Interventional Procedures for Vertebral Diseases: Spinal Tumor Ablation, Vertebral Augmentation, and Basivertebral Nerve Ablation—A Scoping Review
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
4.1. Vertebral Body Tumors
4.2. Spinal Tumor Ablation
4.3. Vertebral Fractures
4.4. Vertebral Augmentation
4.5. Vertebrogenic Pain
4.6. Basivertebral Nerve Ablation
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Dagenais, S.; Caro, J.; Haldeman, S. A systematic review of low back pain cost of illness studies in the United States and internationally. Spine J. 2008, 8, 8–20. [Google Scholar] [CrossRef]
- Hoy, D.; Bain, C.; Williams, G.; March, L.; Brooks, P.; Blyth, F.; Woolf, A.; Vos, T.; Buchbinder, R. A systematic review of the global prevalence of low back pain. Arthritis Rheum. 2012, 64, 2028–2037. [Google Scholar] [CrossRef] [PubMed]
- Dieleman, J.L.; Cao, J.; Chapin, A.; Chen, C.; Li, Z.; Liu, A.; Horst, C.; Kaldjian, A.; Matyasz, T.; Scott, K.W.; et al. US health care spending by payer and health condition, 1996–2016. JAMA 2020, 323, 863–884. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.; March, L.; Zheng, X.; Huang, J.; Wang, X.; Zhao, J.; Blyth, F.M.; Smith, E.; Buchbinder, R.; Hoy, D. Global low back pain prevalence and years lived with disability from 1990 to 2017: Estimates from the global burden of disease study 2017. Ann. Transl. Med. 2020, 8, 299. [Google Scholar] [CrossRef] [PubMed]
- Deyo, R.A.; Weinstein, J.N. Low back pain. N. Engl. J. Med. 2001, 344, 363–370. [Google Scholar] [CrossRef]
- Koes, B.W.; van Tulder, M.W.; Thomas, S. Diagnosis and treatment of low back pain. BMJ 2006, 332, 1430–1434. [Google Scholar] [CrossRef] [Green Version]
- Maher, C.; Underwood, M.; Buchbinder, R. Non-specific low back pain. Lancet 2017, 389, 736–747. [Google Scholar] [CrossRef] [Green Version]
- Deyo, R.A.; Mirza, S.K.; Martin, B.I. Back pain prevalence and visit rates. Spine 2006, 31, 2724–2727. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.; Horsley, T.; Weeks, L.; et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Nakatsuka, A.; Yamakado, K.; Takaki, H.; Uraki, J.; Makita, M.; Oshima, F.; Takeda, K. Percutaneous radiofrequency ablation of painful spinal tumors adjacent to the spinal cord with real-time monitoring of spinal canal temperature: A prospective study. CardioVascular Interv. Radiol. 2009, 32, 70–75. [Google Scholar] [CrossRef]
- Proschek, D.; Kurth, A.; Proschek, P.; Vogl, T.J.; Mack, M.G. Prospective pilot-study of combined bipolar radiofrequency ablation and application of bone cement in bone metastases. Anticancer. Res. 2009, 29, 2787–2792. [Google Scholar] [PubMed]
- Anchala, P.R.; Irving, W.D.; Hillen, T.J.; Friedman, M.V.; Georgy, B.A.; Coldwell, D.M.; Tran, N.D.; Vrionis, F.D.; Brook, A.; Jennings, J.W. Treatment of metastatic spinal lesions with a navigational bipolar radiofrequency ablation device: A multicenter retrospective study. Pain Physician 2014, 17, 317–327. [Google Scholar]
- Hillen, T.J.; Anchala, P.; Friedman, M.V.; Jennings, J.W. Treatment of metastatic posterior vertebral body osseous tumors by using a targeted bipolar radiofrequency ablation device: Technical note. Radiology 2014, 273, 261–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, A.N.; Greenwood, T.J.; Jennings, J.W. Radiofrequency ablation and vertebral augmentation for palliation of painful spinal metastases. J. Neuro-Oncol. 2015, 124, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Bagla, S.; Sayed, D.; Smirniotopoulos, J.; Brower, J.; Neal Rutledge, J.; Dick, B.; Carlisle, J.; Lekht, I.; Georgy, B. Multicenter prospective clinical series evaluating radiofrequency ablation in the treatment of painful spine metastases. Cardiovasc. Interv. Radiol. 2016, 39, 1289–1297. [Google Scholar] [CrossRef]
- Khan, M.A.; Deib, G.; Deldar, B.; Patel, A.M.; Barr, J.S. Efficacy and safety of percutaneous microwave ablation and cementoplasty in the treatment of painful spinal metastases and myeloma. Am. J. Neuroradiol. 2018, 39, 1376–1383. [Google Scholar] [CrossRef]
- Reyes, M.; Georgy, M.; Brook, L.; Ortiz, O.; Brook, A.; Agarwal, V.; Muto, M.; Manfre, L.; Marcia, S.; Georgy, B.A. Multicenter clinical and imaging evaluation of targeted radiofrequency ablation (t-RFA) and cement augmentation of neoplastic vertebral lesions. J. NeuroInterventional Surg. 2018, 10, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Tomasian, A.; Hillen, T.J.; Chang, R.O.; Jennings, J.W. Simultaneous bipedicular radiofrequency ablation combined with vertebral augmentation for local tumor control of spinal metastases. Am. J. Neuroradiol. 2018, 39, 1768–1773. [Google Scholar] [CrossRef] [Green Version]
- Sayed, D.; Jacobs, D.; Sowder, T.; Haines, D.; Orr, W. Spinal radiofrequency ablation combined with cement augmentation for painful spinal vertebral metastasis: A single-center prospective study. Pain Physician 2019, 22, E441–E449. [Google Scholar] [CrossRef]
- Levy, J.; Hopkins, T.; Morris, J.; Tran, N.D.; David, E.; Massari, F.; Farid, H.; Vogel, A.; O’Connell, W.G.; Sunenshine, P.; et al. Radiofrequency ablation for the palliative treatment of bone metastases: Outcomes from the multicenter OsteoCool tumor ablation post-market study (OPuS One Study) in 100 patients. J. Vasc. Interv. Radiol. 2020, 31, 1745–1752. [Google Scholar] [CrossRef]
- Mayer, T.; Cazzato, R.L.; de Marini, P.; Auloge, P.; Dalili, D.; Koch, G.; Garnon, J.; Gangi, A. Spinal metastases treated with bipolar radiofrequency ablation with increased (>70 °C) target temperature: Pain management and local tumor control. Diagn. Interv. Imaging 2021, 102, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Cazzato, R.L.; de Marini, P.; Leonard-Lorant, I.; Dalili, D.; Koch, G.; Autrusseau, P.A.; Mayer, T.; Weiss, J.; Auloge, P.; Garnon, J.; et al. Percutaneous thermal ablation of sacral metastases: Assessment of pain relief and local tumor control. Diagn. Interv. Imaging 2021, 102, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Fan, J.; Yuan, Q.; Zhang, X.; Hu, M.; Zhang, K. Computed tomography-guided microwave ablation combined with percutaneous vertebroplasty for treatment of painful high thoracic vertebral metastases. Int. J. Hyperth. 2021, 38, 1069–1076. [Google Scholar] [CrossRef] [PubMed]
- Beall, D.P.; Chambers, M.R.; Thomas, S.; Amburgy, J.; Webb, J.R.; Goodman, B.S.; Datta, D.K.; Easton, R.W.; Linville 2nd, D.; Talati, S.; et al. Prospective and multicenter evaluation of outcomes for quality of life and activities of daily living for balloon kyphoplasty in the treatment of vertebral compression fractures: The EVOLVE trial. Neurosurgery 2019, 84, 169–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; Cao, J.; Kong, J. Clinical effect of balloon kyphoplasty in elderly patients with multiple osteoporotic vertebral fracture. Niger. J. Clin. Pr. 2019, 22, 289–292. [Google Scholar] [CrossRef]
