Advances in Cost-Effective Chemosensors for Sustainable Monitoring in Food Safety and Processing
Abstract
:1. Introduction
2. Chemosensors: Principles and Functional Mechanisms
2.1. Definition and Working Principle
- Optical transducers [34] detect changes in light properties, such as absorption, fluorescence, or luminescence, resulting from the analyte–receptor interaction. For example, a fluorophore may emit light at a specific wavelength when it binds to a contaminant like a heavy metal.
- Electrochemical transducers [35] measure changes in current, voltage, or resistance caused by the interaction. Amperometric and potentiometric sensors are widely used for detecting pesticides, heavy metals, and other analytes in food or industrial samples.
- Piezoelectric transducers [36] operate by measuring mass changes on the sensing surface through frequency shifts, making them suitable for detecting volatile organic compounds (VOCs) or small molecules.
- Thermal transducers [37] monitor temperature changes resulting from exothermic or endothermic reactions at the sensing interface.
2.2. Types of Chemosensors
2.3. Advantages of Cost-Effective Chemosensors
2.4. Biosensors
- Antibody-based biosensors (immunosensors) are employed for pathogen detection, such as Salmonella and Listeria in dairy products [60].
2.5. Magnetic Sensors: Giant Magnetoresistance (GMR) for Foodborne Pathogens
2.6. Electronic Nose and Tongue Systems
- E-tongues analyze liquid samples to differentiate taste-related chemical compounds, providing rapid food quality assessments [67].
2.7. Wearable Chemosensors
3. Advances in Chemosensors for Food Monitoring
3.1. Detection of Contaminants
3.2. Indicators of Food Spoilage
- Panel (a) depicts the fabrication process of the chemosensor, where hydrophilic and hydrophobic regions are created on filter paper to enable selective reagent deposition.
- Panel (b) shows a real-world setup for the sensor’s application, demonstrating its integration into a container for food monitoring.
- Panel (e) presents the image processing steps involved in analyzing the sensor’s colorimetric response, including original and processed images, median filtering, and the extraction of RGB (red, green, and blue) values, which represent the intensity of these three primary colors in digital image analysis. This approach allows for quantitative interpretation of the color changes associated with different levels of spoilage.
- Panel (d) displays a principal component analysis (PCA) plot, illustrating the classification of different spoilage levels based on the chemosensor’s colorimetric response.
3.3. Compliance with Food Safety Standards
4. Chemosensors for Food Processing Monitoring
4.1. Process Optimization and Quality Control
4.2. Environmental Emissions and Pollution Control
4.3. Waste Management and Resource Efficiency
5. Challenges and Future Perspectives
5.1. Sensitivity, Selectivity, and Stability
5.2. Adaptation to Variable Environmental Conditions
5.3. Adaptation to Variable Environmental Conditions
5.4. Challenges and Limitations of Chemosensors in Practical Applications
5.5. Commercialization of Chemosensors: From Research to Market
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Saccomano, S.C.; Jewell, M.P.; Cash, K.J. A Review of Chemosensors and Biosensors for Monitoring Biofilm Dynamics. Sens. Actuators Rep. 2021, 3, 100043. [Google Scholar] [CrossRef]
