Chronic Fatigue Syndrome: A Case Report Highlighting Diagnosing and Treatment Challenges and the Possibility of Jarisch–Herxheimer Reactions If High Infectious Loads Are Present
Abstract
:1. Background
2. Case Presentation
3. Past Medical History
4. Differential Diagnosis
5. Treatment
6. Outcome and Follow-Up
6.1. September 2013 to February 2015
6.2. February 2015 to August 2017
6.3. August 2017
7. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Institute of Medicine (US). Committee on the Diagnostic Criteria for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Beyond Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Redefining an Illness; National Academies Press: Washington, DC, USA, 2015. [Google Scholar]
- Dafoe, W. Extremely Severe ME/CFS-A Personal Account. Healthcare 2021, 9, 504. [Google Scholar] [CrossRef] [PubMed]
- Baxter, H.; Speight, N.; Weir, W. Life-Threatening Malnutrition in Very Severe ME/CFS. Healthcare 2021, 9, 459. [Google Scholar] [CrossRef] [PubMed]
- Pheby, D.F.H.; Araja, D.; Berkis, U.; Brenna, E.; Cullinan, J.; de Korwin, J.D.; Gitto, L.; Hughes, D.A.; Hunter, R.M.; Trepel, D.; et al. A Literature Review of GP Knowledge and Understanding of ME/CFS: A Report from the Socioeconomic Working Group of the European Network on ME/CFS (EUROMENE). Medicina 2020, 57, 7. [Google Scholar] [CrossRef] [PubMed]
- Bayliss, K.; Goodall, M.; Chisholm, A.; Fordham, B.; Chew-Graham, C.; Riste, L.; Fisher, L.; Lovell, K.; Peters, S.; Wearden, A. Overcoming the barriers to the diagnosis and management of chronic fatigue syndrome/ME in primary care: A meta synthesis of qualitative studies. BMC Fam. Pract. 2014, 15, 44. [Google Scholar] [CrossRef] [Green Version]
- Falk Hvidberg, M.; Brinth, L.S.; Olesen, A.V.; Petersen, K.D.; Ehlers, L. The Health-Related Quality of Life for Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). PLoS ONE 2015, 10, e0132421. [Google Scholar] [CrossRef]
- Nacul, L.C.; Lacerda, E.M.; Campion, P.; Pheby, D.; Drachler Mde, L.; Leite, J.C.; Poland, F.; Howe, A.; Fayyaz, S.; Molokhia, M. The functional status and well being of people with myalgic encephalomyelitis/chronic fatigue syndrome and their carers. BMC Public Health 2011, 11, 402. [Google Scholar] [CrossRef] [Green Version]
- Mirin, A.A.; Dimmock, M.E.; Jason, L.A. Research update: The relation between ME/CFS disease burden and research funding in the USA. Work 2020, 66, 277–282. [Google Scholar] [CrossRef]
- Komaroff, A.L. Advances in Understanding the Pathophysiology of Chronic Fatigue Syndrome. JAMA 2019, 322, 499–500. [Google Scholar] [CrossRef] [PubMed]
- Komaroff, A.L.; Cho, T.A. Role of infection and neurologic dysfunction in chronic fatigue syndrome. Semin. Neurol. 2011, 31, 325–337. [Google Scholar] [CrossRef] [Green Version]
- Sweetman, E.; Noble, A.; Edgar, C.; Mackay, A.; Helliwell, A.; Vallings, R.; Ryan, M.; Tate, W. Current Research Provides Insight into the Biological Basis and Diagnostic Potential for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Diagnostics 2019, 9, 73. [Google Scholar] [CrossRef] [Green Version]
