The Developments on Lateral Flow Immunochromatographic Assay for Food Safety in Recent 10 Years: A Review
Abstract
:1. Introduction
2. Principles and Classification of LFIA
2.1. Classification by Principle
2.1.1. Competitive Immunochromatography
2.1.2. Double-Antibody Sandwich Immunochromatography
2.2. Classification by Antibody-Labeling Material
2.2.1. Colored Markers’ LFIA
2.2.2. Fluorescent Markers’ LFIA
2.2.3. Other Markers’ LFIA
2.3. Classification by Product Form
3. Application of LFIA in Food Safety
3.1. Pathogens
3.1.1. Food-Borne Viruses
3.1.2. Food-Borne Pathogens
3.2. Biotoxins
Types of Biotoxin | Analyte | Signal Label | Sample | LOD | Reference |
---|---|---|---|---|---|
Bacteriotoxin | SEB | Gold nanoparticles | Milk/honey | 0.3 ng/mL/0.5 ng/mL | [62] |
SEA, B, C, D, and E | Gold nanoparticles | Milk | For SEA, B and C were 2.5 ng/mL; for SED it was 1.0 ng/mL; and for SDE it was 5.0 ng/mL | [41] | |
SEG, H, and I | Lanthanide-ion-based nanoparticle | Buffer solution | For SEG it was 20.0 pg/mL; for SDH, it was 30.0 pg/mL, for SEI, it was 10.0 pg/mL | [42] | |
BoNT A, B, and E | Magnetic nanolabels | Milk, apple and orange juices | For BoNT/A, it was 0.2 ng/mL, for BoNT/A, it was 0.1 ng/mL, and for BoNT/E 0.4 ng/mL | [45] | |
Fungaltoxin | AFB1 and its metabolites | Gold nanoparticles | Corn | For B1, it was 2.0 ng/mL | [46] |
Gold nanoparticles | Tea | For B1, it was 50.0 pg/mL | [47] | ||
Fluorescent microspheres | Milk | For M1, it was 18.0 pg/mL | [54] | ||
ZEN and its metabolites | Gold nanoparticles | Rice and corn | 10.0 ng/mL | [50] | |
Gold nanoparticles | Corn flour | For ZEN, α-ZAL, and β-ZAL was 50.0 ng/mL, for α-ZOL, β-ZOL, and ZEA was 75.0 ng/mL | [51] | ||
ricin | SiO2@Au nanoparticles | Origin, apple juice and milk | 0.1 ng/mL | [58] | |
Marine biotoxins | Aconitine | Gold nanoparticles | Real sample | 20.0 ng/mL | [55] |
Tetrodotoxin | Fluorescence | Puffer fish | 0.8 ng/mL | [60] | |
Okadaic acid | Gold nanoparticles | Clams | 15.0 ng/mL | [56] |
3.3. Allergens
3.4. Illegal Additives
3.5. Pesticide Residues
3.6. Veterinary Drug Residues
4. Summary and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, Z.; Zhang, W.; Yin, Y.; Fang, W.; Xue, H. Metal-organic framework-based sensors for the detection of toxins and foodborne pathogens. Food Control 2022, 133, 108684. [Google Scholar] [CrossRef]
- Zhang, W.; Zhong, H.; Zhao, P.; Shen, A.; Li, H.; Liu, X. Carbon quantum dot fluorescent probes for food safety detection: Progress, opportunities and challenges. Food Control 2022, 133, 108591. [Google Scholar] [CrossRef]
- Nagel-Alne, G.E.; Murphy, E.; McCauslin, B.; Hauge, S.J.; Schroder-Petersen, D.L.; Holthe, J.; Alvseike, O. Meat safety legislation and its opportunities and hurdles for innovative approaches: A review. Food Control 2022, 141, 109160. [Google Scholar] [CrossRef] [PubMed]
- Odjo, S.; Alakonya, A.E.; Rosales-Nolasco, A.; Molina, A.L.; Muñoz, C.; Palacios-Rojas, N. Occurrence and postharvest strategies to help mitigate aflatoxins and fumonisins in maize and their co-exposure to consumers in Mexico and Central America. Food Control 2022, 138, 108968. [Google Scholar] [CrossRef]
- Focker, M.; van Asselt, E.D.; van der Fels-Klerx, H.J. Designing a risk-based monitoring plan for pathogens in food: A review. Food Control 2023, 143, 109319. [Google Scholar] [CrossRef]
- Su, L.; Hu, H.; Tian, Y.; Jia, C.; Wang, L.; Zhang, H.; Wang, J.; Zhang, D. Highly Sensitive Colorimetric/Surface-Enhanced Raman Spectroscopy Immunoassay Relying on a Metallic Core-Shell Au/Au Nanostar with Clenbuterol as a Target Analyte. Anal. Chem. 2021, 93, 8362–8369. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Kuang, H.; Xu, X.; Xu, C.; Liu, L.; Song, S.; Wu, X. A colloidal gold immunochromatography for the detection of flumioxazin residues in fruits. J. Food Sci. Technol. 2022, 87, 4538–4547. [Google Scholar] [CrossRef] [PubMed]
- Srisukjaroen, R.; Wechakorn, K.; Teepoo, S. A smartphone based-paper test strip chemosensor coupled with gold nanoparticles for the Pb2+ detection in highly contaminated meat samples. Microchem. J. 2022, 179, 107438. [Google Scholar] [CrossRef]
