A Machine Learning Approach for Enhanced Glucose Prediction in Biosensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Solutions
2.2. Solutions
2.3. Apparatus
2.4. Synthesis of Biographene
2.5. Biosensor Assembling
2.6. Electrochemical Measurments
2.7. Selectivity Studies
2.8. Machine Learning Study Components
2.8.1. Datasets
2.8.2. Algorithms
2.8.3. Data Processing
3. Results and Discussion
3.1. Biosensor Assembling: Electrochemical Characterisation
Immobilisation of GOx by Adsorption and Encapsulation
3.2. Morphological Characterisation of Electrodes
3.2.1. SEM Analysis
3.2.2. TEM Analysis
3.3. Analytical Response of the Electrochemical Biosensor
3.3.1. Calibration in Human Serum
3.3.2. Selectivity Studies
3.4. Machine Learning Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chetty, V.K.; Narayan, V. Diabetes 2030: Impact of globalization. Diabetes 2006, 55, A268–A269. [Google Scholar]
- Hu, F.B. Globalization of Diabetes The role of diet, lifestyle, and genes. Diabetes Care 2011, 34, 1249–1257. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. Available online: https://idf.org/about-diabetes/what-is-diabetes/ (accessed on 1 February 2019).
- Elliott, T.; Pfotenhauer, K. Classification and Diagnosis of Diabetes. Prim. Care 2022, 49, 191–200. [Google Scholar] [CrossRef]
- Boylan, M. Part 3: Dietary and lifestyle factors in the management of type 2 diabetes mellitus. J. Aust. Tradit.-Med. Soc. 2007, 13, 89–92. [Google Scholar]
- Shahrestanaki, E.; Khonsari, N.; Seif, E.; Baygi, F.; Ejtahed, H.; Sheidaei, A.; Djalalinia, S.; Magliano, D.; Qorbani, M. The worldwide trend in diabetes awareness, treatment, and control from 1985 to 2022: A systematic review and meta-analysis of 233 population-representative studies. Front. Public Health 2024, 12, 1305304. [Google Scholar] [CrossRef]
- Zhou, B.; Lu, Y.; Hajifathalian, K.; Bentham, J.; Di Cesare, M.; Danaei, G.; Bixby, H.; Cowan, M.; Ali, M.; Taddei, C.; et al. Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 2016, 387, 1513–1530. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Z.; Zhang, K.; Ge, X.; Sun, R.; Zhai, X. Early detection of type 2 diabetes risk: Limitations of current diagnostic criteria. Front. Endocrinol. 2023, 14, 1260623. [Google Scholar] [CrossRef]
- Lee, T.; Kim, I.; Cheong, D.; Roh, S.; Jung, H.; Lee, S.; Kim, H.; Yoon, D.; Hong, Y.; Lee, G. Selective colorimetric urine glucose detection by paper sensor functionalized with polyaniline nanoparticles and cell membrane. Anal. Chim. Acta 2021, 1158, 338387. [Google Scholar] [CrossRef] [PubMed]
- Neubauerova, K.; Carneiro, M.; Rodrigues, L.R.; Moreira, F.T.C.; Sales, M.G.F. Nanocellulose-based biosensor for colorimetric detection of glucose. Sens. Bio-Sens. Res. 2020, 29, 100368. [Google Scholar] [CrossRef]
- Pinheiro, T.; Ferrao, J.; Marques, A.C.; Oliveira, M.J.; Batra, N.M.; Costa, P.; Macedo, M.P.; Aguas, H.; Martins, R.; Fortunato, E. Paper-Based In-Situ Gold Nanoparticle Synthesis for Colorimetric, Non-Enzymatic Glucose Level Determination. Nanomaterials 2020, 10, 2027. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Hao, N.; Yang, X.; Wang, K. Cascade-catalyzed Enzyme-free Colorimetric Detection of Glucose Based on Manganese Dioxide-oxygen Doped Carbon Nitride Composites. Chin. J. Anal. Chem. 2020, 48, 727–732. [Google Scholar] [CrossRef]