- Kadam, U.S.; Hong, J.C. Advances in Aptameric Biosensors Designed to Detect Toxic Contaminants from Food, Water, Human Fluids, and the Environment. Trends Environ. Anal. Chem. 2022, 36, e00184. [Google Scholar] [CrossRef]
- Ren, H.; Li, F.; Yu, S.; Wu, P. The Detection of Multiple Analytes by Using Visual Colorimetric and Fluorometric Multimodal Chemosensor Based on the Azo Dye. Heliyon 2022, 8, e10216. [Google Scholar] [CrossRef]
- Keshavarzi, P.; Abbasi-Moayed, S.; Khodabakhsh, M.; Unal, U.; Hormozi-Nezhad, M.R. Chrono-Colorimetric Sensor Array for Detection and Discrimination of Halide Ions Using an All-in-One Plasmonic Sensor Element. Talanta 2023, 259, 124528. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kulshreshtha, S.; Shrivastava, A.; Saini, A. Biosensors for Food Spoilage Detection: A Comprehensive Review of Current Advances. J. Food Chem. Nanotechnol. 2024, 10, S73–S82. [Google Scholar] [CrossRef]
- Liu, J.; Wu, D.; Wu, Y.; Shi, Y.; Liu, W.; Sun, Z.; Li, G. Recent Advances in Optical Sensors and Probes for the Detection of Freshness in Food Samples: A Comprehensive Review (2020–2023). TrAC Trends Anal. Chem. 2024, 177, 117793. [Google Scholar] [CrossRef]
- Preethichandra, D.M.G.; Gholami, M.D.; Izake, E.L.; O’Mullane, A.P.; Sonar, P. Conducting Polymer Based Ammonia and Hydrogen Sulfide Chemical Sensors and Their Suitability for Detecting Food Spoilage. Adv. Mater. Technol. 2023, 8, 2200841. [Google Scholar] [CrossRef]
- Huang, X.; Sun, W.; Li, Z.; Shi, J.; Zhang, N.; Zhang, Y.; Zhai, X.; Hu, X.; Zou, X. Hydrogen Sulfide Gas Sensing toward On-Site Monitoring of Chilled Meat Spoilage Based on Ratio-Type Fluorescent Probe. Food Chem. 2022, 396, 133654. [Google Scholar] [CrossRef]
- Chun, H.W.; Zheng, J.; Lee, E.H.; Oh, B.M.; Lee, C.B.; Min, J.S.; Kim, E.; Kim, E.; Lee, W.; Kim, J.H. Pure-Water-Soluble Colorimetric Chemosensors for Highly Sensitive and Rapid Detection of Hydrogen Sulfide: Applications to Evaluation of on-Site Water Quality and Real-Time Gas Sensors. Sens. Actuators B Chem. 2024, 402, 134989. [Google Scholar] [CrossRef]
- Dalapati, R.; Hunter, M.; Zang, L. A Dual Fluorometric and Colorimetric Sulfide Sensor Based on Coordinating Self-Assembled Nanorods: Applicable for Monitoring Meat Spoilage. Chemosensors 2022, 10, 500. [Google Scholar] [CrossRef]
- Nguyen, M.T.N.; Lee, J.S. Development of a Chemical Sensor Device for Monitoring Hazardous Gases Generated in the Semiconductor Manufacturing Process. Chemosensors 2024, 12, 233. [Google Scholar] [CrossRef]
- Pundi, A.; Chang, C.J. Recent Developments in the Preparation, Characterization, and Applications of Chemosensors for Environmental Pollutants Detection. J. Envirion Chem. Eng. 2023, 11, 110346. [Google Scholar] [CrossRef]
- Yang, J.; Chen, S.W.; Zhang, B.; Tu, Q.; Wang, J.; Yuan, M. Sen Non-Biological Fluorescent Chemosensors for Pesticides Detection. Talanta 2022, 240, 123200. [Google Scholar] [CrossRef] [PubMed]
- Keim, M.E. Industrial Chemical Disasters. In Disaster Medicine; Elsevier: Amsterdam, The Netherlands, 2006; pp. 556–562. [Google Scholar] [CrossRef]
- Nalakurthi, N.V.S.R.; Abimbola, I.; Ahmed, T.; Anton, I.; Riaz, K.; Ibrahim, Q.; Banerjee, A.; Tiwari, A.; Gharbia, S. Challenges and Opportunities in Calibrating Low-Cost Environmental Sensors. Sensors 2024, 24, 3650. [Google Scholar] [CrossRef]