- Lubis, H.N.; Mohd-Naim, N.F.; Alizul, N.N.; Ahmed, M.U. From market to food plate: Current trusted technology and innovations in halal food analysis. Trends Food Sci. Technol. 2016, 58, 55–68. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, F.; Wang, G.; Liao, T.; Hao, Y.; Zhang, H. Rapid and sensitive pathogen detection platform based on a lanthanide-labeled immunochromatographic strip test combined with immunomagnetic separation. Sens. Actuators B Chem. 2021, 329, 129273. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, L.; Yao, X.; Wang, Z.; Dou, L.; Su, L.; Zhao, M.; Sun, J.; Zhang, D.; Wang, J. Developing a Simple Immunochromatography Assay for Clenbuterol with Sensitivity by One-Step Staining. J. Agric. Food Chem. 2020, 68, 15509–15515. [Google Scholar] [CrossRef]
- Linghu, X.; Wang, R.; Lu, Y. Smartphone-integrated fluorescent quenching immunochromatographic test strips designed for the determination of sesame allergens in food samples. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 280, 121522. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Zhang, J.; Chen, H.; Wang, W.; Wang, P.; Xie, Q.; Li, T.; Wan, Z.; Shao, H.; Qin, A.; et al. Development of colloidal gold-based test strip for rapid detection of serotype 4 fowl adenovirus. J. Virol. Methods 2021, 296, 114231. [Google Scholar] [CrossRef]
- Posthuma-Trumpie, G.A.; Wichers, J.H.; Koets, M.; Berendsen, L.B.J.M.; van Amerongen, A. Amorphous carbon nanoparticles: A versatile label for rapid diagnostic (immuno)assays. Anal. Bioanal. Chem. 2012, 402, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liang, R.; Guo, X.; Liang, J.; Deng, Q.; Li, M.; An, T.; Liu, T.; Wu, Y. Simultaneous quantitation of cytokeratin-19 fragment and carcinoembryonic antigen in human serum via quantum dot-doped nanoparticles. Biosens. Bioelectron. 2017, 91, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Leem, H.; Kim, M. Development of a liposome-based immunochromatographic strip assay for the detection of Salmonella. Anal. Bioanal. Chem. 2011, 401, 2581–2590. [Google Scholar] [CrossRef]
- Gao, L.; Yan, X. Nanozymes: An emerging field bridging nanotechnology and biology. Sci. China Life Sci. 2016, 59, 400–402. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, L.; Liu, L.; Song, S.; Kuang, H.; Xu, C. Ultrasensitive Immunochromatographic Strip for Fast Screening of 27 Sulfonamides in Honey and Pork Liver Samples Based on a Monoclonal Antibody. J. Agric. Food Chem. 2017, 65, 8248–8255. [Google Scholar] [CrossRef]
- Li, Y.; Liu, L.; Xu, C.; Kuang, H.; Sun, L. Integration of antibody-antigen and receptor-ligand reactions to establish a gold strip biosensor for detection of 33 β-lactam antibiotics. Sci. China Mater. 2021, 64, 2056–2066. [Google Scholar] [CrossRef]
- Lei, X.; Xu, X.; Liu, L.; Xu, L.; Wang, L.; Kuang, H.; Xu, C. Gold-nanoparticle-based multiplex immuno-strip biosensor for simultaneous determination of 83 antibiotics. Nano Res. 2022, 16, 1259–1268. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, H.; Zhang, P.; Sun, C.; Wang, X.; Wang, X.; Yang, R.; Wang, C.; Zhou, L. Rapid multiplex detection of 10 foodborne pathogens with an up-converting phosphor technology-based 10-channel lateral flow assay. Sci. Rep. 2016, 6, 21342. [Google Scholar] [CrossRef]
- Peng, D.; Hu, S.; Hua, Y.; Xiao, Y.; Li, Z.; Wang, X.; Bi, D. Comparison of a new gold-immunochromatographic assay for the detection of antibodies against avian influenza virus with hemagglutination inhibition and agar gel immunodiffusion assays. Vet. Immunol. Immunopathol. 2007, 117, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, R.; Sakoda, Y.; Sakabe, S.; Mochizuki, T.; Namba, Y.; Tsuda, Y.; Kida, H. Development of a Pen-Site Test Kit for the Rapid Diagnosis of H7 Highly Pathogenic Avian Influenza. J. Vet. Med. Sci. 2008, 70, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Yang, F.; Liu, F.; Cheng, L.; Yao, H.; Wu, N.; Wu, H. Development of an antigen-ELISA and a colloidal gold–based immunochromatographic strip based on monoclonal antibodies for detection of avian influenza A(H5) viruses. J. Vet. Diagn. Investig. 2021, 35, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wang, X.; Li, Q.; Yang, J.; Liu, X.; Qi, W.; Guo, J.; Deng, R.; Zhang, G. Development of an immunochromatographic strip for rapid detection of H7 subtype avian influenza viruses. Virol. J. 2021, 18, 68. [Google Scholar] [CrossRef]