- Luo, X.G.; Xia, J.; Jiang, X.Y.; Yang, M.R.; Liu, S.L. Cellulose-Based Strips Designed Based on a Sensitive Enzyme Colorimetric Assay for the Low Concentration of Glucose Detection. Anal. Chem. 2019, 91, 15461–15468. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Tan, R.; Li, L.; Liu, D. Dual-modal Colorimetric and Fluorometric Method for Glucose Detection Using Mn2 Sheets and Carbon Quantum Dots. Chem. Res. Chin. Univ. 2019, 35, 767–774. [Google Scholar] [CrossRef]
- Wang, X.; Li, F.; Cai, Z.Q.; Liu, K.F.; Li, J.; Zhang, B.Y.; He, J.B. Sensitive colorimetric assay for uric acid and glucose detection based on multilayer-modified paper with smartphone as signal readout. Anal. Bioanal. Chem. 2018, 410, 2647–2655. [Google Scholar] [CrossRef]
- Kang, B.H.; Park, M.; Jeong, K.H. Colorimetric Schirmer Strip for Tear Glucose Detection. Biochip J. 2017, 11, 294–299. [Google Scholar] [CrossRef]
- de Courten, D.; Baumann, L.; Scherer, L.; Wolf, M. Opto-fluidic chip for continuous inline monitoring of glucose with kinetic enzymatic fluorescence detection. In Proceedings of the 26th European Conference on Solid-State Transducers, Eurosensor 2012, Krakow, Poland, 9–12 September 2012; pp. 1203–1206. [Google Scholar]
- Ahn, J.; Kim, H.; Park, K.; Park, H. A Personal Glucose Meter for Label-Free and Washing-Free Biomolecular Detection. Anal. Chem. 2018, 90, 11340–11343. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Ahn, J.; Park, K.; Park, H. Portable glucose meter-based label-free strategy for target DNA detection. Sens. Actuators B-Chem. 2020, 310, 127808. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Lee, S.H.; Lee, U.J.; Fermin, C.D.; Kim, M. Immobilized Enzymes in Biosensor Applications. Materials 2019, 12, 121. [Google Scholar] [CrossRef]
- Tong, X.; Jiang, L.; Ao, Q.; Lv, X.; Song, Y.; Tang, J. Highly stable glucose oxidase polynanogel@MXene/chitosan electrochemical biosensor based on a multi-stable interface structure for glucose detection. Biosens. Bioelectron. 2024, 248, 115942. [Google Scholar] [CrossRef]
- De Zio, S.; Becconi, M.; Soldà, A.; Malferrari, M.; Lesch, A.; Rapino, S. Glucose micro-biosensor for scanning electrochemical microscopy characterization of cellular metabolism in hypoxic microenvironments. Bioelectrochemistry 2023, 150, 108343. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, S.; Soltanian, S.; Servati, A.; Khademhosseini, A.; Zhu, Y.; Servati, P. Screen-Printed Textile-Based Electrochemical Biosensor for Noninvasive Monitoring of Glucose in Sweat. Biosensors 2023, 13, 684. [Google Scholar] [CrossRef] [PubMed]
- Reza, M.; Song, H.; Lee, Y.; Asaduzzaman, M.; Cha, C.; Park, J. An Electrochemical Microneedle Biosensor with Wide Linear Range for Continuous Glucose Monitoring. In Proceedings of the 2023 IEEE Sensors, Vienna, Austria, 29 October–1 November 2023. [Google Scholar]
- Zhao, Y.; Huang, J.; Huang, Q.; Tao, Y.; Gu, R.; Li, H.; Liu, H. Electrochemical biosensor employing PbS colloidal quantum dots/Au nanospheres-modified electrode for ultrasensitive glucose detection. Nano Res. 2023, 16, 4085–4092. [Google Scholar] [CrossRef]
- Kumar, P.; Nesakumar, N.; Gopal, J.; Sivasubramanian, S.; Vedantham, S.; Rayappan, J. Clinical validation of electrochemical biosensor for the detection of methylglyoxal in subjects with type-2 diabetes mellitus. Bioelectrochemistry 2024, 155, 108601. [Google Scholar] [CrossRef] [PubMed]
