Methods for Calibrating the Electrochemical Quartz Crystal Microbalance: Frequency to Mass and Compensation for Viscous Load
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theory
2.2. Material
2.3. Electrochemical Quartz Crystal Microbalance
2.4. Potentiostat
3. Results and Discussion
3.1. Calibration in a Water–Glycerol Mixture
3.2. Calibration of Mass Coefficient and Viscous Load Using Galvanostatic Plating
4. Conclusions
- (1)
- The crystal is exposed to a series of water–glycerol mixtures where no adsorption is occurring. This makes it possible to determine the frequency contribution from the viscous load for a comparatively wide range of viscosities.
- (2)
- It is also possible to obtain the influence of viscous load on the frequency shift by following initial oscillations during a stabilization phase of the experiment where no adsorption is occurring. This allows us to determine the viscous load for a specific quartz/solution couple, i.e., to use a calibration specific to each experiment. This approach is, however, limited to a narrow range in dissipation and frequency.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Levi, M.D.; Daikhin, L.; Aurbach, D.; Presser, V. Quartz Crystal Microbalance with Dissipation Monitoring (EQCM-D) for in-situ studies of electrodes for supercapacitors and batteries: A mini-review. Electrochem. Commun. 2016, 67, 16–21. [Google Scholar] [CrossRef]
- Levi, M.D.; Shpigel, N.; Sigalov, S.; Dargel, V.; Daikhin, L.; Aurbach, D. In Situ Porous Structure Characterization of Electrodes for Energy Storage and Conversion by EQCM-D: A Review. Electrochim. Acta 2017, 232, 271–284. [Google Scholar] [CrossRef]
- Leimbach, M.; Tschaar, C.; Schmidt, U.; Bund, A. Electrochemical characterization of chromium deposition from trivalent solutions for decorative applications by EQCM and near-surface pH measurements. Electrochim. Acta 2018, 270, 104–109. [Google Scholar] [CrossRef]
- Valero-Vidal, C.; Igual-Muñoz, A.; Olsson, C.-O.A.; Mischler, S. Adsorption of BSA on Passivated CoCrMo PVD Alloy: An EQCM and XPS Investigation. J. Electrochem. Soc. 2012, 159, C233. [Google Scholar] [CrossRef]
- Buttry, D.A.; Ward, M.D. Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chem. Rev. 1992, 92, 1355. [Google Scholar] [CrossRef]
- Olsson, C.-O.A.; Landolt, D.C. Analytical Methods in Corrosion Science and Engineering; Marcus, P., Mansfeld, F., Eds.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung danner Schichten und zur Mikrowägung. Z. Phys. 1959, 155, 206–222. [Google Scholar] [CrossRef]
- Voinova, M.V.; Rodahl, M.; Jonson, M.; Kasemo, B. Viscoelastic Acoustic Response of Layered Polymer Films at Fluid-Solid Interfaces: Continuum Mechanics Approach. Phys. Scr. 1999, 59, 391–396. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, R.; Calero, M.; Reiviakine, I.; Garcia, J.V.; Rocha-Gaso, M.I.; Arnau, A.; Jimenez, Y. High Fundamental Frequency (HFF) Monolithic Resonator Arrays for Biosensing Applications: Design, Simulations, Experimental Characterization. IEEE Sens. J. 2020, 21, 284–295. [Google Scholar] [CrossRef]
- Itoh, A.; Ichihashi, M. A frequency of the quartz crystal microbalance (QCM) that is not affected by the viscosity of a liquid. Meas. Sci. Technol. 2008, 19, 075205. [Google Scholar] [CrossRef]
- Itoh, A.; Ichihashi, M. Separate measurement of the density and viscosity of a liquid using a quartz crystal microbalance based on admittance analysis (QCM-A). Meas. Sci. Technol. 2010, 22, 015402. [Google Scholar] [CrossRef]
- Olsson, C.-O.A.; Igual-Muñoz, A.N.; Mischler, S. Adsorption of organic matter on titanium surfaces with nano- and micro-scale roughness studied with the electrochemical quartz crystal microbalance dissipation technique. Biointerphases 2021, 16, 051001. [Google Scholar] [CrossRef]
- Kanazawa, K.K.; Gordon, J.G. Frequency of a quartz microbalance in contact with liquid. Anal. Chem. 1985, 57, 1770–1771. [Google Scholar] [CrossRef]
- Galliano, F.; Olsson, C.-O.A.; Landolt, D. Flow Cell for EQCM Adsorption Studies. J. Electrochem. Soc. 2003, 150, B504–B511. [Google Scholar] [CrossRef]
- Kelly, J.J.; Rahman, K.M.A.; Durning, C.J.; West, A.C. Effect of Current Distribution on Quartz Crystal Microbalance Measurements. J. Electrochem. Soc. 1998, 145, 492–497. [Google Scholar] [CrossRef]
Latin | ||
---|---|---|
Acurr | Working Electrode sensing area | 1.14 cm2 |
Aosc | Oscillating area, mass- and dissipation sensing | 0.26 cm2 |
Cs | Sauerbrey constant | g s or g Hz−1 |
ΔD | Dissipation change, energy loss per osc. Cycle | ppm |
fm | Frequency change related to mass | Hz |
f0 | Base frequency | ≈5 MHz |
F | Faraday Constant | 96,485 C mol−1 |
k | Proportionality constant | MHz or Hz ppm−1 |
I | Plating current | A |
i | Plating current density | A cm−2 |
MCu | Molar mass of copper | 63.54 g mol−1 |
Δm | Mass change | ng |
n | Valence number | 2 |
t | Time | s |
Greek | ||
ρq | Quartz density | 2.65 g cm−3 |
ρl | Water density at 37 °C | 0.99327 g cm−3 |
μq | Quartz shear modulus | 2.956 × 1011 g cm−1 s−2 |
ηl | Dynamic viscosity of water at 37 °C | 8.92 N s cm−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olsson, C.-O.A.; Igual-Muñoz, A.N.; Mischler, S. Methods for Calibrating the Electrochemical Quartz Crystal Microbalance: Frequency to Mass and Compensation for Viscous Load. Chemosensors 2023, 11, 456. https://doi.org/10.3390/chemosensors11080456
Olsson C-OA, Igual-Muñoz AN, Mischler S. Methods for Calibrating the Electrochemical Quartz Crystal Microbalance: Frequency to Mass and Compensation for Viscous Load. Chemosensors. 2023; 11(8):456. https://doi.org/10.3390/chemosensors11080456
Chicago/Turabian StyleOlsson, Claes-Olof A., Anna Neus Igual-Muñoz, and Stefano Mischler. 2023. "Methods for Calibrating the Electrochemical Quartz Crystal Microbalance: Frequency to Mass and Compensation for Viscous Load" Chemosensors 11, no. 8: 456. https://doi.org/10.3390/chemosensors11080456
APA StyleOlsson, C.-O. A., Igual-Muñoz, A. N., & Mischler, S. (2023). Methods for Calibrating the Electrochemical Quartz Crystal Microbalance: Frequency to Mass and Compensation for Viscous Load. Chemosensors, 11(8), 456. https://doi.org/10.3390/chemosensors11080456