- Jason, L.A.; Evans, M.; So, S.; Scott, J.; Brown, A. Problems in defining post-exertional malaise. J. Prev. Interv. Community 2015, 43, 20–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bateman, L.; Bested, A.C.; Bonilla, H.F.; Chheda, B.V.; Chu, L.; Curtin, J.M.; Dempsey, T.T.; Dimmock, M.E.; Dowell, T.G.; Felsenstein, D.; et al. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Essentials of Diagnosis and Management. Mayo Clin. Proc. 2021, 96, 2861–2878. [Google Scholar] [CrossRef] [PubMed]
- Bieler, H.G. Food Is Your Best Medicine: The Pioneering Nutrition Classic; Ballantine Books: New York, NY, USA, 2010. [Google Scholar]
- Fukuda, K.; Straus, S.E.; Hickie, I.; Sharpe, M.C.; Dobbins, J.G.; Komaroff, A. The chronic fatigue syndrome: A comprehensive approach to its definition and study. International Chronic Fatigue Syndrome Study Group. Ann. Intern. Med. 1994, 121, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Carruthers, B.M.; van de Sande, M.I.; De Meirleir, K.L.; Klimas, N.G.; Broderick, G.; Mitchell, T.; Staines, D.; Powles, A.C.; Speight, N.; Vallings, R.; et al. Myalgic encephalomyelitis: International Consensus Criteria. J. Intern. Med. 2011, 270, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Belum, G.R.; Belum, V.R.; Chaitanya Arudra, S.K.; Reddy, B.S. The Jarisch-Herxheimer reaction: Revisited. Travel Med. Infect. Dis. 2013, 11, 231–237. [Google Scholar] [CrossRef]
- Bryceson, A.D. Clinical pathology of the Jarisch-Herxheimer reaction. J. Infect. Dis. 1976, 133, 696–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhakal, A.; Sbar, E. Jarisch Herxheimer Reaction; StatPearls: Treasure Island, FL, USA, 2021. [Google Scholar]
- Nykytyuk, S.; Boyarchuk, O.; Klymnyuk, S.; Levenets, S. The Jarisch-Herxheimer reaction associated with doxycycline in a patient with Lyme arthritis. Reumatologia 2020, 58, 335–338. [Google Scholar] [CrossRef]
- Muscianese, M.; Magri, F.; Pranteda, G.; Pranteda, G. A case of Jarisch-Herxheimer reaction in candidiasis treated with systemic fluconazole. Dermatol. Ther. 2020, 33, e13244. [Google Scholar] [CrossRef]
- Butler, T. The Jarisch-Herxheimer Reaction after Antibiotic Treatment of Spirochetal Infections: A Review of Recent Cases and Our Understanding of Pathogenesis. Am. J. Trop. Med. Hyg. 2017, 96, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Lacout, A.; Marcy, P.Y.; El Hajjam, M.; Thariat, J.; Perronne, C. Dealing with Lyme Disease Treatment. Am. J. Med. 2017, 130, e221. [Google Scholar] [CrossRef] [Green Version]
- Kadam, P.; Gregory, N.A.; Zelger, B.; Carlson, J.A. Delayed onset of the Jarisch-Herxheimer reaction in doxycycline-treated disease: A case report and review of its histopathology and implications for pathogenesis. Am. J. Dermatopathol. 2015, 37, e68–e74. [Google Scholar] [CrossRef] [PubMed]
- Montoya, J.G.; Kogelnik, A.M.; Bhangoo, M.; Lunn, M.R.; Flamand, L.; Merrihew, L.E.; Watt, T.; Kubo, J.T.; Paik, J.; Desai, M. Randomized clinical trial to evaluate the efficacy and safety of valganciclovir in a subset of patients with chronic fatigue syndrome. J. Med. Virol. 2013, 85, 2101–2109. [Google Scholar] [CrossRef] [Green Version]
