Polyaniline-Based Flexible Sensor for pH Monitoring in Oxidizing Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Flexible Chips
2.3. Electrochemical Polymerization
2.4. Analytical Techniques
3. Results and Discussion
3.1. Preparation and Characterization of the Polyaniline Films Electrodeposited on the Gold Electrodes of the Chips
3.2. Analytical Performance of the Potentiometric pH Sensors
3.2.1. Potentiometric Responses to pH Changes of Polyaniline-Based Sensors in Aqueous Solutions
3.2.2. Potentiometric Responses to pH Changes of Polyaniline-Based Sensors in Oxidizing Solutions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sorensen, S.P.L. Enzymstudien. II, Über die Messung und die Bedeutung der Wasserstoffionenkonzentration bei enzymatischen Prozessen. Biochem. Z. 1909, 21, 131–304. [Google Scholar]
- Hückel, E.; Debye, P. The theory of electrolytes: I. lowering of freezing point and related phenomena. Phys. Z. 1923, 24, 185–206. [Google Scholar]
- Marczewska, B.; Marczewski, K. First Glass Electrode and its Creators F. Haber and Z. Klemensiewicz—On 100th Anniversary. Z. Phys. Chem. 2010, 224, 795–799. [Google Scholar] [CrossRef]
- Thackray, A.; Myers, M., Jr. Arnold O. Beckman: One Hundred Years of Excellence; Chemical Heritage Foundation: Philadelphia, PA, USA, 2000; 397p. [Google Scholar]
- Chesler, M. Regulation and modulation of pH in the brain. Phys. Rev. 2003, 83, 1183–1221. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Sun, C.; Lou, L.; Li, Z. Endogenous microenvironmental engineering through targeted alteration of salt bridge network can effectively regulate enzymatic pH adaptation. Chem. Eng. J. 2022, 442, 136215. [Google Scholar] [CrossRef]
- Li, K.T.; Liu, D.H.; Chu, J.; Wang, Y.H.; Zhuang, Y.P.; Zhang, S.L. An effective and simplified pH-stat control strategy for the industrial fermentation of vitamin B 12 by Pseudomonas denitrificans. Bioproc. Biosyst. Eng. 2008, 31, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Antonacci, A.; Arduini, F.; Moscone, D.; Palleschi, G.; Scognamiglio, V. Commercially available (bio) sensors in the agrifood sector. Compr. Anal. Chem. 2016, 74, 315–340. [Google Scholar] [CrossRef]
- Penn, C.J.; Camberato, J.J. A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture 2019, 9, 120. [Google Scholar] [CrossRef]
- Husson, O. Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: A transdisciplinary overview pointing to integrative opportunities for agronomy. Plant Soil 2013, 362, 389–417. [Google Scholar] [CrossRef]
- Saalidong, B.M.; Aram, S.A.; Otu, S.; Lartey, P.O. Examining the dynamics of the relationship between water pH and other water quality parameters in ground and surface water systems. PLoS ONE 2022, 17, e0262117. [Google Scholar] [CrossRef]
- Swain, S.; Sawant, P.B.; Chadha, N.K.; Chhandaprajnadarsini, E.M.; Katare, M.B. Significance of water pH and hardness on fish biological processes: A review. Int. J. Chem. Stud. 2020, 8, 330–337. [Google Scholar] [CrossRef]