- Lim, J.W.; Kim, T.Y.; Woo, M.A. Trends in Sensor Development toward Next-Generation Point-of-Care Testing for Mercury. Biosens. Bioelectron. 2021, 183, 113228. [Google Scholar] [CrossRef]
- Yang, G.; Xu, W.; Xu, B.; Yang, Y.; Li, P.; Yu, A.; Ning, S.; Fu, Q.; Zhang, R.; Liu, X. Two Decades’ Advancements and Research Trends in Needle-Type Sensor Technology: A Scientometric Analysis. Heliyon 2024, 10, e27399. [Google Scholar] [CrossRef]
- Gezahegn, T.F.; Ambaye, A.D.; Mekoyete, T.M.; Malefane, M.E.; Oyedotun, K.O.; Mokrani, T. Breakthroughs in Nanostructured-Based Chemical Sensors for the Detection of Toxic Metals. Talanta Open 2024, 10, 100354. [Google Scholar] [CrossRef]
- Arregui, F.J. Sensors Based on Nanostructured Materials. In Sensors Based on Nanostructured Materials; Springer: New York, NY, USA, 2009; pp. 1–317. [Google Scholar]
- Olorunyomi, J.F.; Geh, S.T.; Caruso, R.A.; Doherty, C.M. Metal–Organic Frameworks for Chemical Sensing Devices. Mater. Horiz. 2021, 8, 2387–2419. [Google Scholar] [CrossRef]
- Zhang, Z.; Lou, Y.; Guo, C.; Jia, Q.; Song, Y.; Tian, J.Y.; Zhang, S.; Wang, M.; He, L.; Du, M. Metal–Organic Frameworks (MOFs) Based Chemosensors/Biosensors for Analysis of Food Contaminants. Trends Food Sci. Technol. 2021, 118, 569–588. [Google Scholar] [CrossRef]
- Pilo, M.I.; Sanna, G.; Spano, N. Conducting Polymers in Amperometric Sensors: A State of the Art over the Last 15 Years with a Focus on Polypyrrole-, Polythiophene-, and Poly(3,4-Ethylenedioxythiophene)-Based Materials. Chemosensors 2024, 12, 81. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, W.; Kumar, R.; Kumar, M.; Zhang, J. Conducting Polymer-Based Nanostructures for Gas Sensors. Coord. Chem. Rev. 2022, 462, 214517. [Google Scholar] [CrossRef]
- Lange, U.; Roznyatovskaya, N.V.; Mirsky, V.M. Conducting Polymers in Chemical Sensors and Arrays. Anal. Chim. Acta. 2008, 614, 1–26. [Google Scholar] [CrossRef]
- Pavel, I.A.; Lakard, S.; Lakard, B. Flexible Sensors Based on Conductive Polymers. Chemosensors 2022, 10, 97. [Google Scholar] [CrossRef]
- Ding, X.; Srinivasan, B.; Tung, S. Development and Applications of Portable Biosensors. SLAS Technol. 2015, 20, 365–389. [Google Scholar] [CrossRef]
- Ayele, E.D.; Gavriel, S.; Gonzalez, J.F.; Teeuw, W.B.; Philimis, P.; Gillani, G. Emerging Industrial Internet of Things Open-Source Platforms and Applications in Diverse Sectors. Telecom 2024, 5, 369–399. [Google Scholar] [CrossRef]
- Virumbrales, C.; Hernández-Ruiz, R.; Trigo-López, M.; Vallejos, S.; García, J.M. Sensory Polymers: Trends, Challenges, and Prospects Ahead. Sensors 2024, 24, 3852. [Google Scholar] [CrossRef] [PubMed]
- Petrucci, R.; Pasquali, M.; Scaramuzzo, F.A.; Curulli, A. Recent Advances in Electrochemical Chitosan-Based Chemosensors and Biosensors: Applications in Food Safety. Chemosensors 2021, 9, 254. [Google Scholar] [CrossRef]
- Givanoudi, S.; Heyndrickx, M.; Depuydt, T.; Khorshid, M.; Robbens, J.; Wagner, P. A Review on Bio- and Chemosensors for the Detection of Biogenic Amines in Food Safety Applications: The Status in 2022. Sensors 2023, 23, 613. [Google Scholar] [CrossRef]
- Asefa, T.; Duncan, C.T.; Sharma, K.K. Recent Advances in Nanostructured Chemosensors and Biosensors. Analyst 2009, 134, 1980–1990. [Google Scholar] [CrossRef]