- Firanescu, C.E.; de Vries, J.; Lodder, P.; Venmans, A.; Schoemaker, M.C.; Smeet, A.J.; Donga, E.; Juttmann, J.R.; Klazen, C.A.; Elgersma, O.E.; et al. Vertebroplasty versus sham procedure for painful acute osteoporotic vertebral compression fractures (VERTOS IV): Randomised sham controlled clinical trial. BMJ 2018, 361, k1551. [Google Scholar] [CrossRef] [Green Version]
- Hansen, E.J.; Simony, A.; Rousing, R.; Carreon, L.Y.; Tropp, H.; Andersen, M.Ø. Double Blind Placebo-controlled Trial of Percutaneous Vertebroplasty (VOPE). Glob. Spine J. 2016, 6, s-0036. [Google Scholar] [CrossRef]
- Clark, W.; Bird, P.; Gonski, P.; Diamond, T.H.; Smerdely, P.; McNeil, H.P.; Schlaphoff, G.; Bryant, C.; Barnes, E.; Gebski, V. Safety and efficacy of vertebroplasty for acute painful osteoporotic fractures (VAPOUR): A multicentre, randomised, double-blind, placebo-controlled trial. Lancet 2016, 388, 1408–1416. [Google Scholar] [CrossRef]
- Leali, P.T.; Solla, F.; Maestretti, G.; Balsano, M.; Doria, C. Safety and efficacy of vertebroplasty in the treatment of osteoporotic vertebral compression fractures: A prospective multicenter international randomized controlled study. Clin. Cases Miner. Bone Metab. 2016, 13, 234–236. [Google Scholar] [CrossRef]
- Wang, B.; Guo, H.; Yuan, L.; Huang, D.; Zhang, H.; Hao, D. A prospective randomized controlled study comparing the pain relief in patients with osteoporotic vertebral compression fractures with the use of vertebroplasty or facet blocking. Eur. Spine J. 2016, 25, 3486–3494. [Google Scholar] [CrossRef]
- Yang, E.-Z.; Xu, J.-G.; Huang, G.-Z.; Xiao, W.-Z.; Liu, X.-K.; Zeng, B.-F.; Lian, X.-F. Percutaneous vertebroplasty versus conservative treatment in aged patients with acute osteoporotic vertebral compression fractures. Spine 2016, 41, 653–660. [Google Scholar] [CrossRef]
- Chen, D.; An, Z.-Q.; Song, S.; Tang, J.-F.; Qin, H. Percutaneous vertebroplasty compared with conservative treatment in patients with chronic painful osteoporotic spinal fractures. J. Clin. Neurosci. 2014, 21, 473–477. [Google Scholar] [CrossRef]
- Blasco, J.; Martinez-Ferrer, A.; Macho, J.; San Roman, L.; Pomés, J.; Carrasco, J.; Monegal, A.; Guanabens, N.; Peris, P. Effect of vertebroplasty on pain relief, quality of life, and the incidence of new vertebral fractures: A 12-month randomized follow-up, controlled trial. J. Bone Miner. Res. 2012, 27, 1159–1166. [Google Scholar] [CrossRef] [PubMed]
- Boonen, S.; van Meirhaeghe, J.; Bastian, L.; Cummings, S.R.; Ranstam, J.; Tillman, J.B.; Eastell, R.; Talmadge, K.; Wardlaw, D. Balloon kyphoplasty for the treatment of acute vertebral compression fractures: 2-year results from a randomized trial. J. Bone Miner. Res. 2011, 26, 1627–1637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrokhi, M.R.; Alibai, E.; Maghami, Z. Randomized controlled trial of percutaneous vertebroplasty versus optimal medical management for the relief of pain and disability in acute osteoporotic vertebral compression fractures. J. Neurosurg. Spine 2011, 14, 561–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klazen, C.A.; Lohle, P.N.; de Vries, J.; Jansen, F.H.; Tielbeek, A.V.; Blonk, M.C.; Venmans, A.; Rooij, W.J.; Schoemaker, M.C.; Juttmann, J.R.; et al. Vertebroplasty versus conservative treatment in acute osteoporotic vertebral compression fractures (Vertos II): An open-label randomised trial. Lancet 2010, 376, 1085–1092. [Google Scholar] [CrossRef] [Green Version]
- Rousing, R.; Andersen, M.O.; Jespersen, S.M.; Thomsen, K.; Lauritsen, J. Percutaneous vertebroplasty compared to conservative treatment in patients with painful acute or subacute osteoporotic vertebral fractures. Spine 2009, 34, 1349–1354. [Google Scholar] [CrossRef]
- Buchbinder, R.; Osborne, R.H.; Ebeling, P.R.; Wark, J.D.; Mitchell, P.; Wriedt, C.; Graves, S.; Staples, M.P.; Murphy, B. A randomized trial of vertebroplasty for painful osteoporotic vertebral fractures. N. Engl. J. Med. 2009, 361, 557–568. [Google Scholar] [CrossRef] [Green Version]
- Kallmes, D.F.; Comstock, B.A.; Heagerty, P.J.; Turner, J.A.; Wilson, D.J.; Diamond, T.H.; Edwards, R.; Gray, L.A.; Stout, L.; Owen, S.; et al. A randomized trial of vertebroplasty for osteoporotic spinal fractures. N. Engl. J. Med. 2009, 361, 569–579. [Google Scholar] [CrossRef] [Green Version]
- Wardlaw, D.; Cummings, S.R.; Meirhaeghe, J.; van Bastian, L.; Tillman, J.B.; Ranstam, J.; Eastell, R.; Shabe, P.; Talmadge, K.; Boonen, S. Efficacy and safety of balloon kyphoplasty compared with non-surgical care for vertebral compression (FREE): A randomized controlled trial. Lancet 2009, 373, 1016–1024. [Google Scholar] [CrossRef]
- Voormolen, M.; Mali, W.; Lohle, P.; Fransen, H.; Lampmann, L.; van der Graaf, Y.; Juttmann, J.R.; Jansssens, X.; Verhaar, H.J. Percutaneous vertebroplasty compared with optimal pain medication treatment: Short-term clinical outcome of patients with subacute or chronic painful osteoporotic vertebral compression fractures. The VERTOS study. AJNR Am. J. Neuroradiol. 2007, 28, 555–660. [Google Scholar] [PubMed]
- Smuck, M.; Khalil, J.; Barrette, K.; Hirsch, J.A.; Kreiner, S.; Koreckij, T.; Garfin, S.; Mekhail, N.; INTRACEPT Trial Investigators. Prospective, randomized, multicenter study of intraosseous basivertebral nerve ablation for the treatment of chronic low back pain: 12-month results. Reg. Anesth. Pain Med. 2021, 46, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Macadaeg, K.; Truumees, E.; Boody, B.; Pena, E.; Arbuckle, J.; Gentile, J.; Funk, R.; Singh, D.; Vinayek, S. A prospective, single arm study of intraosseous basivertebral nerve ablation for the treatment of chronic low back pain: 12-month results. N. Am. Spine Soc. J. (NASSJ) 2020, 3, 100030. [Google Scholar] [CrossRef]
- De Vivo, A.E.; D’Agostino, G.; D’Anna, G.; al Qatami, H.; Gil, I.; Ventura, F.; Manfre, L. Intra-osseous basivertebral nerve radiofrequency ablation (BVA) for the treatment of vertebrogenic chronic low back pain. Neuroradiology 2021, 63, 809–815. [Google Scholar] [CrossRef]
- Fischgrund, J.S.; Rhyne, A.; Macadaeg, K.; Moore, G.; Kamrava, E.; Yeung, C.; Truumees, E.; Schaufele, M.; Yuan, P.; DePalma, M.; et al. Long-term outcomes following intraosseous basivertebral nerve ablation for the treatment of chronic low back pain: 5-year treatment arm results from a prospective randomized double-blind sham-controlled multi-center study. Eur. Spine J. 2020, 29, 1925–1934. [Google Scholar] [CrossRef]
- Kim, H.S.; Wu, P.H.; Jang, I.-T. Lumbar Degenerative Disease Part 1: Anatomy and pathophysiology of intervertebral discogenic pain and radiofrequency ablation of basivertebral and sinuvertebral nerve treatment for chronic discogenic back pain: A prospective case series and review of literature. Int. J. Mol. Sci. 2020, 21, 1483. [Google Scholar] [CrossRef] [Green Version]
