Real-Time Detection of the Bacterial Biofilm Formation Stages Using QCM-Based Sensors
Abstract
:1. Introduction
2. Theory
3. Materials and Methods
3.1. QCM Sensor Design and Fabrication
3.2. The Measurement System
3.3. Bacterial Cultures and Experimental Preparation
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khatoon, Z.; McTiernan, C.D.; Suuronen, E.J.; Mah, T.-F.; Alarcon, E.I. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 2018, 4, e01067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Gunawan, C.; Barraud, N.; Rice, S.A.; Harry, E.J.; Amal, R. Understanding, Monitoring, and Controlling Biofilm Growth in Drinking Water Distribution Systems. Environ. Sci. Technol. 2016, 50, 8954–8976. [Google Scholar] [CrossRef] [PubMed]
- Di Pippo, F.; Di Gregorio, L.; Congestri, R.; Tandoi, V.; Rossetti, S. Biofilm growth and control in cooling water industrial systems. FEMS Microbiol. Ecol. 2018, 94, fiy044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutman, J.; Walker, S.L.; Freger, V.; Herzberg, M. Bacterial attachment and viscoelasticity: Physicochemical and motility effects analysed using quartz crystal microbalance with dissipation (QCM-D). Environ. Sci. Technol. 2013, 47, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Azeredo, J.; Azevedo, N.F.; Briandet, R.; Cerca, N.; Coenye, T.; Costa, A.R.; Desvaux, M.; Di Bonaventura, G.; Hébraud, M.; Jaglic, Z.; et al. Critical review on biofilm methods. Crit. Rev. Microbiol. 2017, 43, 313–351. [Google Scholar] [CrossRef] [Green Version]
- Wilson, C.; Lukowicz, R.; Merchant, S.; Valquier-Flynn, H.; Caballero, J.; Sandoval, J.; Okuom, M.; Huber, C.; Brooks, T.D.; Wilson, E.; et al. Quantitative and Qualitative Assessment Methods for Biofilm Growth: A Mini-review. Res. Rev. J. Eng. Technol. 2017, 6, 4. [Google Scholar]
- Saccomano, S.C.; Jewell, M.P.; Cash, K.J. A review of chemosensors and biosensors for monitoring biofilm dynamics. Sens. Actuators Rep. 2021, 3, 100043. [Google Scholar] [CrossRef]
- Funari, R.; Shen, A.Q. Detection and Characterization of Bacterial Biofilms and Biofilm-Based Sensors. ACS Sens. 2022, 7, 347–357. [Google Scholar] [CrossRef]
- Prabowo, B.A.; Cabral, P.D.; Freitas, P.; Fernandes, E. The Challenges of Developing Biosensors for Clinical Assessment: A Review. Chemosensors 2021, 9, 299. [Google Scholar] [CrossRef]
- Xu, W.; Koydemir, H.C. Non-invasive biomedical sensors for early detection and monitoring of bacterial biofilm growth at the point of care. Lab Chip 2022, 22, 4758–4773. [Google Scholar] [CrossRef]
- Saitakis, M.; Gizeli, E. Acoustic sensors as a biophysical tool for probing cell attachment and cell/surface interactions. Cell. Mol. Life Sci. 2012, 69, 357–371. [Google Scholar] [CrossRef]
- Huang, R.; Yi, P.; Tang, Y. Probing the interactions of organic molecules, nanomaterials, and microbes with solid surfaces using quartz crystal microbalances: Methodology, advantages, and limitations. Environ. Sci. Process. Impacts 2017, 19, 793–811. [Google Scholar] [CrossRef]
- Afzal, A.; Mujahid, A.; Schirhagl, R.; Bajwa, S.Z.; Latif, U.; Feroz, S. Gravimetric Viral Diagnostics: QCM Based Biosensors for Early Detection of Viruses. Chemosensors 2017, 5, 7. [Google Scholar] [CrossRef]
- Chen, J.Y.; Penn, L.S.; Xi, J. Quartz crystal microbalance: Sensing cell-substrate adhesion and beyond. Biosens. Bioelectron. 2018, 99, 593–602. [Google Scholar] [CrossRef]