- Xiao, Y.; Yang, F.; Liu, F.; Yao, H.; Wu, N.; Wu, H. Antigen-capture ELISA and immunochromatographic test strip to detect the H9N2 subtype avian influenza virus rapidly based on monoclonal antibodies. Virol. J. 2021, 18, 198. [Google Scholar] [CrossRef]
- Lin, T.; Shao, J.-J.; Du, J.-Z.; Cong, G.-Z.; Gao, S.-D.; Chang, H. Development of a serotype colloidal gold strip using monoclonal antibody for rapid detection type Asia1 foot-and-mouth disease. Virol. J. 2011, 8, 418. [Google Scholar] [CrossRef]
- Hou, F.; Bai, M.; Zhang, Y.; Liu, H.; Sun, S.; Guo, H. Fluorescent immunochromatographic assay for quantitative detection of the foot-and-mouth disease virus serotype O antibody. Microchem. J. 2020, 155, 104690. [Google Scholar] [CrossRef]
- Ferris, N.P.; Nordengrahn, A.; Hutchings, G.H.; Paton, D.J.; Kristersson, T.; Brocchi, E.; Grazioli, S.; Merza, M. Development and laboratory validation of a lateral flow device for the detection of serotype SAT 2 foot-and-mouth disease viruses in clinical samples. J. Virol. Methods 2010, 163, 474–476. [Google Scholar] [CrossRef]
- Yang, M.; Mudabuka, B.; Dueck, C.; Xu, W.; Masisi, K.; Fana, E.M.; Mpofu, C.; Nfon, C. Development of two rapid lateral flow test strips for detection of foot-and-mouth disease virus SAT 1 and SAT 3. J. Virol. Methods 2021, 291, 113967. [Google Scholar] [CrossRef]
- Morioka, K.; Fukai, K.; Yoshida, K.; Kitano, R.; Yamazoe, R.; Yamada, M.; Nishi, T.; Kanno, T. Development and Evaluation of a Rapid Antigen Detection and Serotyping Lateral Flow Antigen Detection System for Foot-and-Mouth Disease Virus. PLoS ONE 2015, 10, e0134931. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Peng, Y.; Jiang, N.; Shi, L.; Lin, J.; Wu, P.; Pan, Q. Preparation and Evaluation of Combined Detection of Norovirus GI and GII: An Innovative Fluorescent Particles Test Strip. Biomed. Res. Int. 2018, 2018, 7862467. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Shi, L.; Lin, J.; Zhang, L.; Peng, Y.; Sheng, H.; Wu, P.; Pan, Q. Comparison of two different combined test strips with fluorescent microspheres or colored microspheres as tracers for rotavirus and adenovirus detection. Virol. J. 2018, 15, 44. [Google Scholar] [CrossRef] [PubMed]
- Tu, Z.; Yang, X.; Dong, H.; Yu, Q.; Zheng, S.; Cheng, X.; Wang, C.; Rong, Z.; Wang, S. Ultrasensitive Fluorescence Lateral Flow Assay for Simultaneous Detection of Pseudomonas aeruginosa and Salmonella typhimurium via Wheat Germ Agglutinin-Functionalized Magnetic Quantum Dot Nanoprobe. Biosensors 2022, 12, 942. [Google Scholar] [CrossRef] [PubMed]
- Tasbasi, B.B.; Guner, B.C.; Sudagidan, M.; Ucak, S.; Kavruk, M.; Ozalp, V.C. Label-free lateral flow assay for Listeria monocytogenes by aptamer-gated release of signal molecules. Anal. Biochem. 2019, 587, 113449. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Hwang, J.; Park, Y.; Kwon, D.; Lee, S.; Kang, I.; Jeon, S. Immunomagnetic separation and size-based detection of Escherichia coli O157 at the meniscus of a membrane strip. RSC Adv. 2018, 8, 26266–26270. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Deng, C.; Qian, S.; Li, H.; Fu, P.; Zhou, H.; Zheng, J. An ultrasensitive lateral flow immunoassay platform for foodborne biotoxins and pathogenic bacteria based on carbon-dots embedded mesoporous silicon nanoparticles fluorescent reporter probes. Food Chem. 2023, 399, 133970. [Google Scholar] [CrossRef] [PubMed]
- Yonekita, T.; Morishita, N.; Arakawa, E.; Matsumoto, T. Development of a monoclonal antibody for specific detection of Vibrio parahaemolyticus and analysis of its antigen. J. Microbiol. Methods 2020, 173, 105919. [Google Scholar] [CrossRef]