- Balamurugan, G.; Zhang, W.; Choi, Y.W.; Park, J.M.; Velmathi, S.; Park, J.S. Unmasking the Role of Anion-π Bonding—A New Paradigm for Iodide Selective Organic Probes. Dye. Pigment. 2025, 232, 112498. [Google Scholar] [CrossRef]
- Luo, H.; Chen, L.X.; Ge, Q.M.; Liu, M.; Tao, Z.; Zhou, Y.H.; Cong, H. Applications of Macrocyclic Compounds for Electrochemical Sensors to Improve Selectivity and Sensitivity. J. Incl. Phenom. Macrocycl. Chem. 2019, 95, 171–198. [Google Scholar]
- Müller, C.; Hitzmann, B.; Schubert, F.; Scheper, T. Optical Chemo- and Biosensors for Use in Clinical Applications. Sens. Actuators B Chem. 1997, 40, 71–77. [Google Scholar] [CrossRef]
- Gui, R.; Guo, H.; Jin, H. Preparation and Applications of Electrochemical Chemosensors Based on Carbon-Nanomaterial-Modified Molecularly Imprinted Polymers. Nanoscale Adv. 2019, 1, 3325–3363. [Google Scholar] [CrossRef]
- Pietrzyk-Le, A.; Suriyanarayanan, S.; Kutner, W.; Chitta, R.; D’Souza, F. Selective Histamine Piezoelectric Chemosensor Using a Recognition Film of the Molecularly Imprinted Polymer of Bis(Bithiophene) Derivatives. Anal. Chem. 2009, 81, 2633–2643. [Google Scholar] [CrossRef]
- Khorshid, M.; Losada-Pérez, P.; Cornelis, P.; Dollt, M.; Ingebrandt, S.; Glorieux, C.; Renner, F.U.; van Grinsven, B.; De Ceuninck, W.; Thoelen, R.; et al. Searching for a Common Origin of Heat-Transfer Effects in Bio- and Chemosensors: A Study on Thiols as a Model System. Sens. Actuators B Chem. 2020, 310, 127627. [Google Scholar] [CrossRef]
- Jamalipour, A.; Hossain, M.A. Smartphone Instrumentations for Public Health Safety; Springer Nature: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Li, B.; Zhao, D.; Wang, F.; Zhang, X.; Li, W.; Fan, L. Recent Advances in Molecular Logic Gate Chemosensors Based on Luminescent Metal Organic Frameworks. Dalton Trans. 2021, 50, 14967–14977. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Gou, H.; Al-Ogaidi, I.; Wu, N. Nanostructured Sensors for Detection of Heavy Metals: A Review. ACS Sustain. Chem. Eng. 2013, 1, 713–723. [Google Scholar] [CrossRef]
- Savin, M.; Mihailescu, C.M.; Moldovan, C.; Grigoroiu, A.; Ion, I.; Ion, A.C. Resistive Chemosensors for the Detection of CO Based on Conducting Polymers and Carbon Nanocomposites: A Review. Molecules 2022, 27, 821. [Google Scholar] [CrossRef]
- Li, H.Y.; Zhao, S.N.; Zang, S.Q.; Li, J. Functional Metal–Organic Frameworks as Effective Sensors of Gases and Volatile Compounds. Chem. Soc. Rev. 2020, 49, 6364–6401. [Google Scholar] [CrossRef]
- Rudzinski, C.M.; Young, A.M.; Nocera, D.G. A Supramolecular Microfluidic Optical Chemosensor. J. Am. Chem. Soc. 2002, 124, 1723–1727. [Google Scholar] [CrossRef]
- Lai, L.; Yan, F.; Chen, G.; Huang, Y.; Huang, L.; Li, D. Recent Progress on Fluorescent Probes in Heavy Metal Determinations for Food Safety: A Review. Molecules 2023, 28, 5689. [Google Scholar] [CrossRef] [PubMed]
- Ayivi, R.D.; Obare, S.O.; Wei, J. Molecularly Imprinted Polymers as Chemosensors for Organophosphate Pesticide Detection and Environmental Applications. TrAC Trends Anal. Chem. 2023, 167, 117231. [Google Scholar] [CrossRef]
- Stortini, A.M.; Baldo, M.A.; Moro, G.; Polo, F.; Moretto, L.M. Bio- and Biomimetic Receptors for Electrochemical Sensing of Heavy Metal Ions. Sensors 2020, 20, 6800. [Google Scholar] [CrossRef] [PubMed]