- Jandas, P.J.; Prabakaran, K.; Luo, J.; M G, D.H. Effective utilization of quartz crystal microbalance as a tool for biosensing applications. Sens. Actuators A 2021, 331, 113020. [Google Scholar] [CrossRef]
- Lim, H.J.; Saha, T.; Tey, B.T.; Tan, W.S.; Ooi, C.W. Quartz crystal microbalance-based biosensors as rapid diagnostic devices for infectious diseases. Biosens. Bioelectron. 2020, 168, 112513. [Google Scholar] [CrossRef]
- Na Songkhla, S.; Nakamoto, T. Interpretation of Quartz Crystal Microbalance Behavior with Viscous Film Using a Mason Equivalent Circuit. Chemosensors 2021, 9, 9. [Google Scholar] [CrossRef]
- Na Songkhla, S.; Nakamoto, T. Overview of Quartz Crystal Microbalance Behavior Analysis and Measurement. Chemosensors 2021, 9, 350. [Google Scholar] [CrossRef]
- Akgönüllü, S.; Özgür, E.; Denizli, A. Recent Advances in Quartz Crystal Microbalance Biosensors Based on the Molecular Imprinting Technique for Disease-Related Biomarkers. Chemosensors 2022, 10, 106. [Google Scholar] [CrossRef]
- Xu, Z.; Yuan, Y.J. Quantification of Staphylococcus aureus using surface acoustic wave sensors. RSC Adv. 2019, 9, 8411. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Luo, Y. Immunoglobulin-Immobilized Quartz Crystal Microbalance for Staphylococcus Aureus Real-Time Detection. IEEE Sens. J. 2022, 22, 12. [Google Scholar] [CrossRef]
- Olsson, A.L.; Mitzel, M.R.; Tufenkji, N. QCM-D for non-destructive real-time assessment of Pseudomonasaeruginosa biofilm attachment to the substratum during biofilm growth. Colloids Surf. B Biointerfaces 2015, 136, 928–934. [Google Scholar] [CrossRef] [PubMed]
- Alexander, T.E.; Lozeau, L.D.; Camesano, T.A. QCM-D characterization of time-dependence of bacterial adhesion. Cell Surf. 2019, 5, 100024. [Google Scholar] [CrossRef] [PubMed]
- Ripa, R.; Shen, A.Q.; Funari, R. Detecting Escherichia coli Biofilm Development Stages on Gold and Titanium by Quartz Crystal Microbalance. ACS Omega 2020, 5, 2295–2302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez, R.; Calero, M.; Garcia-Narbon, J.V.; Reviakine, I.; Arnau, A.; Jimenez, Y. A Fast Method for Monitoring the Shifts in Resonance Frequency and Dissipation of the QCM Sensors of a Monolithic Array in Biosensing Applications. IEEE Sens. J. 2021, 21, 6643–6651. [Google Scholar] [CrossRef]
- Arnau, A. A Review of Interface Electronic Systems for AT-cut Quartz Crystal Microbalance Applications in Liquids. Sensors 2008, 8, 370–411. [Google Scholar] [CrossRef] [Green Version]
- Fort, A.; Panzardi, E.; Vignoli, V.; Tani, M.; Landi, E.; Mugnaini, M.; Vaccarella, P. An Adaptive Measurement System for the Simultaneous Evaluation of Frequency Shift and Series Resistance of QCM in Liquid. Sensors 2021, 21, 678. [Google Scholar] [CrossRef]
- Castro, P.; Resa, P.; Duran, C.; Maestre, J.R.; Mateo, M.; Elvira, L. Continuous monitoring of bacterial biofilm growth usinguncoated Thickness-Shear Mode resonators. International Symposium on Ultrasound in the Control of Industrial Processes (UCIP 2012). IOP Conf. Ser. Mater. Sci. Eng. 2012, 42, 012054. [Google Scholar] [CrossRef]
- Castro, P.; Elvira, L.; Maestre, J.R.; De Espinosa, F.M. Study of the Relation between the Resonance Behavior of Thickness Shear Mode (TSM) Sensors and the Mechanical Characteristics of Biofilms. Sensors 2017, 17, 1395. [Google Scholar] [CrossRef] [Green Version]
- Amer, M.-A.; Turo, A.; Salazar, J.; Berlanga-Herrera, L.; Garcia-Hernandez, M.J.; Chavez, J.A. Multichannel QCM-Based System for Continuous Monitoring of Bacterial Biofilm Growth. IEEE Trans. Instrum. Meas. 2020, 69, 2982–2995. [Google Scholar] [CrossRef]