- Wencel, D.; Abel, T.; McDonagh, C. Optical chemical pH sensors. Anal. Chem. 2014, 86, 15–29. [Google Scholar] [CrossRef]
- Steinegger, A.; Wolfbeis, O.S.; Borisov, S.M. Optical sensing and imaging of pH values: Spectroscopies, materials, and applications. Chem. Rev. 2020, 120, 12357–12489. [Google Scholar] [CrossRef]
- Kneipp, J.; Kneipp, H.; Wittig, B.; Kneipp, K. Novel optical nanosensors for probing and imaging live cells. Nanomedicine 2010, 6, 214–226. [Google Scholar] [CrossRef]
- Sinha, S.; Pal, T. A comprehensive review of FET-based pH sensors: Materials, fabrication technologies, and modeling. Electrochem. Sci. Adv. 2022, 2, e2100147. [Google Scholar] [CrossRef]
- Shojaei Baghini, M.; Vilouras, A.; Douthwaite, M.; Georgiou, P.; Dahiya, R. Ultra-thin ISFET-based sensing systems. Electrochem. Sci. Adv. 2022, 2, e2100202. [Google Scholar] [CrossRef]
- Sahu, N.; Bhardwaj, R.; Shah, H.; Mukhiya, R.; Sharma, R.; Sinha, S. Towards development of an ISFET-based smart pH sensor: Enabling machine learning for drift compensation in IoT applications. IEEE Sens. J. 2021, 21, 19013–19024. [Google Scholar] [CrossRef]
- Mello, H.J.N.P.D.; Mulato, M. Influence of galvanostatic electrodeposition parameters on the structure-property relationships of polyaniline thin films and their use as potentiometric and optical pH sensors. Thin Solid Films 2018, 656, 14–21. [Google Scholar] [CrossRef]
- Fraga, V.M.; Lovi, I.T.; Abegao, L.M.; Mello, H.J. Understanding the Effect of Deposition Technique on the Structure–Property Relationship of Polyaniline Thin Films Applied in Potentiometric pH Sensor. Polymers 2023, 15, 3450. [Google Scholar] [CrossRef]
- Zuaznabar-Gardona, J.C.; Fragoso, A. A wide-range solid state potentiometric pH sensor based on poly-dopamine coated carbon nano-onion electrodes. Sens. Actuators B 2018, 273, 664–671. [Google Scholar] [CrossRef]
- Taouil, A.E.; Lallemand, F.; Melot, J.M.; Husson, J.; Hihn, J.Y.; Lakard, B. Effects of polypyrrole modified electrode functionalization on potentiometric pH responses. Synth. Met. 2010, 160, 1073–1080. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, A.; Han, Y.; Li, T. Sensors based on conductive polymers and their composites: A review. Polym. Int. 2020, 69, 7–17. [Google Scholar] [CrossRef]
- Manjakkal, L.; Dervin, S.; Dahiya, R. Flexible potentiometric pH sensors for wearable systems. RSC Adv. 2020, 10, 8594–8617. [Google Scholar] [CrossRef]
- Alam, A.U.; Qin, Y.; Nambiar, S.; Yeow, J.T.; Howlader, M.M.; Hu, N.X.; Deen, M.J. Polymers and organic materials-based pH sensors for healthcare applications. Progr. Mater. Sci. 2018, 96, 174–216. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X. A focused review on the flexible wearable sensors for sports: From kinematics to physiologies. Micromachines 2022, 13, 1356. [Google Scholar] [CrossRef]
- Sun, W.; Guo, Z.; Yang, Z.; Wu, Y.; Lan, W.; Liao, Y.; Wu, X.; Liu, Y. A review of recent advances in vital signals monitoring of sports and health via flexible wearable sensors. Sensors 2022, 22, 7784. [Google Scholar] [CrossRef]
