An Electrochemical Sensor for Trimethoprim Based on a Magnetic Molecularly Imprinted Carbon Paste Electrode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.1.1. Apparatus and Instruments
2.1.2. Reagents and Chemicals
2.2. Preparation of Fe3O4@MWNTs
2.3. Preparation of Magnetic Molecular Imprinted and Non-Imprinted Polymers of TMP
2.4. Preparation of TMP Molecularly Imprinted Electrodes
2.5. Equilibrium Adsorption Experiments of Imprinted and Non-Imprinted Polymers
2.6. Electrochemical Testing Conditions
2.7. Sample Preparation
3. Results
3.1. Characterization of Molecularly Imprinted Electrochemical Sensor
3.2. Optimization of Preparation Conditions for TMP Molecularly Imprinted Materials
3.3. The Detection of TPM Using MIP@Fe3O4@MWNTs/rGO/MCPE
3.4. Real Sample Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TMP | Trimethoprim |
MWNTs | Multi-walled carbon nanotubes |
MCPE | Magnetic molecularly imprinted carbon paste electrode |
rGO | Reduction graphene oxide |
RSD | Relative standard deviation |
MIP@Fe3O4@MWNTs/rGO/MCPE | TMP molecularly imprinted electrochemical sensor |
CV | Cyclic voltammetry |
DPV | Differential pulse voltammetry |
EIS | Electrochemical impedance spectroscopy |
TMP | Trimethoprim |
SMZ | Sulfamethoxazole |
SDZ | Sulfadiazin |
CAX | Cephalexin |
Glu | Glucose |
MAA | Methylalanic acid |
AAA | 2-acetamide acrylic acid |
AM | Acrylamide |
NAU | N-Allyl urea |
EGDMA | Glycol dimethacrylate |
AIBN | Azodiisobutyronitrile |
References
- Berendsen, B.J.A.; Roelofs, G.; van Zanten, B.; Driessen-van Lankveld, W.D.M.; Pikkemaat, M.G.; Bongers, I.E.A.; de Lange, E. A strategy to determine the fate of active chemical compounds in soil; applied to antimicrobially active substances. Chemosphere 2021, 279, 130495. [Google Scholar] [CrossRef] [PubMed]
- Arbab, S.; Ullah, H.; Wang, W.; Zhang, J. Antimicrobial drug resistance against Escherichia coli and its harmful effect on animal health. Veter Med. Sci. 2022, 8, 1780–1786. [Google Scholar] [CrossRef] [PubMed]
- Walzer, P.D.; Foy, J.; Steele, P.; White, M. Treatment of experimental pneumocystosis: Review of 7 years of experience and development of a new system for classifying antimicrobial drugs. Antimicrob. Agents Chemother. 1992, 36, 1943–1950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.J.; Liu, X.W.; Li, B.; Li, S.H.; Kong, X.J.; Qin, Z.; Li, J.Y. Simultaneous determination of diaveridine, trimethoprim and ormetoprim in feed using high performance liquid chromatography tandem mass spectrometry. Food Chem. 2016, 212, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Horvath, Z.; Sali, J.; Zentai, A.; Doroghazi, E.; Farkas, Z.; Kerekes, K.; Ambrus, A. Limitations in the determination of maximum residue limits and highest residues of pesticides: Part I. J. Environ. Sci. Health B 2014, 49, 143–152. [Google Scholar] [CrossRef]
- Hruska, M.W.; Frye, R.F. Determination of trimethoprim in low-volume human plasma by liquid chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2004, 807, 301–305. [Google Scholar] [CrossRef]