- Hryncewicz-Gwozdz, A.; Wojciechowska-Zdrojowy, M.; Maj, J.; Baran, W.; Jagielski, T. Paradoxical Reaction during a Course of Terbinafine Treatment of Trichophyton interdigitale Infection in a Child. JAMA Dermatol. 2016, 152, 342–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Speight, N. Severe ME in Children. Healthcare 2020, 8, 211. [Google Scholar] [CrossRef] [PubMed]
- Daxboeck, F.; Krause, R.; Wenisch, C. Laboratory diagnosis of Mycoplasma pneumoniae infection. Clin. Microbiol. Infect. 2003, 9, 263–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowell, S.F.; Peeling, R.W.; Boman, J.; Carlone, G.M.; Fields, B.S.; Guarner, J.; Hammerschlag, M.R.; Jackson, L.A.; Kuo, C.C.; Maass, M.; et al. Standardizing Chlamydia pneumoniae assays: Recommendations from the Centers for Disease Control and Prevention (USA) and the Laboratory Centre for Disease Control (Canada). Clin. Infect. Dis. 2001, 33, 492–503. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.H.; Cunha, B.A. Atypical pneumonias: Clinical and extrapulmonary features of Chlamydia, Mycoplasma, and Legionella infections. Postgrad. Med. 1993, 93, 69–82. [Google Scholar] [CrossRef]
- Sun, R.; Wang, L. Inhibition of Mycoplasma pneumoniae growth by FDA-approved anticancer and antiviral nucleoside and nucleobase analogs. BMC Microbiol. 2013, 13, 184. [Google Scholar] [CrossRef] [Green Version]
- Kindmark, C.O.; Moller, H.; Persson, K. C-reactive protein, C3, C4 and properdin during the Jarisch-Herxheimer reaction in early syphilis. Acta Med. Scand. 1978, 204, 287–290. [Google Scholar] [CrossRef]
- Nelms, J.A.; Castel, L. A Systematic Review and Meta-Analysis of Randomized and Nonrandomized Trials of Clinical Emotional Freedom Techniques (EFT) for the Treatment of Depression. Explore 2016, 12, 416–426. [Google Scholar] [CrossRef]
- Chen, Y.R.; Hung, K.W.; Tsai, J.C.; Chu, H.; Chung, M.H.; Chen, S.R.; Liao, Y.M.; Ou, K.L.; Chang, Y.C.; Chou, K.R. Efficacy of eye-movement desensitization and reprocessing for patients with posttraumatic-stress disorder: A meta-analysis of randomized controlled trials. PLoS ONE 2014, 9, e103676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sebastian, B.; Nelms, J. The Effectiveness of Emotional Freedom Techniques in the Treatment of Posttraumatic Stress Disorder: A Meta-Analysis. Explore 2017, 13, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Clond, M. Emotional Freedom Techniques for Anxiety: A Systematic Review with Meta-analysis. J. Nerv. Ment. Dis. 2016, 204, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Bach, D.; Groesbeck, G.; Stapleton, P.; Sims, R.; Blickheuser, K.; Church, D. Clinical EFT (Emotional Freedom Techniques) Improves Multiple Physiological Markers of Health. J. Evid. Based Integr. Med. 2019, 24, 2515690X18823691. [Google Scholar] [CrossRef] [Green Version]
- Gerhardt, A.; Leisner, S.; Hartmann, M.; Janke, S.; Seidler, G.H.; Eich, W.; Tesarz, J. Eye Movement Desensitization and Reprocessing vs. Treatment-as-Usual for Non-Specific Chronic Back Pain Patients with Psychological Trauma: A Randomized Controlled Pilot Study. Front. Psychiatry 2016, 7, 201. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wu, X.; Chen, J.; Amin, R.; Lu, M.; Bhayana, B.; Zhao, J.; Murray, C.K.; Hamblin, M.R.; Hooper, D.C.; et al. Antimicrobial Blue Light Inactivation of Gram-Negative Pathogens in Biofilms: In Vitro and In Vivo Studies. J. Infect. Dis. 2016, 213, 1380–1387. [Google Scholar] [CrossRef] [Green Version]