- Tu, Z.; Cheng, S.; Dong, H.; Wang, W.; Yang, X.; Gu, B.; Wang, S.; Wang, C. Universal and ultrasensitive detection of foodborne bacteria on a lateral flow assay strip by using wheat germ agglutinin-modified magnetic SERS nanotags. RSC Adv. 2022, 12, 27344–27354. [Google Scholar] [CrossRef]
- Shang, Y.; Cai, S.; Ye, Q.; Wu, Q.; Shao, Y.; Qu, X.; Xiang, X.; Zhou, B.; Ding, Y.; Chen, M.; et al. Quantum Dot Nanobeads-Labelled Lateral Flow Immunoassay Strip for Rapid and Sensitive Detection of Salmonella typhimurium Based on Strand Displacement Loop-Mediated Isothermal Amplification. Engineering 2021, 19, 62–70. [Google Scholar] [CrossRef]
- Wang, W.; Liu, L.; Xu, L.; Kuang, H.; Zhu, J.; Xu, C. Gold-Nanoparticle-Based Multiplexed Immunochromatographic Strip for Simultaneous Detection of Staphylococcal Enterotoxin A, B, C, D, and E. Part. Part. Syst. Charact. 2016, 33, 388–395. [Google Scholar] [CrossRef]
- Mousseau, F.; Féraudet Tarisse, C.; Simon, S.; Gacoin, T.; Alexandrou, A.; Bouzigues, C.I. Luminescent lanthanide nanoparticle-based imaging enables ultra-sensitive, quantitative and multiplexed in vitro lateral flow immunoassays. Nanoscale 2021, 13, 14814–14824. [Google Scholar] [CrossRef] [PubMed]
- Gharaat, M.; Sajedi, R.H.; Shanehsaz, M.; Jalilian, N.; Mirshahi, M.; Gholamzad, M. A dextran mediated multicolor immunochromatographic rapid test strip for visual and instrumental simultaneous detection of Vibrio cholera O1 (Ogawa) and Clostridium botulinum toxin A. Microchim. Acta 2017, 184, 4817–4825. [Google Scholar] [CrossRef]
- Wang, C.; Xiao, R.; Wang, S.; Yang, X.; Bai, Z.; Li, X.; Rong, Z.; Shen, B.; Wang, S. Magnetic quantum dot based lateral flow assay biosensor for multiplex and sensitive detection of protein toxins in food samples. Biosens. Bioelectron. 2019, 146, 111754. [Google Scholar] [CrossRef] [PubMed]
- Alexey, V.O.; Sergey, L.Z.; Vladimir, R.C.; Maxim, P.N.; Nikitin, P.I. Multiplex Biosensing Based on Highly Sensitive Magnetic Nanolabel Quantification: Rapid Detection of Botulinum Neurotoxins A, B, and E in Liquids. Anal. Chem. 2016, 88, 10419–10426. [Google Scholar] [CrossRef]
- Di Nardo, F.; Baggiani, C.; Giovannoli, C.; Spano, G.; Anfossi, L. Multicolor immunochromatographic strip test based on gold nanoparticles for the determination of aflatoxin B1 and fumonisins. Microchim. Acta 2017, 184, 1295–1304. [Google Scholar] [CrossRef]
- Chen, W.; Cai, F.; Wu, Q.; Wu, Y.; Yao, B.; Xu, J. Prediction, evaluation, confirmation, and elimination of matrix effects for lateral flow test strip based rapid and on-site detection of aflatoxin B1 in tea soups. Food Chem. 2020, 328, 127081. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Sun, M.; Hong, X.; Chakraborty, S.; Duan, J.; Li, M.; Du, D. Semi-quantitative and quantitative detection of ochratoxin A in agricultural by-products using a self-assembling immunochromatographic strip. J. Sci. Food Agric. 2021, 101, 1659–1665. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, X.; Zhang, Y.; Yang, J.; Wang, F.; Wang, Y.; Deng, R.; Zhang, G. Development of an immunochromatographic strip test for the rapid detection of zearalenone in corn. J. Agric. Food Chem. 2014, 62, 11116–11121. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.Y.; Shim, W.B.; Kim, J.S.; Chung, D.H. Development of a simultaneous lateral flow strip test for the rapid and simple detection of deoxynivalenol and zearalenone. J. Food Sci. 2014, 79, M2048–M2055. [Google Scholar] [CrossRef]
- Hao, K.; Suryoprabowo, S.; Song, S.; Liu, L.; Kuang, H. Rapid detection of zearalenone and its metabolite in corn flour with the immunochromatographic test strip. Food Agric. Immunol. 2017, 29, 498–510. [Google Scholar] [CrossRef]
- Zheng, S.; Wu, T.; Li, J.; Jin, Q.; Xiao, R.; Wang, S.; Wang, C. Difunctional immunochromatographic assay based on magnetic quantum dot for ultrasensitive and simultaneous detection of multiple mycotoxins in foods. Sens. Actuators B Chem. 2022, 359, 131528. [Google Scholar] [CrossRef]