- Markman, J.D.; Rhyne, A.L.; Sasso, R.C.; Patel, A.A.; Hsu, W.K.; Fischgrund, J.S.; Edidin, A.A.; Vajkoczy, P. Association between opioid use and patient-reported outcomes in a randomized trial evaluating basivertebral nerve ablation for the relief of chronic low back pain. Neurosurgery 2019, 86, 343–347. [Google Scholar] [CrossRef] [Green Version]
- Khalil, J.G.; Smuck, M.; Koreckij, T.; Keel, J.; Beall, D.; Goodman, B.; Kalapos, P.; Nguyen, D.; Garfin, S.; INTRACEPT Trial Investigators. A prospective, randomized, multicenter study of intraosseous basivertebral nerve ablation for the treatment of chronic low back pain. Spine J. 2019, 19, 1620–1632. [Google Scholar] [CrossRef] [Green Version]
- Fischgrund, J.S.; Rhyne, A.; Franke, J.; Sasso, R.; Kitchel, S.; Bae, H.; Yeung, C.; Truumees, E.; Schaufele, M.; Yuan, P.; et al. Intraosseous basivertebral nerve ablation for the treatment of chronic low back pain: 2-year results from a prospective randomized double-blind sham-controlled multicenter study. Int. J. Spine Surg. 2019, 13, 110–119. [Google Scholar] [CrossRef]
- Truumees, E.; Macadaeg, K.; Pena, E.; Arbuckle, J.; Gentile, J.; Funk, R.; Singh, D.; Vinayek, S. A prospective, open-label, single-arm, multi-center study of intraosseous basivertebral nerve ablation for the treatment of chronic low back pain. Eur. Spine J. 2019, 28, 1594–1602. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.S.; Adsul, N.; Yudoyono, F.; Paudel, B.; Kim, K.J.; Choi, S.H.; Kim, J.H.; Chung, S.K.; Choi, J.-H.; Jang, J.-S.; et al. Transforaminal epiduroscopic basivertebral nerve laser ablation for chronic low back pain associated with modic changes: A preliminary open-label study. Pain Res. Manag. 2018, 2018, 6857983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischgrund, J.S.; Rhyne, A.; Franke, J.; Sasso, R.; Kitchel, S.; Bae, H.; Yeung, C.; Truumees, E.; Schaufele, M.; Yuan, P.; et al. Intraosseous basivertebral nerve ablation for the treatment of chronic low back pain: A prospective randomized double-blind sham-controlled multi-center study. Eur. Spine J. 2018, 27, 1146–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, S.; Hadjipavlou, A.; Heggeness, M.H. Ablation of the basivertebral nerve for treatment of back pain: A clinical study. Spine J. 2017, 17, 218–223. [Google Scholar] [CrossRef]
- Raciborski, F.; Gasik, R.; Kłak, A. Disorders of the spine. A major health and social problem. Rheumatol. 2016, 54, 196. [Google Scholar] [CrossRef]
- Witham, T.F.; Khavkin, Y.A.; Gallia, G.L.; Wolinsky, J.-P.; Gokaslan, Z.L. Surgery Insight: Current management of epidural spinal cord compression from metastatic spine disease. Nat. Clin. Pract. Neurol. 2006, 2, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Klimo, P.; Schmidt, M.H. Surgical management of spinal metastases. Oncologist 2004, 9, 188–196. [Google Scholar] [CrossRef]
- Coleman, R.E. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin. Cancer Res. 2006, 12, 6243s–6249s. [Google Scholar] [CrossRef] [Green Version]
- Coleman, R.E. Metastatic bone disease: Clinical features, pathophysiology and treatment strategies. Cancer Treat. Rev. 2001, 27, 165–176. [Google Scholar] [CrossRef]
- Varadhachary, G.R.; Abbruzzese, J.L.; Lenzi, R. Diagnostic strategies for unknown primary cancer. Cancer 2004, 100, 1776–1785. [Google Scholar] [CrossRef]
- Jensen, A.Ø.; Jacobsen, J.B.; Nørgaard, M.; Yong, M.; Fryzek, J.P.; Sørensen, H.T. Incidence of bone metastases and skeletal-related events in breast cancer patients: A population-based cohort study in Denmark. BMC Cancer 2011, 11, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Choi, D.; Crockard, A.; Bunger, C.; Harms, J.; Kawahara, N.; Mazel, C.; Melcher, R.; Tomita, K.; Global Spine Tumor Group. Review of metastatic spine tumour classification and indications for surgery: The consensus statement of the Global Spine Tumour Study Group. Eur. Spine J. 2010, 19, 215–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundaresan, N.; Rosen, G.; Boriani, S. Primary malignant tumors of the spine. Orthop. Clin. N. Am. 2009, 40, 21–36. [Google Scholar] [CrossRef] [PubMed]
- Bayley, A.; Milosevic, M.; Blend, R.; Logue, J.; Gospodarowicz, M.; Boxen, I.; Warde, P.; McLean, M.; Catton, C.; Catton, P. A prospective study of factors predicting clinically occult spinal cord compression in patients with metastatic prostate carcinoma. Cancer 2001, 92, 303–310. [Google Scholar] [CrossRef]
- Kim, J.M.; Losina, E.; Bono, C.M.; Schoenfeld, A.J.; Collins, J.E.; Katz, J.N.; Harris, M.B. Clinical outcome of metastatic spinal cord compression treated with surgical excision ± radiation versus radiation therapy alone. Spine 2012, 37, 78–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciftdemir, M.; Kaya, M.; Selcuk, E.; Yalniz, E. Tumors of the spine. World J. Orthop. 2016, 7, 109. [Google Scholar] [CrossRef] [PubMed]
- Campos, M.; Urrutia, J.; Zamora, T.; Román, J.; Canessa, V.; Borghero, Y.; Palma, A.; Molina, M. The Spine Instability Neoplastic Score: An independent reliability and reproducibility analysis. Spine J. 2014, 14, 1466–1469. [Google Scholar] [CrossRef]
- Zairi, F.; Vieillard, M.-H.; Assaker, R. Spine metastases: Are minimally invasive surgical techniques living up to the hype? CNS Oncol. 2015, 4, 257–264. [Google Scholar] [CrossRef]
- Goetz, M.P.; Callstrom, M.R.; Charboneau, J.W.; Farrell, M.A.; Maus, T.P.; Welch, T.J.; Wond, G.Y.; Sloan, J.A.; Novotny, P.J.; Peterson, I.A.; et al. Percutaneous image-guided radiofrequency ablation of painful metastases involving bone: A multicenter study. J. Clin. Oncol. 2004, 22, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Wallace, A.N.; Robinson, C.G.; Meyer, J.; Tran, N.D.; Gangi, A.; Callstrom, M.R.; Chao, S.T.; Van Tine, B.A.; Morris, J.M.; Bruel, B.M.; et al. The metastatic spine disease multidisciplinary working group algorithms. Oncologist 2015, 20, 1205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenthal, D.I.; Alexander, A.; Rosenberg, A.E.; Springfield, D. Ablation of osteoid osteomas with a percutaneously placed electrode: A new procedure. Radiology 1992, 183, 29–33. [Google Scholar] [CrossRef]
- Dupuy, D.E.; Liu, D.; Hartfeil, D.; Hanna, L.; Blume, J.D.; Ahrar, K.; Lopex, R.; Safram, H.; DiPetrillo, T. Percutaneous radiofrequency ablation of painful osseous metastases. Cancer 2010, 116, 989–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupuy, D.E.; Hong, R.; Oliver, B.; Goldberg, S.N. Radiofrequency ablation of spinal tumors. Am. J. Roentgenol. 2000, 175, 1263–1266. [Google Scholar] [CrossRef] [PubMed]