- Nour El Din, S.; El-Tayeb, T.A.; Abou-Aisha, K.; El-Azizi, M. In vitro and in vivo antimicrobial activity of combined therapy of silver nanoparticles and visible blue light against Pseudomonas aeruginosa. Int. J. Nanomed. 2016, 11, 1749–1758. [Google Scholar] [CrossRef] [Green Version]
- Antoniou, C.; Dessinioti, C.; Sotiriadis, D.; Kalokasidis, K.; Kontochristopoulos, G.; Petridis, A.; Rigopoulos, D.; Vezina, D.; Nikolis, A. A multicenter, randomized, split-face clinical trial evaluating the efficacy and safety of chromophore gel-assisted blue light phototherapy for the treatment of acne. Int. J. Dermatol. 2016, 55, 1321–1328. [Google Scholar] [CrossRef] [Green Version]
- Gold, M.H.; Sensing, W.; Biron, J.A. Clinical efficacy of home-use blue-light therapy for mild-to moderate acne. J. Cosmet. Laser Ther. 2011, 13, 308–314. [Google Scholar] [CrossRef]
- Johnstone, D.M.; Moro, C.; Stone, J.; Benabid, A.L.; Mitrofanis, J. Turning on Lights to Stop Neurodegeneration: The Potential of Near Infrared Light Therapy in Alzheimer’s and Parkinson’s Disease. Front. Neurosci. 2015, 9, 500. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, C.L.; El Khoury, H.; Hamilton, D.; Nicklason, F.; Mitrofanis, J. “Buckets”: Early Observations on the Use of Red and Infrared Light Helmets in Parkinson’s Disease Patients. Photobiomodul. Photomed. Laser Surg. 2019, 37, 615–622. [Google Scholar] [CrossRef]
- Catao, M.H.; Costa, R.O.; Nonaka, C.F.; Junior, R.L.; Costa, I.R. Green LED light has anti-inflammatory effects on burns in rats. Burns 2016, 42, 392–396. [Google Scholar] [CrossRef]
- Martin, L.; Porreca, F.; Mata, E.I.; Salloum, M.; Goel, V.; Gunnala, P.; Killgore, W.D.S.; Jain, S.; Jones-MacFarland, F.N.; Khanna, R.; et al. Green Light Exposure Improves Pain and Quality of Life in Fibromyalgia Patients: A Preliminary One-Way Crossover Clinical Trial. Pain Med. 2021, 22, 118–130. [Google Scholar] [CrossRef]
- Adams Hillard, P.J. Menstruation in adolescents: What’s normal, what’s not. Ann. N. Y. Acad. Sci. 2008, 1135, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Urmi, S.J.; Begum, S.R.; Fariduddin, M.; Begum, S.A.; Mahmud, T.; Banu, J.; Chowdhury, S.; Khanam, A. Hypothyroidism and its Effect on Menstrual Pattern and Fertility. Mymensingh Med. J. 2015, 24, 765–769. [Google Scholar]
- De Vito, P.; Incerpi, S.; Pedersen, J.Z.; Luly, P.; Davis, F.B.; Davis, P.J. Thyroid hormones as modulators of immune activities at the cellular level. Thyroid 2011, 21, 879–890. [Google Scholar] [CrossRef] [PubMed]
- Kyritsi, E.M.A.; Yiakoumis, X.; Pangalis, G.A.; Pontikoglou, C.; Pyrovolaki, K.; Kalpadakis, C.; Mavroudi, I.; Koutala, H.; Mastrodemou, S.; Vassilakopoulos, T.P.; et al. High Frequency of Thyroid Disorders in Patients Presenting with Neutropenia to an Outpatient Hematology Clinic STROBE-Compliant Article. Medicine 2015, 94, e886. [Google Scholar] [CrossRef]
- Surks, M.I.; Ross, D.; Mulder, J.; Clinical Manifestations of Hypothyroidism. Uptodate. Waltham, MA, USA. 2012. Available online: http://www.uptodate.com (accessed on 5 June 2021).