- Pavase, T.R.; Lin, H.; Shaikh, Q.; Hussain, S.; Li, Z.; Ahmed, I.; Lv, L.; Sun, L.; Shah, S.B.H.; Kalhoro, M.T. Recent Advances of Conjugated Polymer (CP) Nanocomposite-Based Chemical Sensors and Their Applications in Food Spoilage Detection: A Comprehensive Review. Sens. Actuators B Chem. 2018, 273, 1113–1138. [Google Scholar] [CrossRef]
- Kuchmenko, T.A.; Lvova, L.B. A Perspective on Recent Advances in Piezoelectric Chemical Sensors for Environmental Monitoring and Foodstuffs Analysis. Chemosensors 2019, 7, 39. [Google Scholar] [CrossRef]
- Kuchmenko, T.; Lvova, L. Piezelectric Chemosensors and Multisensory Systems. In Chemoresponsive Materials: Smart Materials for Chemical and Biological Stimulation; Royal Society of Chemistry: London, UK, 2022; pp. 567–603. [Google Scholar] [CrossRef]
- Pannone, A.; Raj, A.; Ravichandran, H.; Das, S.; Chen, Z.; Price, C.A.; Sultana, M.; Das, S. Robust Chemical Analysis with Graphene Chemosensors and Machine Learning. Nature 2024, 634, 572–578. [Google Scholar] [CrossRef]
- Korah, B.K.; Chacko, A.R.; Mathew, S.; Mathew, B. Carbon Nanotubes as Sensors in Food and Agricultural Applications. In Carbon Nanotubes for Energy and Environmental Applications; Apple Academic Press: Palm Bay, FL, USA, 2022; pp. 115–159. [Google Scholar]
- Subhasri, A.; Anbuselvan, C. Facile, Cost Effective Synthesis and DFT-Based Studies of Substituted Aryl Hydrazones of β-Diketones: A New Selective Fluorescent Chemosensor for Co2+. Anal. Methods 2014, 6, 5596–5609. [Google Scholar] [CrossRef]
- Bou-Maroun, E. Carbon Electrode Modified with Molecularly Imprinted Polymers for the Development of Electrochemical Sensor: Application to Pharmacy, Food Safety, Environmental Monitoring, and Biomedical Analysis. Chemosensors 2023, 11, 548. [Google Scholar] [CrossRef]
- Wanniarachchi, P.C.; Upul Kumarasinghe, K.G.; Jayathilake, C. Recent Advancements in Chemosensors for the Detection of Food Spoilage. Food Chem. 2024, 436, 137733. [Google Scholar] [CrossRef]
- Ashley, J. Biosensors. In Handbook of Dairy Foods Analysis; CRC Press: Boca Raton, FL, USA, 2021; pp. 339–359. [Google Scholar] [CrossRef]
- Kumar, H.; Neelam, R. Enzyme-Based Electrochemical Biosensors for Food Safety: A Review. Nanobiosensors Dis. Diagn. 2016, 2016, 29–39. [Google Scholar] [CrossRef]
- Cheng, N.; Shang, Y.; Xu, Y.; Wijayanti, S.D.; Tsvik, L.; Haltrich, D. Recent Advances in Electrochemical Enzyme-Based Biosensors for Food and Beverage Analysis. Foods 2023, 12, 3355. [Google Scholar] [CrossRef]
- Bucur, B.; Munteanu, F.D.; Marty, J.L.; Vasilescu, A. Advances in Enzyme-Based Biosensors for Pesticide Detection. Biosensors 2018, 8, 27. [Google Scholar] [CrossRef]
- Sharma, A.; Goud, K.Y.; Hayat, A.; Bhand, S.; Marty, J.L. Recent Advances in Electrochemical-Based Sensing Platforms for Aflatoxins Detection. Chemosensors 2017, 5, 1. [Google Scholar] [CrossRef]
- Bhunia, A.K. Biosensors and Bio-Based Methods for the Separation and Detection of Foodborne Pathogens. Adv. Food Nutr. Res. 2008, 54, 1–44. [Google Scholar] [CrossRef]
- Deng, R.; Bai, J.; Yang, H.; Ren, Y.; He, Q.; Lu, Y. Nanotechnology-Leveraged Nucleic Acid Amplification for Foodborne Pathogen Detection. Coord. Chem. Rev. 2024, 506, 215745. [Google Scholar] [CrossRef]