- Rybak, L.D.; Gangi, A.; Buy, X.; la Rocca Vieira, R.; Wittig, J. Thermal ablation of spinal osteoid osteomas close to neural elements: Technical considerations. Am. J. Roentgenol. 2010, 195, W293–W298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cazzato, R.L.; Auloge, P.; de Marini, P.; Boatta, E.; Koch, G.; Dalili, D.; Rao, P.P.; Garnon, J.; Gangi, A. Spinal tumor ablation: Indications, techniques, and clinical management. Tech. Vasc. Interv. Radiol. 2020, 23, 100677. [Google Scholar] [CrossRef]
- Hadzipasic, M.; Giantini-Larsen, A.M.; Tatsui, C.E.; Shin, J.H. Emerging percutaneous ablative and radiosurgical techniques for treatment of spinal metastases. Neurosurg. Clin. N. Am. 2020, 31, 141–150. [Google Scholar] [CrossRef]
- Tomasian, A.; Wallace, A.; Northrup, B.; Hillen, T.J.; Jennings, J.W. Spine cryoablation: Pain palliation and local tumor control for vertebral metastases. Am. J. Neuroradiol. 2016, 37, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Parvinian, A.; Welch, B.T.; Callstrom, M.R.; Kurup, A.N. Trends in musculoskeletal ablation: Emerging indications and techniques. Tech. Vasc. Interv. Radiol. 2020, 23, 100678. [Google Scholar] [CrossRef]
- Lv, N.; Geng, R.; Ling, F.; Zhou, Z.; Liu, M. Clinical efficacy and safety of bone cement combined with radiofrequency ablation in the treatment of spinal metastases. BMC Neurol. 2020, 20, 1–7. [Google Scholar] [CrossRef]
- Sagoo, N.S.; Haider, A.S.; Rowe, S.E.; Haider, M.; Sharma, R.; Neeley, O.J.; Dahdaleh, N.S.; Adogwa, O.; Bagley, C.A.; El Ahmadieh, T.Y.; et al. Microwave ablation as a treatment for spinal metastatic tumors: A systematic review. World Neurosurg. 2021, 148, 15–23. [Google Scholar] [CrossRef]
- Johnell, O.; Kanis, J.A.; Odén, A.; Sernbo, I.; Redlund-Johnell, I.; Petterson, C.; De Laet, C.; Jonsson, B. Mortality after osteoporotic fractures. Osteoporos. Int. 2004, 15, 38–42. [Google Scholar] [CrossRef]
- Lau, E.; Ong, K.; Kurtz, S.; Schmier, J.; Edidin, A. Mortality following the diagnosis of a vertebral compression fracture in the medicare population. J. Bone Jt. Surg. Am. Vol. 2008, 90, 1479–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldstein, C.L.; Chutkan, N.B.; Choma, T.J.; Orr, R.D. Management of the elderly with vertebral compression fractures. Neurosurg. 2015, 77, S33–S45. [Google Scholar] [CrossRef] [PubMed]
- Ong, T.; Kantachuvesiri, P.; Sahota, O.; Gladman, J.R.F. Characteristics and outcomes of hospitalised patients with vertebral fragility fractures: A systematic review. Age Ageing 2018, 47, 17–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ong, K.L.; Beall, D.P.; Frohbergh, M.; Lau, E.; Hirsch, J.A. Were VCF patients at higher risk of mortality following the 2009 publication of the vertebroplasty “sham” trials? Osteoporos. Int. 2018, 29, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Papaioannou, A.; Watts, N.B.; Kendler, D.L.; Yuen, C.K.; Adachi, J.D.; Ferko, N. Diagnosis and management of vertebral fractures in elderly adults. Am. J. Med. 2002, 113, 220–228. [Google Scholar] [CrossRef]
- Alexandru, D. Evaluation and management of vertebral compression fractures. Perm. J. 2012, 16, 46. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.L.; March, L. Vertebral fragility fractures—How to treat them? Best Pract. Res. Clin. Rheumatol. 2019, 33, 227–235. [Google Scholar] [CrossRef]
- Liebsch, C.; Wilke, H.-J. Which traumatic spinal injury creates which degree of instability? A systematic quantitative review. Spine J. 2021, 21, 725–727. [Google Scholar] [CrossRef]
- Ralston, S.H.; Fraser, J. Diagnosis and management of osteoporosis. Practitioner 2015, 259, 15–19. [Google Scholar]
- Whitney, E.; Alastra, A.J. Vertebral Fracture; StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Das, C.; Baruah, U.; Panda, A. Imaging of vertebral fractures. Indian J. Endocrinol. Metab. 2014, 18, 295. [Google Scholar] [CrossRef]
- Epstein, N.E. A comparison of kyphoplasty, vertebroplasty, or non-surgical treatment of traumatic/atraumatic osteoporotic vertebral compression fractures: A short review. Surg. Neurol. Int. 2019, 10, 54. [Google Scholar] [CrossRef] [PubMed]
- Hazzard, M.A.; Huang, K.T.; Toche, U.N.; Ugiliweneza, B.; Patil, C.G.; Boakye, M.; Lad, S.P. Comparison of vertebroplasty, kyphoplasty, and nonsurgical management of vertebral compression fractures and impact on us healthcare resource utilization. Asian Spine J. 2014, 8, 605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fechtenbaum, J.; Cropet, C.; Kolta, S.; Horlait, S.; Orcel, P.; Roux, C. The severity of vertebral fractures and health-related quality of life in osteoporotic postmenopausal women. Osteoporos. Int. 2005, 16, 2175–2179. [Google Scholar] [CrossRef]
- Rostom, S.; Allali, F.; Bennani, L.; Abouqal, R.; Hajjaj-Hassouni, N. The prevalence of vertebral fractures and health-related quality of life in postmenopausal women. Rheumatol. Int. 2012, 32, 971–980. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, J.A.; Chandra, R.V.; Carter, N.S.; Beall, D.; Frohbergh, M.; Ong, K. Number needed to treat with vertebral augmentation to save a life. Am. J. Neuroradiol. 2020, 41, 178–182. [Google Scholar] [CrossRef]
- Kurra, S.; Metkar, U.; Lieberman, I.H.; Lavelle, W.F. The effect of kyphoplasty on mortality in symptomatic vertebral compression fractures: A review. Int. J. Spine Surg. 2018, 12, 543–548. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Cao, J.; Kong, J. Effects of percutaneous kyphoplasty on bone metabolism and oxidative stress in elderly patients with osteoporotic spinal fractures. J. Coll. Physicians Surg. Pak. 2019, 29, 37–40. [Google Scholar] [CrossRef]
- Zhu, R.-S.; Kan, S.-L.; Ning, G.-Z.; Chen, L.-X.; Cao, Z.-G.; Jiang, Z.-H.; Zhang, X.-L.; Hu, W. Which is the best treatment of osteoporotic vertebral compression fractures: Balloon kyphoplasty, percutaneous vertebroplasty, or non-surgical treatment? A Bayesian network meta-analysis. Osteoporos. Int. 2019, 30, 287–298. [Google Scholar] [CrossRef]
- Beall, D.; Lorio, M.P.; Yun, B.M.; Runa, M.J.; Ong, K.L.; Warner, C.B. Review of vertebral augmentation: An updated meta-analysis of the effectiveness. Int. J. Spine Surg. 2018, 12, 295–321. [Google Scholar] [CrossRef] [Green Version]
- Mattie, R.; Brar, N.; Tram, J.T.; McCormick, Z.L.; Beall, D.P.; Fox, A.; Saltychev, M. Vertebral augmentation of cancer-related spinal compression fractures. Spine 2021. [Google Scholar] [CrossRef]
- Chandra, R.V.; Meyers, P.M.; Hirsch, J.A.; Abruzzo, T.; Eskey, C.J.; Hussain, M.S.; Lee, S.-K.; Narayanan, S.; Bulsara, K.R.; Gandhi, C.D.; et al. Vertebral augmentation: Report of the standards and guidelines committee of the society of neurointerventional surgery. J. NeuroInterventional Surg. 2014, 6, 7–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shonnard, N.H.; Berven, S.; Anderson, P.A.; Verschuyl, E.; Norwitz, J.; Shonnard, N.; Khor, S.; Wagoner, D.D.; Yoon, E.S.; Beall, D.P. Appropriate management of vertebral fragility fractures: Development of a pathway based on a vertebral compression fracture registry. Pain Physician 2020, 23, E343–E352. [Google Scholar]