- Iglesias, P.; Bajo, M.A.; Selgas, R.; Diez, J.J. Thyroid dysfunction and kidney disease: An update. Rev. Endocr. Metab. Disord. 2017, 18, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Guandalini, S.; Newland, C. Differentiating food allergies from food intolerances. Curr. Gastroenterol. Rep. 2011, 13, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Patriarca, G.; Schiavino, D.; Pecora, V.; Lombardo, C.; Pollastrini, E.; Aruanno, A.; Sabato, V.; Colagiovanni, A.; Rizzi, A.; De Pasquale, T.; et al. Food allergy and food intolerance: Diagnosis and treatment. Intern. Emerg. Med. 2009, 4, 11–24. [Google Scholar] [CrossRef]
- Niggemann, B.; Beyer, K. Diagnosis of food allergy in children: Toward a standardization of food challenge. J. Pediatr. Gastroenterol. Nutr. 2007, 45, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Mullin, G.E.; Swift, K.M.; Lipski, L.; Turnbull, L.K.; Rampertab, S.D. Testing for food reactions: The good, the bad, and the ugly. Nutr. Clin. Pract. 2010, 25, 192–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Homei, A.; Worboys, M. Fungal Disease in Britain and the United States 1850–2000: Mycoses and Modernity; Wellcome Trust-Funded Monographs and Book Chapters; Springer Nature: Basingstoke, UK, 2013. [Google Scholar]
- Yan, L.; Yang, C.; Tang, J. Disruption of the intestinal mucosal barrier in Candida albicans infections. Microbiol. Res. 2013, 168, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Kullberg, B.J.; Arendrup, M.C. Invasive Candidiasis. N. Engl. J. Med. 2015, 373, 1445–1456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, N.; Ferreira, I.C.; Barros, L.; Silva, S.; Henriques, M. Candidiasis: Predisposing factors, prevention, diagnosis and alternative treatment. Mycopathologia 2014, 177, 223–240. [Google Scholar] [CrossRef] [PubMed]
- Cater, R.E., 2nd. Chronic intestinal candidiasis as a possible etiological factor in the chronic fatigue syndrome. Med. Hypotheses 1995, 44, 507–515. [Google Scholar] [CrossRef]
- Evengard, B.; Grans, H.; Wahlund, E.; Nord, C.E. Increased number of Candida albicans in the faecal microflora of chronic fatigue syndrome patients during the acute phase of illness. Scand. J. Gastroenterol. 2007, 42, 1514–1515. [Google Scholar] [CrossRef]
- Kumamoto, C.A. Inflammation and gastrointestinal Candida colonization. Curr. Opin. Microbiol. 2011, 14, 386–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lantos, P.M. Chronic Lyme disease. Infect. Dis. Clin. N. Am. 2015, 29, 325–340. [Google Scholar] [CrossRef]
- Donta, S.T. Issues in the diagnosis and treatment of lyme disease. Open Neurol. J. 2012, 6, 140–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halperin, J.J. Neurologic manifestations of lyme disease. Curr. Infect. Dis. Rep. 2011, 13, 360–366. [Google Scholar] [CrossRef]
- Treib, J.; Grauer, M.T.; Haass, A.; Langenbach, J.; Holzer, G.; Woessner, R. Chronic fatigue syndrome in patients with Lyme borreliosis. Eur. Neurol. 2000, 43, 107–109. [Google Scholar] [CrossRef]
- Cook, M.J.; Puri, B.K. Commercial test kits for detection of Lyme borreliosis: A meta-analysis of test accuracy. Int. J. Gen. Med. 2016, 9, 427–440. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.J.; Hung, L.Y.; Kogelnik, A.M.; Kaufman, D.; Aiyar, R.S.; Chu, A.M.; Wilhelmy, J.; Li, P.; Tannenbaum, L.; Xiao, W.; et al. A Comprehensive Examination of Severely Ill ME/CFS Patients. Healthcare 2021, 9, 1290. [Google Scholar] [CrossRef] [PubMed]
