et al. Effect of Dexamethasone in Hospitalized Patients with COVID-19: Preliminary Report. N. Engl. J. Med. 2020, oa2021436. [Google Scholar] [CrossRef]
- Fadel, R.; Morrison, A.; Vahia, A.; Smith, Z.R.; Chaudhry, Z.; Bhargava, P.; Miller, J.; Kenney, R.; Alangaden, G.; Ramesh, M.S.; et al. Early Short-Course Corticosteroids in Hospitalized Patients With COVID-19. Clin. Infect. Dis. 2020, 71, 2114. [Google Scholar] [CrossRef]
- Sterne, J.A.; Murthy, S.; Diaz, J.V.; Slutsky, A.S.; Villar, J.; Angus, D.C.; Annane, D.; Azevedo, L.C.; Berwanger, O.; Cavalcanti, A.B.; et al. Association between Administration of Systemic Corticosteroids and Mortality among Critically Ill Patients with COVID-19: A Meta-analysis. J. Am. Med. Assoc. 2020, 324, 1330–1341. [Google Scholar] [CrossRef]
- Rawson, T.M.; Moore, L.S.; Zhu, N.; Ranganathan, N.; Skolimowska, K.; Gilchrist, M.; Satta, G.; Cooke, G.; Holmes, A. Bacterial and Fungal Coinfection in Individuals with Coronavirus: A Rapid Review to Support COVID-19 Antimicrobial Prescribing. Clin. Infect. Dis. 2020, 71, 2459–2468. [Google Scholar] [CrossRef]
- Guidelines SOPs—Thromboprophylaxis and Anticoagulation in COVID-19 Infections. Available online: https://www.wsh.nhs.uk/covid-staff-zone/Guidelines-SOPs-clinical-info/Docs/Clinical-guideline (accessed on 3 December 2020).
- Stefan, G.; Mehedinti, A.M.; Andreiana, I.; Zugravu, A.D.; Cinca, S.; Busuioc, R.; Miler, I.; Stancu, S.; Petrescu, L.; Dimitriu, I.; et al. Clinical features and outcome of maintenance hemodialysis patients with COVID-19 from a tertiary nephrology care center in Romania. Ren. Fail. 2021, 43, 49–57. [Google Scholar] [CrossRef]
- Baicus, C.; Pinte, L.; Stoichitoiu, L.E.; Badea, C. Hydroxychloroquine for prophylaxis of COVID-19 physicians survey: Despite lack of evidence, many would take or give to dear ones, and despite the perceived necessity of an RCT, few would participate. J. Eval. Clin. Pract. 2020, 26, 1579–1582. [Google Scholar] [CrossRef]
- Fosbøl, E.L.; Butt, J.H.; Østergaard, L.; Andersson, C.; Selmer, C.; Kragholm, K.; Schou, M.; Phelps, M.; Gislason, G.H.; Gerds, T.A. Association of Angiotensin-Converting Enzyme Inhibitor or Angiotensin Receptor Blocker Use with COVID-19 Diagnosis and Mortality. J. Am. Med. Assoc. 2020, 324, 168–177. [Google Scholar] [CrossRef] [PubMed]
- Coronavirus Disease 2019 (COVID-19): Vaccines to Prevent SARS-CoV-2 Infection—UpToDate. Available online: https://www.uptodate.com/contents/coronavirus-disease-2019-covid-19-vaccines-to-prevent-sars-cov-2-infection? (accessed on 3 December 2020).
- Vaccines—COVID19 Vaccine Tracker. Available online: https://covid19.trackvaccines.org/vaccines/ (accessed on 5 December 2020).