- Edidin, A.A.; Ong, K.L.; Lau, E.; Kurtz, S.M. Mortality risk for operated and nonoperated vertebral fracture patients in the medicare population. J. Bone Miner. Res. 2011, 26, 1617–1626. [Google Scholar] [CrossRef] [PubMed]
- Edidin, A.A.; Ong, K.L.; Lau, E.; Kurtz, S.M. Life expectancy following diagnosis of a vertebral compression fracture. Osteoporos. Int. 2013, 24, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Edidin, A.A.; Ong, K.L.; Lau, E.; Kurtz, S.M. Morbidity and mortality after vertebral fractures. Spine 2015, 40, 1228–1241. [Google Scholar] [CrossRef]
- Cazzato, R.L.; Bellone, T.; Scardapane, M.; de Marini, P.; Autrusseau, P.-A.; Auloge, P.; Garnon, J.; Jennings, J.W.; Gangi, A. Vertebral augmentation reduces the 12-month mortality and morbidity in patients with osteoporotic vertebral compression fractures. Eur. Radiol. 2021, 31, 8246–8255. [Google Scholar] [CrossRef]
- Hinde, K.; Maingard, J.; Hirsch, J.A.; Phan, K.; Asadi, H.; Chandra, R.V. Mortality outcomes of vertebral augmentation (vertebroplasty and/or balloon kyphoplasty) for osteoporotic vertebral compression fractures: A systematic review and meta-analysis. Radiology 2020, 295, 96–103. [Google Scholar] [CrossRef]
- Hopkins, T.J.; Eggington, S.; Quinn, M.; Nichols-Ricker, C.I. Cost-effectiveness of balloon kyphoplasty and vertebroplasty versus conservative medical management in the USA. Osteoporos. Int. 2020, 31, 2461–2471. [Google Scholar] [CrossRef]
- Svedbom, A.; Alvares, L.; Cooper, C.; Marsh, D.; Ström, O. Balloon kyphoplasty compared to vertebroplasty and nonsurgical management in patients hospitalised with acute osteoporotic vertebral compression fracture: A UK cost-effectiveness analysis. Osteoporos. Int. 2013, 24, 355–367. [Google Scholar] [CrossRef] [Green Version]
- Fras, C.; Kravetz, P.; Mody, D.R.; Heggeness, M.H. Substance P-containing nerves within the human vertebral body. Spine J. 2003, 3, 63–67. [Google Scholar] [CrossRef]
- Bailey, J.F.; Liebenberg, E.; Degmetich, S.; Lotz, J.C. Innervation patterns of PGP 9.5-positive nerve fibers within the human lumbar vertebra. J. Anat. 2011, 218, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Shayota, B.; Wong, T.L.; Fru, D.; David, G.; Iwanaga, J.; Loukas, M.; Tubbs, R.S. A comprehensive review of the sinuvertebral nerve with clinical applications. Anat. Cell Biol. 2019, 52, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Tzika, M.; Paraskevas, G.K.; Piagkou, M.; Papatolios, A.K.; Natsis, K. Basivertebral foramina of true vertebrae: Morphometry, topography and clinical considerations. Surg. Radiol. Anat. 2021, 43, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Lorio, M.; Clerk-Lamalice, O.; Beall, D.P.; Julien, T. International society for the advancement of spine surgery guideline—intraosseous ablation of the basivertebral nerve for the relief of chronic low back pain. Int. J. Spine Surg. 2020, 14, 18. [Google Scholar] [CrossRef] [PubMed]
- Tieppo, F.V.; Sayed, D. Basivertebral Nerve Ablation; StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Weishaupt, D.; Zanetti, M.; Hodler, J.; Min, K.; Fuchs, B.; Pfirrmann, C.W.A.; Boos, N. Painful lumbar disk derangement: Relevance of endplate abnormalities at MR imaging. Radiology 2001, 218, 420–427. [Google Scholar] [CrossRef]
- Kuisma, M.; Karppinen, J.; Niinimäki, J.; Ojala, R.; Haapea, M.; Heliövaara, M.; Korpelainen, R.; Taimela, S.; Natri, A.; Tervonen, O. Modic changes in endplates of lumbar vertebral bodies. Spine 2007, 32, 1116–1122. [Google Scholar] [CrossRef]
- Jensen, R.K.; Leboeuf-Yde, C. Is the presence of Modic changes associated with the outcomes of different treatments? A systematic critical review. BMC Musculoskelet. Disord. 2011, 12, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Modic, M.T.; Steinberg, P.M.; Ross, J.S.; Masaryk, T.J.; Carter, J.R. Degenerative disk disease: Assessment of changes in vertebral body marrow with MR imaging. Radiology 1988, 166, 193–199. [Google Scholar] [CrossRef]
- Kjaer, P.; Korsholm, L.; Bendix, T.; Sorensen, J.S.; Leboeuf-Yde, C. Modic changes and their associations with clinical findings. Eur. Spine J. 2006, 15, 1312–1319. [Google Scholar] [CrossRef] [Green Version]
- Albert, H.B.; Kjaer, P.; Jensen, T.S.; Sorensen, J.S.; Bendix, T.; Manniche, C. Modic changes, possible causes and relation to low back pain. Med. Hypotheses 2008, 70, 361–368. [Google Scholar] [CrossRef]
- Lotz, J.C.; Fields, A.J.; Liebenberg, E.C. The role of the vertebral end plate in low back pain. Glob. Spine J. 2013, 3, 153–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Järvinen, J.; Karppinen, J.; Niinimäki, J.; Haapea, M.; Grönblad, M.; Luoma, K.; Rinne, E. Association between changes in lumbar Modic changes and low back symptoms over a two-year period. BMC Musculoskelet. Disord. 2015, 16, 1–8. [Google Scholar] [CrossRef]
- Jensen, T.S.; Karppinen, J.; Sorensen, J.S.; Niinimäki, J.; Leboeuf-Yde, C. Vertebral endplate signal changes (Modic change): A systematic literature review of prevalence and association with non-specific low back pain. Eur. Spine J. 2008, 17, 1407–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DePalma, M.J.; Ketchum, J.M.; Saullo, T. What is the source of chronic low back pain and does age play a role? Pain Med. 2011, 12, 224–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, R.K.; Leboeuf-Yde, C.; Wedderkopp, N.; Sorensen, J.S.; Manniche, C. Rest versus exercise as treatment for patients with low back pain and Modic changes. a randomized controlled clinical trial. BMC Med. 2012, 10, 1–3. [Google Scholar] [CrossRef]
- Mok, F.P.S.; Samartzis, D.; Karppinen, J.; Fong, D.Y.T.; Luk, K.D.K.; Cheung, K.M.C. Modic changes of the lumbar spine: Prevalence, risk factors, and association with disc degeneration and low back pain in a large-scale population-based cohort. Spine J. 2016, 16, 32–41. [Google Scholar] [CrossRef]
- Herlin, C.; Kjaer, P.; Espeland, A.; Skouen, J.S.; Leboeuf-Yde, C.; Karppinen, J.; Niinimaki, J.; Sorensen, J.S.; Storheim, K.; Jensen, T.S. Modic changes—Their associations with low back pain and activity limitation: A systematic literature review and meta-analysis. PLoS ONE 2018, 13, e0200677. [Google Scholar] [CrossRef]
- Mera, Y.; Teraguchi, M.; Hashizume, H.; Oka, H.; Muraki, S.; Akune, T.; Kawaguchi, H.; Nakamura, K.; Tamai, H.; Tanaka, S.; et al. Association between types of Modic changes in the lumbar region and low back pain in a large cohort: The Wakayama spine study. Eur. Spine J. 2021, 30, 1011–1017. [Google Scholar] [CrossRef]
- Applebaum, A.; Nessim, A.; Cho, W. Modic Change: An emerging complication in the aging population. Clin. Spine Surg. 2021. [Google Scholar] [CrossRef]