- Jiang, H.; Su, H.; Wu, K.; Dong, Z.; Li, X.; Nie, L.; Leng, Y.; Xiong, Y. Multiplexed lateral flow immunoassay based on inner filter effect for mycotoxin detection in maize. Sens. Actuators B Chem. 2023, 374, 132793. [Google Scholar] [CrossRef]
- Sun, J.; Li, M.; Xing, F.; Wang, H.; Zhang, Y.; Sun, X. Novel dual immunochromatographic test strip based on double antibodies and biotin-streptavidin system for simultaneous sensitive detection of aflatoxin M1 and ochratoxin A in milk. Food Chem. 2022, 375, 131682. [Google Scholar] [CrossRef] [PubMed]
- Ling, S.; Chen, Q.A.; Zhang, Y.; Wang, R.; Jin, N.; Pang, J.; Wang, S. Development of ELISA and colloidal gold immunoassay for tetrodotoxin detetcion based on monoclonal antibody. Biosens. Bioelectron. 2015, 71, 256–260. [Google Scholar] [CrossRef]
- Ling, S.; Li, X.; Zhang, D.; Wang, K.; Zhao, W.; Zhao, Q.; Wang, R.; Yuan, J.; Xin, S.; Wang, S. Detection of okadaic acid (OA) and tetrodotoxin (TTX) simultaneously in seafood samples using colloidal gold immunoassay. Toxicon 2019, 165, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Mua, X.-H.; Liub, H.-F.; Tonga, Z.-Y.; Gaoa, C.; Wanga, J.; Donga, H. A new rapid detection method for ricin based on tunneling magnetoresistance biosensor. Sens. Actuators B Chem. 2019, 284, 638–649. [Google Scholar] [CrossRef]
- Jia, X.; Wang, K.; Li, X.; Liu, Z.; Liu, Y.; Xiao, R.; Wang, S. Highly sensitive detection of three protein toxins via SERS-lateral flow immunoassay based on SiO2@Au nanoparticles. Nanomedicine 2022, 41, 102522. [Google Scholar] [CrossRef]
- Shen, H.; Xu, F.; Xiao, M.; Fu, Q.; Cheng, Z.; Zhang, S.; Huang, C.; Tang, Y. A new lateral-flow immunochromatographic strip combined with quantum dot nanobeads and gold nanoflowers for rapid detection of tetrodotoxin. Analyst 2017, 142, 4393–4398. [Google Scholar] [CrossRef]
- Shen, H.; Zhang, S.; Fu, Q.; Xiao, W.; Wang, S.; Yu, S.; Xiao, M.; Bian, H.; Tang, Y. A membrane-based fluorescence-quenching immunochromatographic sensor for the rapid detection of tetrodotoxin. Food Control 2017, 81, 101–106. [Google Scholar] [CrossRef]
- Li, S.; Wu, X.; Kuang, H.; Liu, L. Development of an ic-ELISA and an immunochromatographic strip assay for the detection of aconitine. Food Agric. Immunol. 2020, 31, 243–254. [Google Scholar] [CrossRef]
- Wu, K.-H.; Huang, W.-C.; Shyu, R.-H.; Chang, S.-C. Silver nanoparticle-base lateral flow immunoassay for rapid detection of Staphylococcal enterotoxin B in milk and honey. J. Inorg. Biochem. 2020, 210, 111163. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Song, S.; Xu, L.; Ma, W.; Liu, L.; Kuang, H.; Xu, C. Development of a monoclonal antibody-based sandwich ELISA for peanut allergen Ara h 1 in food. Int. J. Environ. Res. Public Health 2013, 10, 2897–2905. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Song, S.; Liu, L.; Kuang, H.; Xu, C. Development of Sandwich ELISA and Immunochromatographic Strip for the Detection of Peanut Allergen Ara h 2. Food Anal. Methods 2015, 8, 2605–2611. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Lin, H.; Siddanakoppalu, P.N.; Zhou, J.; Chen, G.; Yu, Z. Quantum-dot-based lateral flow immunoassay for the rapid detection of crustacean major allergen tropomyosin. Food Control 2019, 106, 106714. [Google Scholar] [CrossRef]
- Zeng, L.; Song, S.; Zheng, Q.; Luo, P.; Wu, X.; Kuang, H. Development of a sandwich ELISA and immunochromatographic strip for the detection of shrimp tropomyosin. Food Agric. Immunol. 2019, 30, 606–619. [Google Scholar] [CrossRef]
- Anfossi, L.; Di Nardo, F.; Russo, A.; Cavalera, S.; Giovannoli, C.; Spano, G.; Baumgartner, S.; Lauter, K.; Baggiani, C. Silver and gold nanoparticles as multi-chromatic lateral flow assay probes for the detection of food allergens. Anal. Bioanal. Chem. 2019, 411, 1905–1913. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, Z.; Liu, J.; Li, H.; Li, Q.X.; Li, J.; Xu, T. Nanocolloidal gold-based immuno-dip strip assay for rapid detection of Sudan red I in food samples. Food Chem. 2013, 136, 1478–1483. [Google Scholar] [CrossRef]