- Ahn, D.G.; Shin, H.J.; Kim, M.H.; Lee, S.; Kim, H.S.; Myoung, J.; Kim, B.T.; Kim, S.J. Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19). J. Microbiol. Biotechnol. 2020, 30, 313–324. [Google Scholar] [CrossRef] [PubMed]
Parameter | First n1 = 214 | Second n2 = 199 | p-Value |
---|---|---|---|
Clinical work, yes (%) | 202 (94.4%) | 190 (95.5%) | 0.616 |
Age, n (%) | |||
20–29 years | 52 (24.3%) | 47 (23.6%) | 0.136 |
30–39 years | 92 (43.0%) | 72 (36.2%) | |
40–49 years | 50 (23.4%) | 45 (22.6%) | |
50–59 years | 16 (7.5%) | 29 (14.6%) | |
60–69 years | 4 (1.9%) | 5 (2.5%) | |
70–79 years | 0 (0.0%) | 1 (0.5%) | |
Gender, male (%) | 63 (29.4%) | 35 (17.6%) | 0.005 |
Professional level, n (%) | |||
Resident/Intern/Fellow | 62 (29.0%) | 56 (28.1%) | 0.253 |
Specialist <5 years of experience | 66 (30.8%) | 46 (23.1%) | |
Specialist >5 years of experience | 77 (36.0%) | 89 (44.7) | |
Head of Department/Professor | 9 (4.2%) | 8 (4.0) |
Parameter | First n1 = 214 | Second n2 = 199 | p-Value |
---|---|---|---|
Work setting for COVID-19 patients | |||
Yes | 59 (27.6%) | 69 (34.7%) | 0.119 |
No | 155 (72.4%) | 130 (65.3%) | |
Possible contact with COVID-19 patients | |||
Yes | 169 (79.0%) | 155 (77.9%) | 0.897 |
No | 11 (5.1%) | 16 (8.0%) | |
Not sure | 34 (15.9%) | 28 (14.1%) | |
Feeling of rejection | |||
Yes | 48 (22.4%) | 49 (24.6%) | 0.785 |
No | 84 (39.3%) | 74 (37.2%) | |
Not applicable | 82 (38.3%) | 76 (38.2%) | |
Personal COVID-19 diagnosis | |||
No | 170 (79.4%) | 165 (82.9%) | 0.367 |
Yes, asymptomatic | 4 (1.9%) | 3 (1.5%) | |
Yes, symptomatic | 1 (0.5%) | 1 (0.5%) | |
Not sure | 39 (18.2%) | 30 (15.1%) | |
Household COVID-19 diagnosis | |||
No | 183 (85.5%) | 171 (85.9%) | 0.817 |
Yes, asymptomatic | 1 (0.5%) | 5 (2.5%) | |
Yes, symptomatic | 1 (0.5%) | 2 (1.0%) | |
Not sure | 29 (13.6%) | 21 (10.6%) | |
Separation of household members | |||
Yes | 79 (36.9%) | 44 (22.1%) | 0.001 |
No | 130 (60.7%) | 155 (77.9%) | |
Efficiency of the protective measures | |||
Yes | 67 (31.3%) | 93 (46.7%) | 0.040 |
No | 72 (33.6%) | 39 (19.6%) | |
Not sure | 75 (35.0%) | 67 (33.7%) | |
Neglect of COVID-19-free patients | |||
Yes | 162 (75.7%) | 150 (75.4%) | 0.729 |
No | 22 (10.3%) | 25 (12.6%) | |
Not sure | 26 (12.1%) | 24 (12.1%) |
Parameter | First n1 = 214 | Second n2 = 199 | p-Value |
---|---|---|---|
COVID-19 symptoms | |||
Fever | 211 (98.6%) | 192 (96.5%) | 0.162 |
Cough | 204 (95.3%) | 177 (88.9%) | 0.015 |
Dyspnea | 204 (95.3%) | 183 (92.0%) | 0.159 |
Anosmia/ageusia | 187 (87.4%) | 167 (83.9%) | 0.315 |
Abdominal pain | 108 (50.5%) | 83 (41.7%) | 0.074 |
Diarrhea | 154 (72.0%) | 105 (52.8%) | 0.000 |
Anorexia | 44 (20.6%) | 39 (19.6%) | 0.807 |
Chest pain | 92 (43.0%) | 75 (37.7%) | 0.273 |
Cutaneous eruptions | 92 (43.0%) | 68 (34.2%) | 0.066 |
Conjunctivitis | 52 (24.3%) | 39 (19.6%) | 0.249 |
Headache | 129 (60.3%) | 122 (61.3%) | 0.831 |
Dysuria | 3 (1.4%) | 5 (2.5%) | 0.413 |
Diagnostic approach | |||
Nasopharyngeal RT-PCR SARS-CoV-2 | 169 (79.0%) | 151 (75.9%) | 0.453 |
Stool RT-PCR SARS-CoV-2 | 2 (0.9%) | 1 (0.5%) | 0.606 |
IgM SARS-CoV-2 | 8 (3.7%) | 8 (4.0%) | 0.882 |
IgG SARS-CoV-2 | 6 (2.8%) | 1 (0.5%) | 0.071 |
Chest X-ray | 1 (0.5%) | 0 (0.0%) | 0.335 |