- Conger, A.; Schuster, N.M.; Cheng, D.S.; Sperry, B.P.; Joshi, A.B.; Haring, R.S.; Duszynski, B.; McCormick, Z.L. The effectiveness of intraosseous basivertebral nerve radiofrequency neurotomy for the treatment of chronic low back pain in patients with modic changes: A systematic review. Pain Med. 2021, 22, 1039–1054. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.M.L.; Nguyen, D.T.D. Minimally invasive treatment for degenerative lumbar spine. Tech. Vasc. Interv. Radiol. 2020, 23, 100700. [Google Scholar] [CrossRef]
- Urits, I.; Noor, N.; Johal, A.S.; Leider, J.; Brinkman, J.; Fackler, N.; Vij, N.; An, D.; Cornett, E.M.; Kaye, A.D.; et al. Basivertebral nerve ablation for the treatment of vertebrogenic pain. Pain Ther. 2021, 10, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Michalik, A.; Conger, A.; Smuck, M.; Maus, T.P.; McCormick, Z.L. Intraosseous basivertebral nerve radiofrequency ablation for the treatment of vertebral body endplate low back pain: Current evidence and future directions. Pain Med. 2021, 22, S24–S30. [Google Scholar] [CrossRef] [PubMed]
- Tieppo Francio, V.; Sherwood, D.; Twohey, E.; Barndt, B.; Pagan-Rosado, R.; Eubanks, J.; Sayed, D. Developments in minimally invasive surgical options for vertebral pain: Basivertebral nerve ablation—A narrative review. J. Pain Res. 2021, 14, 1887. [Google Scholar] [CrossRef] [PubMed]
Source, Year | Design | Sample Size | Treatment | Results | Adverse Events |
---|---|---|---|---|---|
Nakatsuka et al., 2009 [10] | Prospective CS | 10 patients | Ablation alone in 4 patients Augmentation added in 6 patients | VAS: RFA: −2.6 (p = 0.0004) RFA + Augmentation: −4.9 (p = 0.003) | 1 transient nerve injury |
Proschek et al., 2009 [11] | Prospective CS | 16 patients | Ablation alone in 8 patients Augmentation added in 8 patients | VAS: RFA: −3.9 (p = 0.008) RFA + Augmentation: −4.1 (p = 0.005) QoL Oswestry Index: RFA: improved 31% (p = 0.06) RFA + Augmentation: improved 31% (p = 0.071) All patients: reduction of pain (p = 0.0065) and an improvement in quality of life with less interference with daily activities (p = 0.043). | |
Anchala et al., 2014 [12] | Retrospective CS | 92 patients, 128 tumors | Ablation Augmentation added in 121 (95%) of lesions | VAS: −5.26 at 1 month (p < 0.001), only 83 patients included Analgesics: 54% patients decreased use 30% patients no change in use 16% patients increased use | 2 vertebral fractures (both did not have augmentation) |
Hillen et al., 2014 [13] | Retrospective CS | 26 patients, 47 tumors | Ablation | VAS 7.82: −4.52 (p < 0.001) at 1 month 50% of patients decreased use of analgesics (27% increased, 23% unchanged) | 4 transient radiculitis (all with intentional pedicular ablation) |
Wallace et al., 2015 [14] | Retrospective CS | 72 patients, 110 tumors | Ablation Augmentation added in 104 (95%) of cases | 58 patients survived until 4-week follow-up NRS: −5.1 at 4 weeks (p < 0.0001) 45% (26/58) with complete relief Analgesic Use: Decreased in 31% (18/58) Increased activity: Increased in 50% (29/58) | 4 transient radiculitis (pedicular ablations) 3/5 vertebrae not treated with immediate vertebral augmentation had fractures within 12 months |
Bagla et al., 2016 [15] | Prospective CS | 50 patients 69 tumors | Ablation Augmentation in 96% of vertebrae | NRS: −3.8 at 3 months (p < 0.0001) MODI: −15.9 at 3 months (p < 0.01) FACT-BP: +16.3 at 3 months (p < 0.0001) | 1 post-STA pain related to an adjacent herniated disk (herniated prior to STA) 1 syncope |
Khan et al., 2018 [16] | Retrospective CS | 69 patients 102 tumors | Ablation + Augmentation | VAS: −5 ± 2.0 at 3–6 months MODI: −22 ± 12.8 at 3–6 months | 1 S1 nerve thermal injury 1 skin burn |
Reyes et al., 2018 [17] | Retropsective CS | 49 patients 72 tumors | Ablation + Augmentation | VAS: −4.6 ± 3.4 (95% CI 3.6–5.6, p < 0.0001) ODI: −13.4 ± 8.1 (95% CI 10.4–16.4, p < 0.0001), only 30 patients included | NR |
Tomasian et al., 2018 [18] | Retrospective CS | 27 patients 33 tumors | Ablation + Augmentation | Radiographic tumor control: 96% (25/26) at 16 weeks | NR |
Sayed et al., 2019 [19] | Prospective CS | 30 patients, 34 tumors | Ablation Augmentation in 32/34 lesions | NRS-11: −3.16 (p < 0.01) at 3 months FACT-G7: +2.11 (p = 0.07) at 3 months | NR |
Levy et al., 2020 [20] | Prospective CS | 100 patients 134 tumors | Ablation Augmentation in 97% of cases (130/134) | 3-month f/u in 42 vertebral patients BPI worst pain: −4.1 (95% CI 3.1–5.2, p < 0.0001) BPI average pain: −3.1 (95% CI 2.1–4.4, p < 0.0001) EQ-5D index +0.21 (p ≤ 0.003) | 4 cases pneumonia/respiratory failure |
Mayer et al., 2021 [21] | Retrospective CS | 31 patients 37 metastases | Ablation + Augmentation | VAS: Clinical success of ≥3 VAS reduction in 80% on mean follow-up, 3.4 ± 2.9 months Prevention of tumor complications: 6/10 without residual or recurrent metastases at 3.8 ± 4.8 months Local tumor control for oligometastatic/oligoprogressive disease: 6/6 successful at of 5.0 ± 4.6 months | 1 lethal sepsis from paravertebral abscess misdiagnosed day of procedure |
Cazzato et a.l, 2021 [22] | Retrospective CS | 23 patients 23 tumors | Ablation in 9 tumors Augmentation in 14 tumors | NRS: −3 at 31 ± 21 months (p < 0.001) Local progression: 3/7 (43%) tumors with curative ablation showed local progression at mean 4 ± 4-month follow-up 3/5 showed progression with RFA alone | 1 post-operative pain condition 4 grade 2 peripheral neuropathies |
Wu et al., 2021 [23] | Retrospective CS | 23 patients 33 tumors | Ablation + Augmentation | VAS: −5.7 at 24 weeks (p < 0.001) Daily morphine dose: −91.3 at 24 weeks (p < 0.001) ODI: −25.1 at 24 weeks (p < 0.05) | 1 skin infection at puncture site |
Source, Year | Design | Sample Size | Treatment Arms | Results | Adverse Events |
---|---|---|---|---|---|
Beall et al., 2019 [24] | MC PR | 350 | PBK | Statistically significant improvement at 3 months: NRS—improved 6 points (p < 0.001) ODI—improved 35.3 points (p < 0.001) SF-36v2 PCS—improved 12.4 points (p < 0.001) EQ-5D—improved 0.351 points (p < 0.001) Statistically significant improvement noted at all time points | 1 asymptomatic balloon rupture 1 subject with rib pain beginning intraoperatively ending < 6 months 1 Adjacent VF 1 aspiration pneumonia with prolonged hospital stay 1 myocardial infarction at 105 days postop |
Liu et al., 2019 [25] | RCT | 116 | PBK vs. CT | VAS (after treatment) Observation: 2.25 0.21 Control: 4.54 0.28 Trailing Edge (%) Observation: 10.14 3.19 Control: 1.84 0.67Leading Edge (%) Observation: 15.13 4.21 Control: 0.74 0.47 Midcourt Line Height (%) Observation: 14.72 3.25 Control:1.73 0.53 Upper Thoracic Kyphosis () Observation: 13.17 2.67 Control:1.69 0.83 Barthel Index Observation: 24.34 4.53 Control: 31.57 4.25 | Observation Group: 1 cement leakage. Rate of complication 1.72% Control Group: 1 venous embolism, 4 decubitus ulcers and 4 infections Rate of complication 15.52% Observation had significantly lower rates of complications (p < 0.05) |