- Martin, S.J.; Granstaff, V.E.; Frye, G.C. Characterization of a Quartz Crystal Microbalance with Simultaneous Mass and Liquid Loading. Anal. Chem. 1991, 63, 2272–2281. [Google Scholar] [CrossRef]
- Encarnação, J.M.; Baltazar, R.; Stallinga, P.; Ferreira, G.N.M. Piezoelectric biosensors assisted with electroacoustic impedance spectroscopy: A tool for accurate quantitative molecular recognition analysis. J. Mol. Recognit. 2009, 22, 129–137. [Google Scholar] [CrossRef]
- Sauerbrey, G.Z. Use of quartz crystal vibrator for weighting thin films on a microbalance. Physics 1959, 155, 206–222. [Google Scholar]
- Kanazawa, K.K.; Gordon, J.G.I. Frequency of a quartz microbalance in contact with liquid. Anal. Chem. 1985, 57, 1770–1771. [Google Scholar] [CrossRef]
- Amer, M.A.; Chávez, J.A.; García-Hernández, M.J.; Salazar, J.; Turó, A. Quartz Crystal Microbalance Holder Design for On-Line Sensing in Liquid Applications. Int. J. Electr. Comput. Energetic Electron. Commun. Eng. 2016, 10, 602–605. [Google Scholar]
- Amer, M.-A.; Navarro, M.; Turo, A.; Hernandez, M.G.; Salazar, J.; Chavez, J.A. Design of a QCM-sensor for online monitoring biofilm growth. In Proceedings of the 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Virtual Conference, 17–20 May 2021. [Google Scholar] [CrossRef]
- van der Westen, R.; Sharma, P.K.; De Raedt, H.; Vermue, I.; van der Mei, H.C.; Busscher, H.J. Elastic and viscous bond components in the adhesion of colloidal particles and fibrillated streptococci to QCM-D crystal surfaces with different hydrophobicities using Kelvin–Voigt and Maxwell models. Phys. Chem. Chem. Phys. 2017, 19, 25391–25400. [Google Scholar] [CrossRef]
- Tarnapolsky, A.; Freger, V. Modeling QCM-D Response to Deposition and Attachment of Microparticles and Living Cells. Anal. Chem. 2018, 90, 13960–13968. [Google Scholar] [CrossRef]
Experimental Duration | Channel Number | Biofilm Adhered to the Surface Sensor | Remaining Bacteria in the Liquid Culture |
---|---|---|---|
24 h | 2 | 2.5 × 106 CFU/mL | 9.7 × 108 CFU/mL |
24 h | 4 | 3.3 × 106 CFU/mL | 8.5 × 109 CFU/mL |
48 h | 1 | 1.15 × 107 CFU/mL | 1.56 × 108 CFU/mL |
48 h | 9 | 1.23 × 107 CFU/mL | 1.84 × 108 CFU/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salazar, J.; Amer, M.-À.; Turó, A.; Castro, N.; Navarro, M.; Soto, S.; Gabasa, Y.; López, Y.; Chávez, J.-A. Real-Time Detection of the Bacterial Biofilm Formation Stages Using QCM-Based Sensors. Chemosensors 2023, 11, 68. https://doi.org/10.3390/chemosensors11010068
Salazar J, Amer M-À, Turó A, Castro N, Navarro M, Soto S, Gabasa Y, López Y, Chávez J-A. Real-Time Detection of the Bacterial Biofilm Formation Stages Using QCM-Based Sensors. Chemosensors. 2023; 11(1):68. https://doi.org/10.3390/chemosensors11010068
Chicago/Turabian StyleSalazar, Jordi, Miquel-Àngel Amer, Antoni Turó, Nagore Castro, Marc Navarro, Sara Soto, Yaiza Gabasa, Yuly López, and Juan-Antonio Chávez. 2023. "Real-Time Detection of the Bacterial Biofilm Formation Stages Using QCM-Based Sensors" Chemosensors 11, no. 1: 68. https://doi.org/10.3390/chemosensors11010068
APA StyleSalazar, J., Amer, M.-À., Turó, A., Castro, N., Navarro, M., Soto, S., Gabasa, Y., López, Y., & Chávez, J.-A. (2023). Real-Time Detection of the Bacterial Biofilm Formation Stages Using QCM-Based Sensors. Chemosensors, 11(1), 68. https://doi.org/10.3390/chemosensors11010068