Chest CT | 25 (11.7%) | 36 (18.1%) | 0.067 |
Other | 3 (1.4%) | 2 (1.0%) | 0.712 |
Prognostic marker | |||
Ferritin | 121 (56.5%) | 107 (53.8%) | 0.571 |
C-reactive protein | 170 (79.4%) | 151 (75.9%) | 0.385 |
Lymphocyte counts | 160 (74.8%) | 130 (65.3%) | 0.036 |
Troponin | 60 (28.0%) | 39 (19.6%) | 0.045 |
N-terminal pro b-type natriuretic peptide | 52 (24.3%) | 31 (15.6%) | 0.027 |
D-dimers | 136 (63.6%) | 124 (62.3%) | 0.794 |
SARS-CoV-2 viral load | 122 (57.0%) | 100 (50.3%) | 0.169 |
None | 1 (0.5%) | 0 (0.0%) | 0.334 |
Other | 3 (1.4%) | 13 (6.5%) | 0.006 |
Transmission Pathways | First n1 = 214 | Second n2 = 199 | p-Value |
---|---|---|---|
Respiratory | 214 (100%) | 198 (99.5%) | 0.299 |
Fecal–oral route | 86 (40.2%) | 64 (32.2%) | 0.090 |
Contact with contaminated objects | 180 (84.1%) | 151 (75.9%) | 0.045 |
Others | 2 (1.0%) | 1 (0.5%) | - |
Parameter | First n1 = 214 | Second n2 = 199 | p-Value |
---|---|---|---|
Arterial hypertension | 155 (72.4%) | 128 (64.3%) | 0.076 |
Heart failure | 178 (83.2%) | 139 (69.8%) | 0.001 |
Chronic respiratory failure | 192 (89.7%) | 160 (80.4%) | 0.008 |
Chronic kidney disease (without dialysis) | 78 (36.4%) | 66 (33.2%) | 0.508 |
Chronic kidney disease (with dialysis) | 185 (86.4%) | 169 (84.9%) | 0.658 |
Diabetes mellitus | 205 (95.8%) | 182 (91.5%) | 0.070 |
Liver cirrhosis | 110 (51.4%) | 109 (54.8%) | 0.493 |
Autoimmune pathology | 106 (49.5%) | 94 (47.2%) | 0.641 |
Neoplasia | 178 (83.2%) | 157 (78.9%) | 0.266 |
Obesity | 175 (81.8%) | 155 (77.9%) | 0.325 |
No relation | 0 (0.0%) | 0 (0.0%) | - |
First n1 = 214 | Second n2 = 199 | p-Value | |
---|---|---|---|
Prevention | |||
Vitamin D | 57 (26.6%) | 58 (29.1%) | 0.570 |
Zinc | 40 (18.7%) | 29 (14.6%) | 0.262 |
Vitamin C | 53 (24.8%) | 50 (25.1%) | 0.933 |
Hydroxychloroquine | 45 (21.0%) | 24 (12.1%) | 0.015 |
Astragalus extract | 4 (1.9%) | 3 (1.5%) | 0.776 |
Quercetin | 8 (3.7%) | 1 (0.5%) | 0.024 |
N-Acetyl cysteine | 6 (2.8%) | 7 (3.5%) | 0.678 |
None | 119 (55.6%) | 116 (58.3%) | 0.582 |
Others | 7 (3.3%) | 10 (5.0%) | 0.370 |
Curative treatment | |||
None | 29 (13.6%) | 50 (25.1%) | 0.003 |
Paracetamol | 97 (45.3%) | 58 (29.1%) | 0.001 |
Lopinavir/ritonavir | 70 (32.7%) | 42 (21.1%) | 0.008 |
Oseltamivir | 24 (11.2%) | 15 (7.5%) | 0.202 |
Hydroxychloroquine | 111 (51.9%) | 53 (26.6%) | 0.000 |
Azithromycin | 87 (40.7%) | 46 (23.1%) | 0.000 |
Tocilizumab | 81 (37.9%) | 60 (30.2%) | 0.099 |
Remdesivir | 109 (50.9%) | 93 (46.7%) | 0.393 |
Plasma from convalescent donors | 145 (67.8%) | 121 (60.8%) | 0.140 |
Something else | 4 (1.9%) | 7 (3.5%) | 0.298 |
Negative impact | |||
None | 36 (16.8%) | 47 (23.6%) | 0.085 |
NSAIDs | 98 (45.8%) | 70 (35.2%) | 0.028 |
ACE inhibitors | 56 (26.2%) | 27 (13.6%) | 0.001 |
Sartans | 20 (9.3%) | 6 (3.0%) | 0.008 |
Corticosteroids | 64 (29.9%) | 48 (24.1%) | 0.186 |
Immunosuppressive drugs | 109 (50.9%) | 112 (56.3%) | 0.276 |
Other (please specify) | 4 (1.9%) | 2 (1.0%) | 0.460 |
Anticoagulation | 0.065 | ||
Yes | 132 (61.7%) | 143 (71.9%) | |
No | 11 (5.1%) | 6 (3.0%) | |
Not sure | 67 (31.3%) | 50 (25.1%) |
First n1 = 214 | Second n2 = 199 | p-Value | |
---|---|---|---|
COVID-19 effective vaccine | 0.054 | ||