- Xu, N.; Li, L.; Song, S.; Xu, L.; Kuang, H.; Xu, C. Development of a lateral flow immunoassay for the detection of total malachite green residues in fish tissues. Food Agric. Immunol. 2015, 26, 870–879. [Google Scholar] [CrossRef]
- Lu, Y.K.; Xu, D.; Liu, W.Y.; Xie, J.; Lu, Y. A Rapid Tricolour Immunochromatographic Assay for Simultaneous Detection of Tricaine and Malachite Green. Biosensors 2022, 12, 456. [Google Scholar] [CrossRef]
- Zhao, B.; Huang, Q.; Dou, L.; Bu, T.; Chen, K.; Yang, Q.; Yan, L.; Wang, J.; Zhang, D. Prussian blue nanoparticles based lateral flow assay for high sensitive determination of clenbuterol. Sens. Actuators B Chem. 2018, 275, 223–229. [Google Scholar] [CrossRef]
- Li, Y.; Liu, S.; Yin, X.; Wang, S.; Tian, Y.; Shu, R.; Jia, C.; Chen, Y.; Sun, J.; Zhang, D.; et al. Nature-inspired nanozymes as signal markers for in-situ signal amplification strategy: A portable dual-colorimetric immunochromatographic analysis based on smartphone. Biosens. Bioelectron. 2022, 210, 114289. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.; Wang, S.; Liu, S.; Li, Y.; Xie, X.; Hu, H.; Ren, J.; Tian, Y.; Sun, J.; Zhang, D.; et al. Green-synthesized two-dimensional nanocarriers with photothermal capability for portable dual-readout immunochromatographic assay of clenbuterol. Sens. Actuators B Chem. 2023, 374, 132791. [Google Scholar] [CrossRef]
- Wang, P.; Wang, Z.; Su, X. A sensitive and quantitative fluorescent multi-component immuno-chromatographic sensor for beta-agonist residues. Biosens. Bioelectron. 2015, 64, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhi, D.; Zhao, Y.; Zhang, H.; Wang, X.; Ru, Y.; Li, H. Lateral flow test strip based on colloidal selenium immunoassay for rapid detection of melamine in milk, milk powder, and animal feed. Int. J. Nanomed. 2014, 9, 1699–1707. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Chen, Y.; Yao, L.; Zhao, D.; Zheng, L.; Liu, G.; Ye, Y.; Chen, W. Gold nanoparticles based lateral flow immunoassay with largely amplified sensitivity for rapid melamine screening. Microchim. Acta 2016, 183, 1989–1994. [Google Scholar] [CrossRef]
- Guo, M.; Wu, X.; Song, S.; Zheng, Q.; Luo, P.; Kuang, H.; Sun, J.; Ye, L. Ultrasensitive anti-melamine monoclonal antibody and its use in the development of an immunochromatographic strip. Food Agric. Immunol. 2019, 30, 462–474. [Google Scholar] [CrossRef]
- Wu, K.-H.; Huang, W.-C.; Chang, S.-C.; Kao, C.-H.; Shyu, R.-H. Colloidal silver-based lateral flow immunoassay for rapid detection of melamine in milk and animal feed. Mater. Chem. Phys. 2019, 231, 121–130. [Google Scholar] [CrossRef]
- Zou, R.; Chang, Y.; Zhang, T.; Si, F.; Liu, Y.; Zhao, Y.; Liu, Y.; Zhang, M.; Yu, X.; Qiao, X.; et al. Up-Converting Nanoparticle-Based Immunochromatographic Strip for Multi-Residue Detection of Three Organophosphorus Pesticides in Food. Front. Chem. 2019, 7, 18. [Google Scholar] [CrossRef]
- Dong, H.; Xu, D.; Wang, G.; Meng, X.; Sun, X.; Yang, Q.; Guo, Y.; Zhu, Y. Broad-specificity time-resolved fluorescent immunochromatographic strip for simultaneous detection of various organophosphorus pesticides based on indirect probe strategy. Anal. Methods 2022, 14, 1051–1059. [Google Scholar] [CrossRef]
- Yue, Y.; Chen, J.; Zhang, M.; Yin, Y.; Dong, Y. Determination of Organophosphorus Pesticides in Vegetables and Fruit by an Indirect Competitive Enzyme-Linked Immunosorbent Assay (ic-ELISA) and a Lateral-Flow Immunochromatographic (LFIC) Strip Assay. Anal. Lett. 2022, 55, 1701–1718. [Google Scholar] [CrossRef]
- Ouyang, H.; Wang, W.; Shu, Q.; Fu, Z. Novel chemiluminescent immunochromatographic assay using a dual-readout signal probe for multiplexed detection of pesticide residues. Analyst 2018, 143, 2883–2888. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Guo, S.; Dong, Q.; Song, Y. Development of an Immunochromatographic Test Strip for Rapid Simultaneous Detection of Enrofloxacin and Ofloxacin in Tissue of Chicken Muscle and Pork. Food Anal. Methods 2016, 9, 2807–2813. [Google Scholar] [CrossRef]