- Rehm, S.; Rentsch, K.M. LC-MS/MS method for nine different antibiotics. Clin. Chim. Acta 2020, 511, 360–367. [Google Scholar] [CrossRef]
- Choi, S.Y.; Kang, H.-S. Multi-Residue Determination of Sulfonamides, Dapsone, Ormethoprim, and Trimethoprim in Fish and Shrimp Using Dispersive Solid Phase Extraction with LC–MS/MS. Food Anal. Methods 2021, 14, 1256–1268. [Google Scholar] [CrossRef]
- Soudi, A.T.; Hussein, O.G.; Elzanfaly, E.S.; Zaazaa, H.E.; Abdelkawy, M. Simultaneous determination of phenazopyridine HCl and trimethoprim in presence of phenazopyridine HCl impurity by univariate and multivariate spectrophotometric methods—Quantification of phenazopyridine HCl impurity by univariate methods. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 239, 118516. [Google Scholar] [CrossRef]
- Liu, L.; Wan, Q.; Xu, X.; Duan, S.; Yang, C. Combination of micelle collapse and field-amplified sample stacking in capillary electrophoresis for determination of trimethoprim and sulfamethoxazole in animal-originated foodstuffs. Food Chem. 2017, 219, 7–12. [Google Scholar] [CrossRef]
- Guaraldo, T.T.; Goulart, L.A.; Moraes, F.C.; Lanza, M.R.V. Carbon black nanospheres modified with Cu (II)-phthalocyanine for electrochemical determination of Trimethoprim antibiotic. Appl. Surf. Sci. 2019, 470, 555–564. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, C.; Jiao, Z.; Zhu, H.; Xu, G.; Chen, X.; Liu, B.; Tang, Y. Electrochemical behavior of matrix graphite in nitric acid by cyclic voltammetry. J. Nucl. Mater. 2023, 581, 154411. [Google Scholar] [CrossRef]
- Sgobbi, L.F.; Razzino, C.A.; Machado, S.A.S. A disposable electrochemical sensor for simultaneous detection of sulfamethoxazole and trimethoprim antibiotics in urine based on multiwalled nanotubes decorated with Prussian blue nanocubes modified screen-printed electrode. Electrochim. Acta 2016, 191, 1010–1017. [Google Scholar] [CrossRef]
- Carapuca, H.M.; Cabral, D.J.; Rocha, L.S. Adsorptive stripping voltammetry of trimethoprim: Mechanistic studies and application to the fast determination in pharmaceutical suspensions. J. Pharm. Biomed. Anal. 2005, 38, 364–369. [Google Scholar] [CrossRef]
- Yue, X.; Li, Z.; Zhao, S. A new electrochemical sensor for simultaneous detection of sulfamethoxazole and trimethoprim antibiotics based on graphene and ZnO nanorods modified glassy carbon electrode. Microchem. J. 2020, 159, 105440. [Google Scholar] [CrossRef]
- Martins, T.S.; Bott-Neto, J.L.; Oliveira Jr, O.N.; Machado, S.A.S. Paper-based electrochemical sensors with reduced graphene nanoribbons for simultaneous detection of sulfamethoxazole and trimethoprim in water samples. J. Electroanal. Chem. 2021, 882, 114985. [Google Scholar] [CrossRef]
- Golinelli, D.L.C.; Machado, S.A.S.; Cesarino, I. Synthesis of Silver Nanoparticle-Graphene Composites for Electroanalysis Applications using Chemical and Electrochemical Methods. Electroanalysis 2017, 29, 1014–1021. [Google Scholar] [CrossRef]