No | 40 (18.7%) | 64 (32.2%) | 0.002 |
Yes, within the next 3 months | 4 (1.9%) | 2 (1.0%) | 0.448 |
Yes, within the next 3–6 months | 9 (4.2%) | 8 (4.0%) | 0.919 |
Yes, within the next 6–12 months | 65 (30.4%) | 45 (22.6%) | 0.074 |
Yes, after at least 12 months | 92 (43.0%) | 80 (40.2%) | 0.565 |
Effective antiviral treatment | 0.124 | ||
No | 36 (16.8%) | 66 (33.2%) | <0.001 |
Yes, within the next 3 months | 11 (5.1%) | 8 (4.0%) | 0.593 |
Yes, within the next 3–6 months | 38 (17.8%) | 20 (10.1%) | 0.025 |
Yes, within the next 6–12 months | 71 (33.2%) | 47 (23.6%) | 0.031 |
Yes, after at least 12 months | 54 (25.2%) | 58 (29.1%) | 0.373 |
Reinfections | 0.11 | ||
No | 27 (12.6%) | 61 (30.7%) | <0.001 |
Yes, in less than 6 months with the same viral strain | 81 (37.9%) | 42 (21.1%) | 0.002 |
Yes, after at least 6 months with the same viral strain | 23 (10.7%) | 22 (11.1%) | 0.896 |
Yes, after at least 12 months with the same viral strain | 7 (3.3%) | 4 (2.0%) | 0.413 |
Yes, after at least 12 months with a new mutated viral strain | 71 (33.2%) | 70 (35.2%) | 0.669 |
COVID-19 eradication | 0.858 | ||
No, it will remain a permanent viral infection | 128 (59.8%) | 122 (61.3%) | 0.756 |
Yes, within 3 months | 3 (1.4%) | 1 (0.5%) | 0.351 |
Yes, within 6 months | 4 (1.9%) | 5 (2.5%) | 0.678 |
Yes, within 12 months | 14 (6.5%) | 17 (8.5%) | 0.44 |
Yes, after at least 24 months | 61 (28.5%) | 54 (27.1%) | 0.751 |
COVID-19 periodic reactivation | 0.678 | ||
Yes | 49 (22.9%) | 32 (16.1%) | 0.082 |
No | 47 (22.0%) | 62 (31.2%) | 0.034 |
Not sure | 114 (53.3%) | 105 (52.8%) | 0.031 |
First n1 = 214 | Second n2 = 199 | p-Value | |
---|---|---|---|
Adequate information on COVID-19 | |||
Yes | 96 (44.9%) | 74 (37.2%) | 0.346 |
No | 64 (29.9%) | 83 (41.7%) | |
Not sure | 50 (23.4%) | 42 (21.1%) | |
Source of information on COVID-19 | |||
Medical journals | 187 (87.4%) | 174 (87.4%) | 0.987 |
Scientific societies websites | 178 (83.2%) | 159 (79.9%) | 0.390 |
Internal hospital protocols at workplace | 108 (50.5%) | 89 (44.7%) | 0.243 |
Hospital protocols from other than workplace | 80 (37.4%) | 83 (41.7%) | 0.369 |
Social media | 95 (44.4%) | 71 (35.7%) | 0.071 |
Other (please specify) | 1 (0.5%) | 5 (2.5%) | 0.384 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dima, A.; Balaban, D.V.; Jurcut, C.; Berza, I.; Jurcut, R.; Jinga, M. Perceptions of Romanian Physicians on Lockdowns for COVID-19 Prevention. Healthcare 2021, 9, 95. https://doi.org/10.3390/healthcare9010095
Dima A, Balaban DV, Jurcut C, Berza I, Jurcut R, Jinga M. Perceptions of Romanian Physicians on Lockdowns for COVID-19 Prevention. Healthcare. 2021; 9(1):95. https://doi.org/10.3390/healthcare9010095
Chicago/Turabian StyleDima, Alina, Daniel Vasile Balaban, Ciprian Jurcut, Ioana Berza, Ruxandra Jurcut, and Mariana Jinga. 2021. "Perceptions of Romanian Physicians on Lockdowns for COVID-19 Prevention" Healthcare 9, no. 1: 95. https://doi.org/10.3390/healthcare9010095
APA StyleDima, A., Balaban, D. V., Jurcut, C., Berza, I., Jurcut, R., & Jinga, M. (2021). Perceptions of Romanian Physicians on Lockdowns for COVID-19 Prevention. Healthcare, 9(1), 95. https://doi.org/10.3390/healthcare9010095