- Sheng, W.; Li, S.; Liu, Y.; Wang, J.; Zhang, Y.; Wang, S. Visual and rapid lateral flow immunochromatographic assay for enrofloxacin using dyed polymer microspheres and quantum dots. Microchim. Acta 2017, 184, 4313–4321. [Google Scholar] [CrossRef]
- Qian, J.; Xing, C.; Ge, Y.; Li, R.; Li, A.; Yan, W. Gold nanostars-enhanced Raman fingerprint strip for rapid detection of trace tetracycline in water samples. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 232, 118146. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, X.; Peng, T.; Wang, Z.; Wen, K.; Jiang, H. Latex bead and colloidal gold applied in a multiplex immunochromatographic assay for high-throughput detection of three classes of antibiotic residues in milk. Food Control 2017, 77, 1–7. [Google Scholar] [CrossRef]
- Zhang, Y.; Liao, T.; Wang, G.; Xu, J.; Wang, M.; Ren, F.; Zhang, H. An ultrasensitive NIR-IIa' fluorescence-based multiplex immunochromatographic strip test platform for antibiotic residues detection in milk samples. J. Adv. Res. 2022, 50, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, J.; Huang, H.; Jian, D.; Shan, Y.; Wang, S.; Liu, F. Rapid quantitative detection for multiple antibiotics in honey using a quantum dot microsphere immunochromatographic strip. Food Control 2021, 130, 108256. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, L.; Xu, L.; Song, S.; Kuang, H.; Cui, G.; Xu, C. Gold immunochromatographic sensor for the rapid detection of twenty-six sulfonamides in foods. Nano Res. 2017, 10, 2833–2844. [Google Scholar] [CrossRef]
Types of Pathogen | Analyte | Signal Label | Sample | LOD | Reference |
---|---|---|---|---|---|
Foodborne virus | |||||
Avian influenza virus | H5, H7, and H9 | Gold nanoparticles | Chicken serum | Qualitative | [22] |
Foot and mouth disease | type O, A, Asia 1, and C SAT 1, 2, 3 | Gold nanoparticles | Clinical specimens | Qualitative | [31] |
Norovirus | G1 and G2 | Fluorescent microspheres | Clinical samples | Qualitative | [32] |
Rotavirus and adenovirus | Rotavirus (Wa strain) | Fluorescent microspheres and colored microspheres | Clinical samples | Qualitative | [33] |
Adenovirus (type 40) | |||||
Adenovirus | 4 fowl adenovirus | Gold nanoparticles | Chicken tissues | 106 TCID50/mL | [13] |
Food-borne pathogens | |||||
S. typhimurium | S. typhimurium | Agglutinin-functionalized magnetic quantum dot Nanoprobe | Chicken | 30.0 CFU/mL | [34] |
L. monocytogenes | L. monocytogenes | Aptamer-gated silica nanoparticles | Chicken | 105 CFU/mL | [35] |
E. coli | E. coli O157 | Gold nanoparticles | Milk | 103 CFU/mL | [36] |
S. aureus | S. aureus | Carbon-dots | Milk and potable water | 102 CFU/mL | [37] |
V. parahaemolyticus | V. parahaemolyticus | Gold nanoparticles | Medium | 106 CFU/mL | [38] |
C. jejuni | C. jejuni | Wheat germ agglutinin-modified magnetic SERS nanotags | Vegetable juice, and river water | 102 CFU/mL | [39] |
Source of Allergen | Analyte | Signal Label | Sample | LOD | Reference |
---|---|---|---|---|---|
Shellfish | Shrimp tropomyosin | Quantum-dot | Food matrix, including fish, soybean paste, fine dried noodles, and spice blends | 0.5 μg/mL | [65] |
Gold nanoparticles | Fish balls | 0.5 ng/mL | [66] | ||
Milk | Casein | Silver nanoparticles | Biscuit | Qualitative | [67] |
Eggs | Ovalbumin | Silver nanoparticles | Biscuit | Qualitative | [67] |
Nut | Peanut Ara h1 | Gold nanoparticles | Peanut | 0.3 ng/mL | [63] |
Peanut Ara h2 | Gold nanoparticles | Peanut | 1.0 ng/mL | [64] | |
Hazelnut allergenic proteins | Silver nanoparticles | Biscuit | Qualitative | [67] | |
Herbaceous plant | Cesame allergen | Fluorescence | Bread, ham, and biscuits | For biscuits, it was 320.0 ng/mL, for bread and ham, it was 640.0 ng/mL | [12] |
The Type of Illegal Addition | Analyte | Signal Label | Sample | LOD | Reference |
---|---|---|---|---|---|
Pigment | Sudan red I | Gold nanoparticles | Tomato sauce and chili powder | 10.0 ng/mL | [68] |