Firanescu et al., 2018 [26] | RCT DB | 180 | PVP vs. Sham | Mean QUALEFFO reduction at 12 months: PVP: 18.32 (95% CI 18.32 to 23.61) Sham: 18.61 (95% CI 13.02 to 24.2) Difference: −0.14 (95% CI −3.04 to 2.76) Mean RMDQ reduction at 12 months: PVP: 7.71 (95% CI 5.87 to 9.55) Sham: 7.47 (95% CI 5.56 to 9.38) Difference: 0.12 (95% CI −1.11 to 1.35) Mean VAS reduction at 12 months): PVP: 5.00 (95% CI 4.31–5.70) Sham: 4.75 (95% CI 3.93–5.57) Difference: 0.13(95% CI −0.41 to 0.66) | 1 patient with COPD developed respiratory insufficiency 1 patient had a vasovagal reaction |
Hansen et al., 2016 [27] | RCT DB | 46 | PVP vs. Sham | Mean SF-36 PCS (SE) at 12 months): PVP: 31.90 (9.19) Sham: 35.15 (11.92) No statistical difference between groups Mean SF-36 MCS (SE) at 12 months: PVP: 48.60 (10.75) Sham: 53.60 (10.29) No statistical difference between groups Mean EQ-5D (SE) at 12 months: PVP: 0.67 (0.27) Sham: 0.74 (0.22) No statistical difference between groups Mean VAS (SE) at 12 months: PVP: 28.35 (5.16) Sham: 30.67 (4.65) Statistical difference between groups | NR |
Clark et al., 2016 [28] | RCT MC DB | 120 | PVP vs. Sham | RMDQ: Mean reduction greater in vertebroplasty group. Maximum difference at 6 months of 4.2 (95% CI 1:6 to 6:9, p = 0.0022) QUALEFFO: Lower in vertebroplasty group with mean difference at 6 months of 7 (95% CI 1–13, p = 0.032) EQ-5D Higher score at 1 and 6 months (−0.06, 95% CI −0.10 to −0.01, p = 0.012) NRS: Mean reduction ratio for vertebroplasty to placebo 1.3 (95% CI 0—2.6, p = 0.043) VAS: Lower score with vertebroplasty at: 14 days (95% CI 6–39 p = 0.01) 6 months (11, 95% CI 0–23, p = 0.050) | 3 patients in each group died from unrelated causes Vertebroplasty Group: 1 respiratory arrest after sedation (resuscitated and underwent procedure 2 days later) 1 supracondylar humerus fracture during Placebo Group: 2 cases of spinal cord compression from interval collapse and retropulsion |
Leali et al., 2016 [29] | RCT MC PR | 400 | PVP vs. CT | Mean ODI: 31.7% (Post-Op), 53.6% (Pre-Op), p < 0.012 Mean VAS: 2.3 points (Post-Op), 4.8 (Pre-Op), p < 0.023 Analgesia: 120 (65%) able to stop analgesia after 48 h (p < 0.0001) | 1 fracture of transverse process 1 psoas muscle bleed 3 VFs |
Wang et al., 2016 [30] | RCT PR | 206 | PVP vs. Image-guided facet joint blocks | Statistically significantly lower VAS, ODI, and RMDQ in PVP group compared to FB group at 1 week (p < 0.05). No statistical significance between groups for VAS, ODI, SF-36 at 12 months (p > 0.05) | NR |
Yang, et al., 2016 [31] | RCT PR | 135 | PVP vs. CT | Statistically significant improvement for VAS, ODI, and QUALEFFO at 12 months (p < 0.0001) | NR |
Chen et al., 2014 [32] | RCT CS | 96 | PVP vs. CT | VAS, ODI, RMDQ significantly better at 12 months in PVP group (p < 0.001) 39 PVP patients experienced complete pain relief compared to 15 CT patients (p < 0.001 | NR |
Blasco et al., 2012 [33] | RCT PR | 125 | PVP vs. CT | QUALEFFO: PVP group had significant improvement compared to CT at 6 & 12 months VAS at 2 months: 42% mean reduction with PVP group compared to only 25% in CT group (p = 0.035) Analgesia: No significant difference between two groups New Fractures: 2.78-fold more risk of new fracture in PVP group | NR |
Boonen et al., 2011 [34] | RCT | 232 | PBK vs. CT | SF-36: Significant improvement in pain (3.24 points, 95% CI 1.47–5.01, p = 0.0004) EQ-5D: Significant improvement in QoL (0.12 points, 95% CI 0.06–0.18, p = 0.0002) RMDQ: −3.01-point difference in reduction of disability (95% CI −4.14 to −1.89, p < 0.001) VAS: Significant reduction in back pain (−1.49 points, 95% CI −1.88 to −1.10, p < 0.0001) Likert Scale: Patients more satisfied (3.09 points, 95% CI 2.26–3.92, p < 0.0001) | Similar frequency of adverse events and serious adverse events between two groups 1 hematoma at surgical site 1 recurrent UTI within 2 days of surgery. This patient also developed spondylitis 23 deaths (12 in observation group and 11 in control group) that were all unrelated to treatment |
Farrokhi et al., 2011 [35] | RCT CS | 105 | PVP vs. OPM | ODI Mean Difference: −14.0 (−14.91 to −13.09, p < 0.01) VAS Mean Difference: −1.5 (−9.85 to 6.85, p < 0.81) Vertebral Height Mean Difference (cm): 2.0 (1.5 to 0.44, p < 0.01) Sagittal Index Mean Difference:: −14.0 (−14.96 to −13.05, p < 0.011) | 1 patient with epidural cement leakage |
Klazen et al., 2010 [36] | RCT MC CS | 202 | PVP vs. CT | EQ-5D: 1 month—favored vertebroplasty with difference of 0.010 (95% CI 0.014–0.006) 1 year—favored vertebroplasty with difference of 0.108 (0.177–0.040) QUALEFFO and RMQD: Vertebroplasty had greater improvement (and quicker) over time VAS at 1 Month: Vertebroplasty—−5.2 (95% CI −5.88 to −4.72) Conservative—−2.7 (95% CI −3.22 to −1.98) Difference—2.6 (95% CI 1.74–3.37, p < 0.0001) VAS at 1 year: Vertebroplasty—−5.7(95% CI −6.22 to −4.98) Conservative—−3.7 (95% CI −4.35 to −3.05) Difference—2.0 (95% CI 1.13–2.80, p < 0.001) | NR |
Rousing et al., 2010 [37] | RCT | 50 | PVP vs. CT | VAS: PVP: 1.8 (95% CI 0.8–2.8) CT: 2.6 (95% CI 1.2–4.0) p = 0.33 | 2 adjacent VFs |
Buchbinder et al., 2009 [38] | RCT MC DB | 71 | PVP vs. Sham | QUALEFFO Score: PVP: 6.4 13.4 Sham: 6.1 13.4 Difference: 0.6 (95% CI −5.1 to 6.2) AQoL Score: PVP: 0.0 0.3 Sham: 0.1 0.3 Difference: 0.1 (95% CI −0.1 to 0.2) RMDQ Score: PVP: 4.1 5.8 Sham: 3.7 5.8 Difference: 0.0 (−3.0 to 2.9) EQ-5D Score: PVP: 0.2 0.4 Sham: 0.2 0.4 Difference: 0.0 (−0.1 to 0.2) Pain Score: PVP: 2.4 3.3 Sham: 2.1 3.3 Difference: 0.1 (95% CI −1.2 to 1.4) | 7 VFs 3 new rib fractures 1 case of osteomyelitis |
Kallmes et al., 2009 [39] | RCT MC | 131 | PVP vs. Sham | Pain Intensity: PVP: 3.9 2.9 Sham: 4.6 3.0 Treatment effect: 0.7 (−0.3 to 1.7, p = 0.19) RDQ: PVP: 12.0 6.3 Sham: 13.0 6.4 Treatment Effect: 0.7 (95% CI −1.3 to 2.8, p = 0.49) | 1 thecal sac injury 1 patient admitted with tachycardia and rigors |
Wardlaw et al., 2009 [40] | RCT CS | 300 | PBK vs. CT | SF-36 1 month: PBK: 7.2 (95% CI 5.7–8.8) CT: 2.0 (95% CI 0.4–3.6) p < 0.0001 SF-36 12 month: Difference 1.5 (95% CI −0.8–3.9) p = 0.208 VAS 12 months: PBK > CT decrease 0.9 (CI 95% 0.3–1.5) p = 0.0034 | 1 hematoma 1 UTI |
Voormolen et al., 2007 [41] | RCT CS | 34 | PVP vs. OPM | QUALEFFO: PVP: −6.8 OPM: −0.7 Difference: −6.1 (95% CI −10.7 to −1.6) RMD: PVP: +19 OPM: −2 Difference: 21 (95% CI 0.07 to 0.35 VAS: PVP: −2.1 OPM: −1.1 Difference: −1.5 (95% CI −3.2 to 0.2) Analgesic Use: PVP: −0.7 OPM: +0.9 Difference: −1.5 (95% CI −2.3 to −0.8) | 2 VFs |
Source, Year | Design | Sample Size | Treatment Arms | Results | Complications |
---|---|---|---|---|---|
Smuck et al., 2021 [42] | PR MC multicenter open label RCT | 140 | BVN ablation and standard care |