- Nicolson, G.L.; Gan, R.; Haier, J. Multiple co-infections (Mycoplasma, Chlamydia, human herpes virus-6) in blood of chronic fatigue syndrome patients: Association with signs and symptoms. APMIS 2003, 111, 557–566. [Google Scholar] [CrossRef] [PubMed]
- van der Werf, S.P.; de Vree, B.; Alberts, M.; van der Meer, J.W.; Bleijenberg, G.; Netherlands Fatigue Research Group Nijmegen. Natural course and predicting self-reported improvement in patients with chronic fatigue syndrome with a relatively short illness duration. J. Psychosom. Res. 2002, 53, 749–753. [Google Scholar] [CrossRef]
- Twisk, F.N. Dangerous exercise. The detrimental effects of exertion and orthostatic stress in myalgic encephalomyelitis and chronic fatigue syndrome. Phys. Med. Rehabil. Res. 2017, 2, 2–3. [Google Scholar] [CrossRef] [Green Version]
Jarisch–Herxheimer Reaction [17,18,19,20,21,22,23,24,25,26] | Post-Exertional Malaise [1,12,13] | |
---|---|---|
Definition | Worsening of existing symptoms (and appearance of new symptoms) following treatment in several infectious diseases (including viral, bacterial, and fungal). It should not be confused with a drug allergy or adverse reaction to treatment. | Worsening of existing symptoms following excessive cognitive, physical, orthostatic, emotional, or sensory challenges that were previously tolerated. |
Onset | Typically occurs within 24 h but may be delayed by 7–14 days. | Typically occurs within 48 h of excessive exertion. |
Duration | Hours or days | Hours, days, weeks, or months |
Specific to ME/CFS | No | Yes |
Controlling | Patients with ME/CFS may need to commence treatment with very low dosages and titrate upwards with caution [27]. | Pacing (i.e., staying within energy envelope) is necessary to avoid. |
Triggers | Should be expected by all patients receiving treatment (or related herbal treatment) for infectious diseases if an adequate infectious load is present. | Can be triggered by the most mundane activities (conversation and showering), depending on ME/CFS severity. |
Example of Symptoms Experienced by Patient over Course of 4+ Years * |
|
|
ACL (Anti-Cardiolipin) Antibodies (IgM, IgG, IgA) |
Ammonia |
Amylase |
ANA (Antinuclear Antibodies) with reflex to 11 |
Anti-CCP (Cyclic Citrullinated Peptide) lgG Semi-Quantitative |
ASO (Antistreptolysin O) Antibodies |
B2M (Beta 2 Microglobulin) Tumor Marker |
Bilirubin, Direct |
Chlamydia pneumonia (IgG/IgM) |
Chlamydia trachomatis (IgM) |
Complement C3a/C4a |
CBC (Complete Blood Count) with Differential/Platelet |
CK (Creatine Kinase) |
Complete Metabolic Panel |
CRP (C-Reactive Protein) |
Ferritin |
Free Kappa Light Chains |
Free Lambda Light Chains |
GGT (Gamma-Glutamyl Transferase) |
G6PD (Glucose-6-phosphate dehydrogenase) Enzyme |
Hemoglobin A1c |
HNK-1 (Human Natural Killer-1) CD57 |
Immunoglobulins (IgA, IgG, IgM) |
LDH (Lactic Acid Dehydrogenase) |
Lipase |
Lyme Western Blot |
Magnesium |
Mycoplasma pneumonia (IgG/IgM) |
Natural Killer Cell Surface Antigen (CD56/16) |
Phosphorus |
Rheumatoid Factor |
Rheumatoid Factors (IgM, IgG, IgA) |
Sedimentation rate |
Serum Iron |
Serum Protein Electrophoresis |
Thyroid Panel (TSH, T3, T4, Free T4) |
Uric Acid |
Urinalysis |
Vitamin D (25-Hydroxy) |
Name | Reason Prescribed |
---|---|
Prescriptions | |
Doxycycline | Antibiotic (Mycoplasma pneumonia) |
Clarithromycin | Antibiotic (Mycoplasma pneumonia) |
Azithromycin | Antibiotic (Mycoplasma pneumonia) |
Dipyridamole [31] | Increase antibiotic potency |
Nystatin | Antifungal |