Malachite green | Gold nanoparticles | Fish | 0.4 ng/mL | [69] | |
Gold nanoparticles | Aquaculture water, fish, and shrimp | 47.0 ng/mL in aquaculture water, 82.8 ng/mL in fish, and 152.4 ng/mL in shrimp | [70] | ||
Nitrogen-containing compound | Melamine | Colloidal selenium | Milk, milk powder, and animal feed | 150.0 ng/mL in milk, 1000.0 ng/mL in milk powder, and 800.0 ng/mL in animal feed | [75] |
Gold nanoparticles | Milk | 1.4 ng/mL | [76] | ||
Gold nanoparticles | Milk | 10.0 ng/mL | [77] | ||
Silver nanoparticles | Milk and animal feed | 0.8 ng/mL in milk and 0.9 ng/mL in animal feed | [78] | ||
β-receptor agonists | Clenbuterol, ractopamine, and salbuterol | Fluorescent | Animal urine and tissue | For Clenbuterol and ractopamine, were 0.1 ng/mL, salbuterol was 0.1 ng/mL | [74] |
Clenbuterol | Prussian blue nanoparticles | Pork, pork kidneys and bacon | 1.0 ng/mL | [71] | |
Clenbuterol | Gold nanoparticles | Milk, pork tenderloin, and swine liver | 2.0 ng/mL | [11] | |
Clenbuterol | Gold nanoparticles | Pork, chicken, and sausage | 0.5 ng/mL | [6] | |
Clenbuterol | Nanozymes | Pork and chicken | 0.2 ng/mL | [72] | |
Clenbuterol | Photothermal | Chicken and skim milk | 0.3 ng/mL | [73] |
The Type of the Pesticide | Analyte | Signal Label | Sample | LOD | Reference |
---|---|---|---|---|---|
Organophosphorus | Methyl parathion | Luminol-reduced gold nanoparticles | Gardenia and folium moris | 0.2 ng/mL | [82] |
Parathion, Parathion-methyl, and Fenitrothion | Up-converting nanoparticles | Fruit, vegetables, and water | 3.4 to 12.5 ng/mL | [79] | |
Organophosphorus | Fluorescence | Baby cabbage and rape | 0.5 ng/mL | [80] | |
Methyl parathion and triazophos | Gold nanoparticles | Pears, apples, cucumbers, and lettuces | For methyl parathion, it was 2.2 ng/mL and for triazophos, it was 4.2 ng/mL | [81] |
The Type of the Antibiotics | Analyte | Signal Label | Sample | LOD | Reference |
---|---|---|---|---|---|
Quinolones | Enrofloxacin and ofloxacin | Gold nanoparticles | Chicken muscle, and pork | 10.0 ng/mL | [83] |
18 quinolones | Latex beads | Milk | 2.0 ng/mL | [86] | |
General Construction | Fluorescence | Milk | 27.6 ng/mL | [87] | |
Enrofloxacin | Dyed polymer microspheres and quantum dots | Animal tissue and milk | 5.0 ng/mL in animal tissue, 10.0 ng/mL in milk | [84] | |
6 tetracyclines | Latex beads | Milk | 1.6 ng/mL | [86] | |
Tetracycline | 4-aminothiophenol modified gold nanostars | Buffer solution | 40.0 pg/mL | [85] | |
Tetracyclines | Quantum dot microsphere | Honey | 0.4–4.0 ng/mL | [88] | |
Sulfonamides | 27 sulfonamides | Gold nanoparticles | Honey and pork liver | <10.0 ng/mL | [18] |
27 sulfonamides | Gold nanoparticles | Honey | <10.0 ng/mL | [89] | |
12 sulfonamide | Latex beads | Milk | 0.3 ng/mL | [86] | |
Sulfonamides | Quantum dot microsphere | Honey | 0.4 ng/mL | [88] | |
General Construction | Fluorescence | Milk | 46.7 ng/mL | [87] | |
β-lactams | 33 β-lactams | Gold nanoparticles | Milk | Qualitative | [19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Li, J.; Guo, L.; Li, J.; He, F.; Zhang, H.; Chi, H. The Developments on Lateral Flow Immunochromatographic Assay for Food Safety in Recent 10 Years: A Review. Chemosensors 2024, 12, 88. https://doi.org/10.3390/chemosensors12060088
Wang P, Li J, Guo L, Li J, He F, Zhang H, Chi H. The Developments on Lateral Flow Immunochromatographic Assay for Food Safety in Recent 10 Years: A Review. Chemosensors. 2024; 12(6):88. https://doi.org/10.3390/chemosensors12060088
Chicago/Turabian StyleWang, Peng, Jinyan Li, Lingling Guo, Jiaxun Li, Feng He, Haitao Zhang, and Hai Chi. 2024. "The Developments on Lateral Flow Immunochromatographic Assay for Food Safety in Recent 10 Years: A Review" Chemosensors 12, no. 6: 88. https://doi.org/10.3390/chemosensors12060088
APA StyleWang, P., Li, J., Guo, L., Li, J., He, F., Zhang, H., & Chi, H. (2024). The Developments on Lateral Flow Immunochromatographic Assay for Food Safety in Recent 10 Years: A Review. Chemosensors, 12(6), 88. https://doi.org/10.3390/chemosensors12060088