Superiority of BVN ablation at 3 months for the primary endpoint Mean ODI reduction, difference between arms of −20.3 (CI −25.9 to −14.7 points; p < 0.001) Mean VAS pain improvement (difference of −2.5 cm between arms (CI −3.37 to −1.64, p < 0.001) | No serious adverse events |
Macadaeg et al., 2020 [43] | PR open-label, single-arm, MC | 47 | Transpedicular Radiofrequency of Basivertebral Nerve | Mean ODI change of −32.6 Mean VAS change of −4.3 Responder Rates: 15-point ODI reduction—88.9% 20-point ODI reduction—88.4% 2.0 cm VAS reduction—80.0% SF-36 Total Score increase of 26.3 EQ-5D-5L increase of 0.22 | No serious device-related or device-procedure-related adverse events |
De Vivo et al., 2021 [44] | PR uncontrolled trial | 56 | Percutaneous Radiofrequency Ablation of Basivertebral Nerve | Mean ODI change of −32.4 Mean VAS change of −4.3 Responder Rates: 10-point ODI reduction—96.4% 2-point VAS reduction—96.4% | No serious adverse events. No abnormalities on 3-month CT. No bone weakening on density analysis. |
Fischgrund et al., 2020 [45] | Open-label follow-up study of RCT treatment arm | 100 | Transpedicular Radiofrequency of Basivertebral Nerve | Mean ODI change of −25.9 Mean VAS change of −4.4 Responder Rates: 15-point ODI reduction—77% 2-point VAS reduction—88% Combined (ODI ≥ 15 and VAS ≥ 2)—75% In patients on opioids at baseline: Stopped use—73.3% | No serious device-related adverse events |
Kim et al., 2020 [46] | PR case series | 30 | Transforaminal or Interlaminar Endoscopic Radiofrequency Ablation of Basivertebral and Sinuvertebral Nerves | Mean ODI change of −52.7 Mean VAS change of −5.7 McNab’s Criteria: Excellent outcomes—56.7% Good outcomes—36.7% Fair outcomes—6.7% | Not Reported |
Markman et al., 2020 [47] | Post-hoc analysis of sham-controlled trial | 69 | Transpedicular Radiofrequency of Basivertebral Nerve vs. Sham Control | Treatment arm: Decreased opioid use (n = 27) mean ODI change −24.9 Increased opioid use (n = 18) mean ODI change −7.3 Sham arm: Decreased opioid use (n = 19) mean ODI change −17.4 Increased opioid use (n = 5) mean ODI change −1.2 | Not Assessed |
Khalil et al., 2019 [48] | PR MC randomized | 104 | Transpedicular Radiofrequency of Basivertebral Nerve vs. Standard Care Control | Mean ODI change of −25.3 (treatment) vs. −4.4 (control) Mean VAS change of −3.5 (treatment) vs. −1.0 (control)Responder Rates: 20-point ODI reduction—62.7% (treatment) vs. 13.5% (control) 2-point VAS reduction—72.5% (treatment) vs. 34.0% (control)SF-36: PCS—increase 14.02 (treatment) vs. 2.114 (control) MCS—increase 2.615 (treatment) vs. 2.786 decrease (control) EQ-5D-5L Increase 0.1803 (treatment) vs. 0.0135 (control) No change in opioid use in either arm at 3 months | No serious device-related or serious device-procedure-related adverse events |
Fischgrund et al., 2019 [49] | Open-label follow-up study | 106 | Transpedicular Radiofrequency of Basivertebral Nerve | Mean ODI change of −23.4 Mean VAS change of −3.6 Responder Rates: 10-point ODI reduction—76.4% 20-point ODI reduction—57.5% 1.5 cm VAS reduction—70.2% SF-36 PCS increase of 11.84 In patients on opioids at baseline: Reduced use—60.7% Stopped use—46.4% | No device or procedure-related patient deaths, no unanticipated adverse device effects, and no device-related serious adverse events (SAEs). |
Truumees et al., 2019 [50] | PR, MC, open-label, single-arm | 28 | Transpedicular Radiofrequency of Basivertebral Nerve | Mean ODI change of −30.1 Mean VAS change of −3.5 Responder Rates: 10-point ODI reduction—92.9% 20-point ODI reduction—75.0% 2.0 cm VAS reduction—75.0% SF-36 PCS increase of 15.78 SF-36 MCS increase of 4.23 EQ-5D-5L increase of 0.198 50% (4/8) patients taking extended-release narcotics had stopped by 3 months post procedure. | No serious device-related or device-procedure-related adverse events |
Kim et al., 2018 [51] | Single-center, retrospective observational | 14 | Transforaminal Epiduroscopic Basivertebral Nerve Laser Ablation | Mean VAS change of −5.4 McNab’s Criteria: Excellent outcomes—50.0% Good outcomes—42.9% Fair outcomes—7.1% | There were no occurrences of infections, discitis, paresis, dural tears, vascular injuries, or systemic complications. There were no serious device or procedure-related adverse events. |
Fischgrund et al., 2018 [52] | PR MC RCT, double-blind, sham-controlled | 225 | Transpedicular Radiofrequency of Basivertebral Nerve vs. Sham Control | 3 Month Primary Endpoint (per protocol): Mean ODI change of −20.3 (treatment) vs. −15.4 (control) Mean VAS change of −2.9 (treatment) vs. −2.5 (control) 12 Month Primary Endpoint (per protocol): Mean ODI change of −19.8 (treatment) vs. −15.9 (control) Mean VAS change of −2.8 (treatment) vs. −2.2 (control)Responder Rates 3 Month (per protocol): 10-point ODI reduction—75.6% (treatment) vs. 55.3% (control) SF-36—3 Month (per protocol): PCS—increase 9.74 (treatment) vs. 9.05 (control) MCS—increase 2.24 (treatment) vs. 0.78 (control) SF-36—12 Month (per protocol): PCS—increase 9.17 (treatment) vs. 7.63 (control) MCS—increase 1.13 (treatment) vs. 1.46 decrease (control) | No serious device-related adverse events1 serious device procedure adverse event: 1—vertebral compression fracture (sham) |
Becker et al., 2017 [53] | PR, MC, single-arm | 16 | Transpedicular and Extrapedicular Radiofrequency of Basivertebral Nerve | Mean ODI change of −29 Mean VAS change of −16 mm Responder Rates: 10-point ODI reduction—81% SF-36 PCS increase of 7.2 | No access-related complications. No reports of thermal or non-thermal injuries. No compression fractures (per independent radiology lab) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tieppo Francio, V.; Gill, B.; Rupp, A.; Sack, A.; Sayed, D. Interventional Procedures for Vertebral Diseases: Spinal Tumor Ablation, Vertebral Augmentation, and Basivertebral Nerve Ablation—A Scoping Review. Healthcare 2021, 9, 1554. https://doi.org/10.3390/healthcare9111554
Tieppo Francio V, Gill B, Rupp A, Sack A, Sayed D. Interventional Procedures for Vertebral Diseases: Spinal Tumor Ablation, Vertebral Augmentation, and Basivertebral Nerve Ablation—A Scoping Review. Healthcare. 2021; 9(11):1554. https://doi.org/10.3390/healthcare9111554
Chicago/Turabian StyleTieppo Francio, Vincius, Benjamin Gill, Adam Rupp, Andrew Sack, and Dawood Sayed. 2021. "Interventional Procedures for Vertebral Diseases: Spinal Tumor Ablation, Vertebral Augmentation, and Basivertebral Nerve Ablation—A Scoping Review" Healthcare 9, no. 11: 1554. https://doi.org/10.3390/healthcare9111554
APA StyleTieppo Francio, V., Gill, B., Rupp, A., Sack, A., & Sayed, D. (2021). Interventional Procedures for Vertebral Diseases: Spinal Tumor Ablation, Vertebral Augmentation, and Basivertebral Nerve Ablation—A Scoping Review. Healthcare, 9(11), 1554. https://doi.org/10.3390/healthcare9111554