- Chen, S.; Qi, J.; Fan, S.; Qiao, Z.; Yeo, J.C.; Lim, C.T. Flexible wearable sensors for cardiovascular health monitoring. Adv. Healthc. Mater. 2021, 10, 2100116. [Google Scholar] [CrossRef]
- Cheng, M.; Zhu, G.; Zhang, F.; Tang, W.L.; Jianping, S.; Yang, J.Q.; Zhu, L.Y. A review of flexible force sensors for human health monitoring. J. Adv. Res. 2020, 26, 53–68. [Google Scholar] [CrossRef]
- Goswami, P.; Gupta, G. Recent progress of flexible NO2 and NH3 gas sensors based on transition metal dichalcogenides for room temperature sensing. Mater. Today Chem. 2022, 23, 100726. [Google Scholar] [CrossRef]
- Bag, A.; Lee, N.E. Recent advancements in development of wearable gas sensors. Adv. Mater. Technol. 2021, 6, 2000883. [Google Scholar] [CrossRef]
- Ouyang, J. Application of intrinsically conducting polymers in flexible electronics. SmartMat 2021, 2, 263–285. [Google Scholar] [CrossRef]
- Pavel, I.A.; Lakard, S.; Lakard, B. Flexible sensors based on conductive polymers. Chemosensors 2022, 10, 97. [Google Scholar] [CrossRef]
- Lin, J.C.; Liatsis, P.; Alexandridis, P. Flexible and stretchable electrically conductive polymer materials for physical sensing applications. Polym. Rev. 2023, 63, 67–126. [Google Scholar] [CrossRef]
- Park, H.J.; Yoon, J.H.; Lee, K.G.; Choi, B.G. Potentiometric performance of flexible pH sensor based on polyaniline nanofiber arrays. Nano Converg. 2019, 6, 9. [Google Scholar] [CrossRef]
- Li, Y.; Mao, Y.; Xiao, C.; Xu, X.; Li, X. Flexible pH sensor based on a conductive PANI membrane for pH monitoring. RSC Adv. 2020, 10, 21–28. [Google Scholar] [CrossRef]
- Kayishaer, A.; Magnenet, C.; Pavel, I.A.; Halima, H.B.; Moutarlier, V.; Lakard, B.; Redon, N.; Duc, C.; Lakard, S. Influence of surfactant on conductivity, capacitance and doping of electrodeposited polyaniline films. Front. Mater. 2024, 11, 1358534. [Google Scholar] [CrossRef]
- Mazzara, F.; Patella, B.; D’Agostino, C.; Bruno, M.G.; Carbone, S.; Lopresti, F.; Aiello; Torino, C.; Vilasi, A.; O’Riordan, A.; et al. PANI-based wearable electrochemical sensor for pH sweat monitoring. Chemosensors 2021, 9, 169. [Google Scholar] [CrossRef]
- Rahimi, R.; Ochoa, M.; Tamayol, A.; Khalili, S.; Khademhosseini, A.; Ziaie, B. Highly stretchable potentiometric pH sensor fabricated via laser carbonization and machining of Carbon−Polyaniline composite. ACS Appl. Mater. Interfaces 2017, 9, 9015–9023. [Google Scholar] [CrossRef]
- Lu, H.; Lei, T.; Zhang, L.; Chen, S.; Chen, R.; Li, X.; Wang, Y.; Zhu, J.; Chen, M.; Zhang, K.; et al. Flexible polyaniline@ carbon nanofiber membrane pH electrode for health care. Microchem. J. 2024, 200, 110436. [Google Scholar] [CrossRef]
- Yoon, J.H.; Hong, S.B.; Yun, S.O.; Lee, S.J.; Lee, T.J.; Lee, K.G.; Choi, B.G. High Performance Flexible pH Sensor Based on Polyaniline Nanopillar Array Electrode. J. Colloid Interface Sci. 2017, 490, 53–58. [Google Scholar] [CrossRef]
- Bilbao, E.; Kapadia, S.; Riechert, V.; Amalvy, J.; Molinari, F.N.; Escobar, M.M.; Baumann, R.R.; Monsalve, L.N. Functional aqueous-based polyaniline inkjet inks for fully printed high-performance pH-sensitive electrodes. Sens. Actuators B 2021, 346, 130558. [Google Scholar] [CrossRef]