- D’Souza, O.J.; Mascarenhas, R.J.; Satpati, A.K.; Detriche, S.; Mekhalif, Z.; Delhalle, J.; Dhason, A. High electrocatalytic oxidation of folic acid at carbon paste electrode bulk modified with iron nanoparticle-decorated multiwalled carbon nanotubes and its application in food and pharmaceutical analysis. Ionics 2016, 23, 201–212. [Google Scholar] [CrossRef]
- Cesarino, I.; Cesarino, V.; Lanza, M.R.V. Carbon nanotubes modified with antimony nanoparticles in a paraffin composite electrode: Simultaneous determination of sulfamethoxazole and trimethoprim. Sens. Actuators B Chem. 2013, 188, 1293–1299. [Google Scholar] [CrossRef]
- De Souza, L.V.; Tkachenko, O.; Cardoso, B.N.; Pizzolato, T.M.; Dias, S.L.P.; Vasconcellos, M.A.Z.; Arenas, L.T.; Costa, T.M.H.; Moro, C.C.; Benvenutti, E.V. Strategy to control the amount of titania dispersed on SBA-15 surface preserving its porosity, aiming to develop a sensor for electrochemical evaluation of antibiotics. Microporous Mesoporous Mater. 2019, 287, 203–210. [Google Scholar] [CrossRef]
- Da Silva, H.; Pacheco, J.G.; Magalhaes, J.M.; Viswanathan, S.; Delerue-Matos, C. MIP-graphene-modified glassy carbon electrode for the determination of trimethoprim. Biosens. Bioelectron. 2014, 52, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Fan, P.; Wang, B. Preparation of molecularly imprinted polymer membrane with blending trimethoprim-MIP and polysulfone and its transport properties. Korean J. Chem. Eng. 2010, 26, 1813–1820. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, M.; Zhang, Q.; Li, Y.; Wang, H. The formation of magnetite nanoparticles on the sidewalls of multi-walled carbon nanotubes. Compos. Sci. Technol. 2009, 69, 633–638. [Google Scholar] [CrossRef]
- Madrakian, T.; Asl, K.D.; Ahmadi, M.; Afkhami, A. Fe3O4@Pt/MWCNT/carbon paste electrode for determination of a doxorubicin anticancer drug in a human urine sample. RSC Adv. 2016, 6, 72803–72809. [Google Scholar] [CrossRef]
- Jürg Oliver Straub. An Environmental Risk Assessment for Human-Use Trimethoprim in European Surface Waters. Antibiotics 2013, 2, 115–162. [Google Scholar] [CrossRef] [Green Version]
Factor Level | Functional Monomer (A) | The Amount of Monomer (mmol) (B) | The Amount of EGDMA (mmol) (C) | The Amount of Fe3O4@MWNTs (mg) (D) |
---|---|---|---|---|
1 | AAA | 0.2 | 3.0 | 0.05 |
2 | AM | 0.3 | 4.0 | 0.075 |
3 | MAA | 0.4 | 5.0 | 0.100 |
4 | NAU | 0.5 | 6.0 | 0.125 |
NO. | Functional Monomer | The Amount of Monomer (mmol) | The Amount of EGDMA (mmol) | The Amount of Fe3O4@MWNTs (mg) | QMIP | IF |
---|---|---|---|---|---|---|
1 | (1) | (1) | (2) | (4) | 9.7 | 1.81 |
2 | (1) | (2) | (3) | (2) | 13.1 | 2.17 |
3 | (1) | (3) | (4) | (3) | 14.6 | 2.19 |
4 | (1) | (4) | (1) | (1) | 10.2 | 1.54 |
5 | (2) | (1) | (3) | (1) | 6.9 | 1.36 |
6 | (2) | (2) | (4) | (4) | 7.5 | 1.57 |
7 | (2) | (3) | (1) | (3) | 8.1 | 1.42 |
8 | (2) | (4) | (2) | (2) | 6.3 | 1.28 |