- Mahobiya, S.; Balayan, S.; Chauhan, N.; Rosario, W.; Kuchhal, N.; Islam, S.; Jain, U. Fabricating a rapid and low-cost electrochemical biosensor with imprints of glycated albumin molecules to detect diabetes using bimetallic Au-Pt nanoparticles on μSPE. Appl. Surf. Sci. Adv. 2023, 16, 100425. [Google Scholar] [CrossRef]
- Dawson, K.; Baudequin, M.; O’Riordan, A. Single on-chip gold nanowires for electrochemical biosensing of glucose. Analyst 2011, 136, 4507–4513. [Google Scholar] [CrossRef] [PubMed]
- Gengan, S.; Gnanamuthu, R.; Sankaranarayanan, S.; Reddy, V.; Marepally, B.; Biroju, R. Electrochemical modified Pt nanoflower @ rGO for non-enzymatic electrochemical sensing of glucose. Sens. Actuators A-Phys. 2023, 353, 114232. [Google Scholar] [CrossRef]
- Govindaraj, M.; Srivastava, A.; Muthukumaran, M.; Tsai, P.; Lin, Y.; Raja, B.; Rajendran, J.; Ponnusamy, V.; Selvi, J. Current advancements and prospects of enzymatic and non-enzymatic electrochemical glucose sensors. Int. J. Biol. Macromol. 2023, 253, 126680. [Google Scholar] [CrossRef]
- Jiang, D.; Liu, T.; Chu, Z.; Wang, Y. Advances in nanostructured material-based non-enzymatic electrochemical glucose sensors. Anal. Methods 2023, 15, 6344–6361. [Google Scholar] [CrossRef]
- Welch, E.C.; Powell, J.M.; Clevinger, T.B.; Fairman, A.E.; Shukla, A. Advances in Biosensors and Diagnostic Technologies Using Nanostructures and Nanomaterials. Adv. Funct. Mater. 2021, 31, 2104126. [Google Scholar] [CrossRef]
- Hayat, A.; Catanante, G.; Marty, J.L. Current Trends in Nanomaterial-Based Amperometric Biosensors. Sensors 2014, 14, 23439–23461. [Google Scholar] [CrossRef] [PubMed]
- Sassolas, A.; Blum, L.J.; Leca-Bouvier, B.D. Immobilization strategies to develop enzymatic biosensors. Biotechnol. Adv. 2012, 30, 489–511. [Google Scholar] [CrossRef]
- Pattammattel, A.; Kumar, C.V. Kitchen Chemistry 101: Multigram Production of High Quality Biographene in a Blender with Edible Proteins. Adv. Funct. Mater. 2015, 25, 7088–7098. [Google Scholar] [CrossRef]
- Ben Hassine, A.; Raouafi, N.; Moreira, F.T.C. Novel biomimetic Prussian blue nanocubes-based biosensor for Tau-441 protein detection. J. Pharm. Biomed. Anal. 2023, 226, 115251. [Google Scholar] [CrossRef] [PubMed]
- Holzinger, M.; Le Goff, A.; Cosnier, S. Nanomaterials for biosensing applications: A review. Front. Chem. 2014, 2, 63. [Google Scholar] [CrossRef]
- Cao, L.Y.; Liu, Y.L.; Zhang, B.H.; Lu, L.H. In situ Controllable Growth of Prussian Blue Nanocubes on Reduced Graphene Oxide: Facile Synthesis and Their Application as Enhanced Nanoelectrocatalyst for H2O2 Reduction. Acs Appl. Mater. Interfaces 2010, 2, 2339–2346. [Google Scholar] [CrossRef]
- Pumera, M. Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev. 2010, 39, 4146–4157. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, N.; Abdolrazzaghi, M.; Light, P.; Musilek, P. In-human testing of a non-invasive continuous low-energy microwave glucose sensor with advanced machine learning capabilities. Biosens. Bioelectron. 2023, 241, 115668. [Google Scholar] [CrossRef] [PubMed]
- Kirubakaran, S.; Bennet, M.; Shanker, N. Non-Invasive antenna sensor based continuous glucose monitoring using pancreas dielectric radiation signal energy levels and machine learning algorithms. Biomed. Signal Process. Control 2023, 85, 105072. [Google Scholar] [CrossRef]
- Sharma, H.; Kalita, D.; Naskar, U.; Mishra, B.; Kumar, P.; Mirza, K. Prediction of Glucose Sensor Sensitivity in the Presence of Biofouling Using Machine Learning and Electrochemical Impedance Spectroscopy. IEEE Sens. J. 2023, 23, 18785–18797. [Google Scholar] [CrossRef]