Fluconazole | Antifungal |
Gentamycin | Nebulized antibiotic (Mycoplasma pneumonia) |
Glutathione | Nebulized antioxidant for detoxification |
Hydroxychloroquine | Pain and inflammation; increase antibiotic potency |
Fludrocortisone | Raise aldosterone to improve hypotension |
Armour Thyroid | Hypothyroidism |
Levothyroxine | Hypothyroidism |
Supplements | |
Succinic Acid | Detoxification |
N-Acetyl Cysteine | Detoxification; biofilm disruptor |
Liver Detox Blend † | Detoxification |
Modified Citrus Pectin | Detoxification |
Bromelain | Pain and inflammation; biofilm disruptor |
Boswellia/Curcumin | Pain and inflammation |
Colostrum | Immune |
Cordyceps | Immune |
Kelp (iodine) | Immune and thyroid |
Ashwagandha | Adaptogen |
Rhodiola Extract | Adaptogen |
Eleutherococcus | Adaptogen |
Licorice Root | Raise aldosterone to improve hypotension |
Phosphatidyl Serine | Brain fog |
Artemisian | Antimicrobial |
Berberine | Antifungal |
Silver Hydrosol | Antimicrobial (Mycoplasma pneumonia) |
Olive Leaf Extract | Antimicrobial (Mycoplasma pneumonia) |
Anantamul | Antimicrobial (Mycoplasma pneumonia) |
Name | Reason Prescribed |
---|---|
Prescriptions | |
Armour Thyroid | Hypothyroidism |
Levothyroxine | Hypothyroidism |
Cholestyramine | Detoxification |
Supplements | |
Cat’s Claw (Uncaria Tomentosa) | Antimicrobial (Lyme disease) |
Neem | Broad-Spectrum Antimicrobial |
Inosine | Antiviral (Epstein–Barr virus) |
PABA (Para-aminobenzoic Acid) | Antiviral (Epstein–Barr virus) |
DMAE (Dimethylaminoethanol) | Antiviral (Epstein–Barr virus) |
L-Lysine | Antiviral (Herpes simplex virus) |
Drynaria | Osteopenia |
Bamboo Extract | Osteopenia |
Andrographis | Immune |
Astragalus | Immune |
Iporuru | Pain and inflammation |
Zeobind | Heavy Metal Chelation |
Modified Citrus Pectin | Heavy Metal Chelation |
Phase 1 | Phase 2 | |
---|---|---|
(September 2013–February 2015) | (February 2015–August 2017) | |
Long-Term Antibiotics 1 | x | |
Long-Term Antifungals 1 | x | |
Long-Term Thyroid Medication 1 | x | x |
Miscellaneous Prescriptions 1 | x | x |
Very Restricted Specialized Diet for Seriously Ill 2 | x | x |
Herbs 1 | x | x |
Eye Movement Desensitization and Reprocessing (EMDR) 3 | x | |
Emotional Freedom Techniques (EFT) 3 | x | |
Light Therapy 3,4 | x |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Straub, R.K.; Powers, C.M. Chronic Fatigue Syndrome: A Case Report Highlighting Diagnosing and Treatment Challenges and the Possibility of Jarisch–Herxheimer Reactions If High Infectious Loads Are Present. Healthcare 2021, 9, 1537. https://doi.org/10.3390/healthcare9111537
Straub RK, Powers CM. Chronic Fatigue Syndrome: A Case Report Highlighting Diagnosing and Treatment Challenges and the Possibility of Jarisch–Herxheimer Reactions If High Infectious Loads Are Present. Healthcare. 2021; 9(11):1537. https://doi.org/10.3390/healthcare9111537
Chicago/Turabian StyleStraub, Rachel K., and Christopher M. Powers. 2021. "Chronic Fatigue Syndrome: A Case Report Highlighting Diagnosing and Treatment Challenges and the Possibility of Jarisch–Herxheimer Reactions If High Infectious Loads Are Present" Healthcare 9, no. 11: 1537. https://doi.org/10.3390/healthcare9111537
APA StyleStraub, R. K., & Powers, C. M. (2021). Chronic Fatigue Syndrome: A Case Report Highlighting Diagnosing and Treatment Challenges and the Possibility of Jarisch–Herxheimer Reactions If High Infectious Loads Are Present. Healthcare, 9(11), 1537. https://doi.org/10.3390/healthcare9111537