9 | (3) | (1) | (4) | (3) | 10.6 | 1.74 |
10 | (3) | (2) | (1) | (1) | 7.3 | 1.35 |
11 | (3) | (3) | (2) | (2) | 9.8 | 1.62 |
12 | (3) | (4) | (3) | (4) | 11.9 | 1.58 |
13 | (4) | (1) | (1) | (2) | 5.1 | 1.04 |
14 | (4) | (2) | (2) | (4) | 6.8 | 1.51 |
15 | (4) | (3) | (3) | (1) | 7.4 | 1.49 |
16 | (4) | (4) | (4) | (3) | 8.7 | 1.24 |
17 | (1) | (2) | (3) | (3) |
Factor Level | Functional Monomer | The Amount of Monomer (mmol) | The Amount of EGDMA (mmol) | The Amount of Fe3O4@MWNTs (mg) |
---|---|---|---|---|
1 | 7.71 | 5.95 | 5.35 | 5.74 |
2 | 5.63 | 6.60 | 6.22 | 6.11 |
3 | 6.29 | 6.72 | 6.60 | 6.59 |
4 | 5.28 | 5.64 | 6.74 | 6.47 |
Range (R) | 2.43 | 1.08 | 1.39 | 0.85 |
Optimal scheme | (1) | (3) | (4) | (3) |
Sample | Added (µmol/L) | Found (µmol/L) | Recovery (%) | RSD (%) |
---|---|---|---|---|
Kunming Panlong river water | 0 | ND * | - | - |
0.010 | 0.0091 | 91.0 | 4.97 | |
1.00 | 0.94 | 94.0 | 3.85 | |
50.0 | 49.6 | 99.2 | 3.14 | |
Healthy human urine | 0 | ND * | - | - |
0.010 | 0.011 | 110.0 | 5.73 | |
1.00 | 0.95 | 95.0 | 4.36 | |
50.0 | 51.6 | 103.2 | 3.14 | |
Cefadroxil capsules | 0 | 16.90 | - | 2.16 |
5.0 | 21.84 | 98.8 | 2.01 | |
15 | 32.60 | 104.7 | 1.98 | |
30 | 47.74 | 102.8 | 3.37 |
Electrode | Test Method | Linear Range (μmol/L) | Detection Limit (μmol/L) | Reference |
---|---|---|---|---|
GCE | DPV | 20.0~4200 | 4.0 | [11] |
EGCE | DPV | 12.5~30.0 | 0.082 | [12] |
HMDE | AdCSV | 0.1~1.0 | 0.01 | [13] |
MWCNT/PBnc/SPE | DPV | 10.0~100.0 | 0.06 | [14] |
GR–ZnO/GCE | DPV | 1.0~180.0 | 0.30 | [15] |
CuPh/PC/GCE | DPV | 0.4~1.1 1.5~6.0 | 0.60 | [16] |
rGNRs/SPCEs | DPV | l.0~10.0 | 0.04 | [17] |
rGO–AgNP/GCE | DPV | 1.0~10.0 | 0.40 | [18] |
MWCNTs–Nafion/GCE | LSV | 5.0~1000.0 | 0.66 | [19] |
SP–MWCNT–SbNP/CPE | DPV | 0.1~0.7 | 0.031 | [20] |
SBA/Ti–3/MWCNT/CPE | DPV | 0.2~20.0 | 0.07 | [21] |
MIP/G/GCE | SWV | 1.0~100.0 | 0.13 | [22] |
MIP/Nano–Pd/GCE | DPV | 0.5~4000.0 | 0.032 | [23] |
MIP@Fe3O4@MWNTs/rGO/MCPE | DPV | 0.004~0.08 0.08~500.0 | 0.0012 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.; Zhang, R.; Zheng, L.; Cao, Q. An Electrochemical Sensor for Trimethoprim Based on a Magnetic Molecularly Imprinted Carbon Paste Electrode. Chemosensors 2023, 11, 339. https://doi.org/10.3390/chemosensors11060339
Liu P, Zhang R, Zheng L, Cao Q. An Electrochemical Sensor for Trimethoprim Based on a Magnetic Molecularly Imprinted Carbon Paste Electrode. Chemosensors. 2023; 11(6):339. https://doi.org/10.3390/chemosensors11060339
Chicago/Turabian StyleLiu, Peng, Ruiying Zhang, Liyan Zheng, and Qiue Cao. 2023. "An Electrochemical Sensor for Trimethoprim Based on a Magnetic Molecularly Imprinted Carbon Paste Electrode" Chemosensors 11, no. 6: 339. https://doi.org/10.3390/chemosensors11060339
APA StyleLiu, P., Zhang, R., Zheng, L., & Cao, Q. (2023). An Electrochemical Sensor for Trimethoprim Based on a Magnetic Molecularly Imprinted Carbon Paste Electrode. Chemosensors, 11(6), 339. https://doi.org/10.3390/chemosensors11060339