- Madeira, G.D.M.; Dias Mello, H.J.; Faleiros, M.C.; Mulato, M. Model improvement for super-Nernstian pH sensors: The effect of surface hydration. J. Mater. Sci. 2021, 56, 2738–2747. [Google Scholar] [CrossRef]
- Choudhury, S.; Deepak, D.; Bhattacharya, G.; McLaughlign, J.; Roy, S.S. MoS2-Polyaniline Based Flexible Electrochemical Biosensor: Toward pH Monitoring in Human Sweat. Macromol. Mat. Eng. 2023, 308, 2300007. [Google Scholar] [CrossRef]
- Kamarozaman, N.S.; Zainal, N.; Rosli, A.B.; Zulkefle, M.A.; Nik Him, N.R.; Abdullah, W.F.H.; Herman, S.H.; Zulkifli, Z. Highly sensitive and selective sol-gel spin-coated composite TiO2–PANI thin films for EGFET-pH sensor. Gels 2022, 8, 690. [Google Scholar] [CrossRef]
Samples | Average Thickness Value 1 | Standard Deviation |
---|---|---|
Naked electrodes | 20.52 µm | 0.477 |
PANI/H2SO4 | 21.12 µm | 0.512 |
PANI/H2SO4 + CTAB | 22.11 µm | 1.324 |
PANI/H2SO4 + Tritonx100 | 22.09 µm | 0.965 |
Samples | Without Hypochlorite | With Hypochlorite |
---|---|---|
PANI/H2SO4 | OCP = 599.7–73.4 pH Sd = 1.75 | OCP = 416.7–16.1 pH Sd = 12.93 |
PANI/H2SO4 + CTAB | OCP = 350.4–41.3 pH Sd = 3.82 | OCP = 588.9–66.3 pH Sd = 4.10 |
PANI/H2SO4 + Tritonx100 | OCP = 437.0–55.2 pH Sd = 7.96 | OCP = 519.8–62.3 pH Sd = 1.52 |
Sensing Material | Sensitivity mV/pH Unit | pH Range | Reference |
---|---|---|---|
PANI | 62.3 | 2–8 | [38] |
PANI nanofibers | 62.4 | 3–10 | [35] |
PANI + dodecyl benzene sulfonic acid | 58.6 | 5.5–8.5 | [36] |
PANI + carbon | 53.0 | 4–10 | [39] |
PANI + carbon nanofiber membrane | 76.2 | 6.3–8.3 | [40] |
PANI nanopillars | 60.3 | 2–12 | [41] |
PANI + HCl ink | 69.1 | 4–10 | [42] |
PANI + phytic acid | 69.3 | 4–9 | [43] |
PANI + MoS2 | 70.4 | 4–8 | [44] |
PANI + TiO2 | 66.1 | 2–12 | [45] |
PANI/H2SO4 + CTAB | 41.3 | 3–8 | This work |
PANI/H2SO4 + Tritonx100 | 55.2 | 3–8 | This work |
PANI/H2SO4 | 73.4 | 3–8 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bignall, L.; Magnenet, C.; Ramsamy, C.; Lakard, S.; Vassal, S.; Lakard, B. Polyaniline-Based Flexible Sensor for pH Monitoring in Oxidizing Environments. Chemosensors 2024, 12, 97. https://doi.org/10.3390/chemosensors12060097
Bignall L, Magnenet C, Ramsamy C, Lakard S, Vassal S, Lakard B. Polyaniline-Based Flexible Sensor for pH Monitoring in Oxidizing Environments. Chemosensors. 2024; 12(6):97. https://doi.org/10.3390/chemosensors12060097
Chicago/Turabian StyleBignall, Liam, Claire Magnenet, Catheline Ramsamy, Sophie Lakard, Simon Vassal, and Boris Lakard. 2024. "Polyaniline-Based Flexible Sensor for pH Monitoring in Oxidizing Environments" Chemosensors 12, no. 6: 97. https://doi.org/10.3390/chemosensors12060097
APA StyleBignall, L., Magnenet, C., Ramsamy, C., Lakard, S., Vassal, S., & Lakard, B. (2024). Polyaniline-Based Flexible Sensor for pH Monitoring in Oxidizing Environments. Chemosensors, 12(6), 97. https://doi.org/10.3390/chemosensors12060097