- Stewart, M.; Warden, P.; Plancher, B.; Katti, S.; Reddi, V. Machine Learning Sensors. Commun. ACM 2023, 66, 25–28. [Google Scholar] [CrossRef]
- Giordano, G.; Ferreira, L.; Bezerra, I.; Barbosa, J.; Costa, J.; Pimentel, G.; Lima, R. Machine learning toward high-performance electrochemical sensors. Anal. Bioanal. Chem. 2023, 415, 3683–3692. [Google Scholar] [CrossRef] [PubMed]
- Yazici, I.; Shayea, I.; Din, J. A survey of applications of artificial intelligence and machine learning in future mobile networks-enabled systems. Eng. Sci. Technol.-Int. J.-Jestech 2023, 44, 101455. [Google Scholar] [CrossRef]
- Rather, N.; Simorangkir, R.; Buckley, J.; O’Flynn, B.; Tedesco, S. Evaluation of Machine Learning Models for a Chipless RFID Sensor Tag. In Proceedings of the 2023 17th European Conference on Antennas and Propagation, EUCAP, Florence, Italy, 26–31 March 2023. [Google Scholar]
- Kumar, C.; Pattammattel, A. BioGraphene: Direct Exfoliation of Graphite in a Kitchen Blender for Enzymology Applications. Ration. Des. Enzym.-Nanomater. 2016, 571, 225–244. [Google Scholar] [CrossRef]
- Labuda, J.; Brett, A.M.O.; Evtugyn, G.; Fojta, M.; Mascini, M.; Ozsoz, M.; Palchetti, I.; Palecek, E.; Wang, J. Electrochemical nucleic acid-based biosensors: Concepts, terms, and methodology (IUPAC Technical Report). Pure Appl. Chem. 2010, 82, 1161–1187. [Google Scholar] [CrossRef]
- Thevenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Anal. Lett. 2001, 34, 635–659. [Google Scholar] [CrossRef]
Algorithm | Hyperparameters |
---|---|
GradientBoostingRegressor | Loss = ‘squared_error’ n_estimators = 30 random_state = 1 |
KernelRidge | kernel = ‘polynomial’ degree = 2 gamma = 0.1 alpha = 0.1 |
SupportVectorRegressor | kernel = ‘sigmoid’ C = 25 epsilon = 0.01 Max_iter = −1 |
KNeighborsRegressor | n_neighbors = 3 |
RandomForestRegressor 1 | n_estimators = 10 |
RandomForestRegressor 2 | random_state = 42 n_estimators = 100 |
DecisionTreeRegressor 1 | criterium = ‘poisson’ max_depth = 9 |
DecisionTreeRegressor 2 | random_state = 42 criterium = ‘squared_error’ |
MLPRegressor | hidden_layer_sizes = (50,30,20) activation = ‘relu’ learning_rate = ‘adaptive’ max_iter = 500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abreu, A.; Oliveira, D.d.S.; Vinagre, I.; Cavouras, D.; Alves, J.A.; Pereira, A.I.; Lima, J.; Moreira, F.T.C. A Machine Learning Approach for Enhanced Glucose Prediction in Biosensors. Chemosensors 2025, 13, 52. https://doi.org/10.3390/chemosensors13020052
Abreu A, Oliveira DdS, Vinagre I, Cavouras D, Alves JA, Pereira AI, Lima J, Moreira FTC. A Machine Learning Approach for Enhanced Glucose Prediction in Biosensors. Chemosensors. 2025; 13(2):52. https://doi.org/10.3390/chemosensors13020052
Chicago/Turabian StyleAbreu, António, Daniela dos Santos Oliveira, Inês Vinagre, Dionisios Cavouras, Joaquim A. Alves, Ana I. Pereira, José Lima, and Felismina T. C. Moreira. 2025. "A Machine Learning Approach for Enhanced Glucose Prediction in Biosensors" Chemosensors 13, no. 2: 52. https://doi.org/10.3390/chemosensors13020052
APA StyleAbreu, A., Oliveira, D. d. S., Vinagre, I., Cavouras, D., Alves, J. A., Pereira, A. I., Lima, J., & Moreira, F. T. C. (2025). A Machine Learning Approach for Enhanced Glucose Prediction in Biosensors. Chemosensors, 13(2), 52. https://doi.org/10.3390/chemosensors13020052