- Manoharan Nair Sudha Kumari, S.; Thankappan Suryabai, X. Sensing the Future—Frontiers in Biosensors: Exploring Classifications, Principles, and Recent Advances. ACS Omega 2024, 9, 48918–48987. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Sutham, P.; Wu, K.; Mallikarjunan, K.; Wang, J.-P.; Jaffrezic-Renault, N.; Liang, S.; Sutham, P.; Wu, K.; Mallikarjunan, K.; et al. Giant Magnetoresistance Biosensors for Food Safety Applications. Sensors 2022, 22, 5663. [Google Scholar] [CrossRef]
- Mahanti, N.K.; Shivashankar, S.; Chhetri, K.B.; Kumar, A.; Rao, B.B.; Aravind, J.; Swami, D.V. Enhancing Food Authentication through E-Nose and E-Tongue Technologies: Current Trends and Future Directions. Trends Food Sci. Technol. 2024, 150, 104574. [Google Scholar] [CrossRef]
- Casalinuovo, I.A.; Di Pierro, D.; Coletta, M.; Di Francesco, P. Application of Electronic Noses for Disease Diagnosis and Food Spoilage Detection. Sensors 2006, 6, 1428–1439. [Google Scholar] [CrossRef]
- Jo, Y.; Chung, N.; Park, S.W.; Noh, B.S.; Jeong, Y.J.; Kwon, J.H. Application of E-Tongue, E-Nose, and MS-E-Nose for Discriminating Aged Vinegars Based on Taste and Aroma Profiles. Food Sci. Biotechnol. 2016, 25, 1313–1318. [Google Scholar] [CrossRef]
- Magnani, G.; Giliberti, C.; Errico, D.; Stighezza, M.; Fortunati, S.; Mattarozzi, M.; Boni, A.; Bianchi, V.; Giannetto, M.; De Munari, I.; et al. Evaluation of a Voltametric E-Tongue Combined with Data Preprocessing for Fast and Effective Machine Learning-Based Classification of Tomato Purées by Cultivar. Sensors 2024, 24, 3586. [Google Scholar] [CrossRef] [PubMed]
- Koralli, P.; Mouzakis, D.E. Advances in Wearable Chemosensors. Chemosensors 2021, 9, 99. [Google Scholar] [CrossRef]
- Verma, G.; Gupta, A. Next-Generation Chemiresistive Wearable Breath Sensors for Non-Invasive Healthcare Monitoring: Advances in Composite and Hybrid Materials. Small 2025. [Google Scholar] [CrossRef]
- Hooshmand, S.; Kassanos, P.; Keshavarz, M.; Duru, P.; Kayalan, C.I.; Kale, İ.; Bayazit, M.K. Wearable Nano-Based Gas Sensors for Environmental Monitoring and Encountered Challenges in Optimization. Sensors 2023, 23, 8648. [Google Scholar] [CrossRef] [PubMed]
- Obare, S.O.; De, C.; Guo, W.; Haywood, T.L.; Samuels, T.A.; Adams, C.P.; Masika, N.O.; Murray, D.H.; Anderson, G.A.; Campbell, K.; et al. Fluorescent Chemosensors for Toxic Organophosphorus Pesticides: A Review. Sensors 2010, 10, 7018–7043. [Google Scholar] [CrossRef]
- Kim, D.Y.; Kadam, A.; Shinde, S.; Saratale, R.G.; Patra, J.; Ghodake, G. Recent Developments in Nanotechnology Transforming the Agricultural Sector: A Transition Replete with Opportunities. J. Sci. Food Agric. 2018, 98, 849–864. [Google Scholar] [CrossRef] [PubMed]
- Farooq, S.; Nie, J.; Cheng, Y.; Yan, Z.; Li, J.; Bacha, S.A.S.; Mushtaq, A.; Zhang, H. Molecularly Imprinted Polymers’ Application in Pesticide Residue Detection. Analyst 2018, 143, 3971–3989. [Google Scholar] [CrossRef]
- Mashuni, M.; Ritonga, H.; Jahiding, M.; Rubak, B.; Hamid, F.H. Highly Sensitive Detection of Carbaryl Pesticides Using Potentiometric Biosensor with Nanocomposite Ag/r-Graphene Oxide/Chitosan Immobilized Acetylcholinesterase Enzyme. Chemosensors 2022, 10, 138. [Google Scholar] [CrossRef]
- Malik, L.A.; Bashir, A.; Qureashi, A.; Pandith, A.H. Detection and Removal of Heavy Metal Ions: A Review. Envirion Chem. Lett. 2019, 17, 1495–1521. [Google Scholar] [CrossRef]
- Zhang, H.; Song, J.; Wang, S.; Song, Q.; Guo, H.; Li, Z. Recent Progress in Macrocyclic Chemosensors for Lead, Cadmium and Mercury Heavy Metal Ions. Dye. Pigment. 2023, 216, 111380. [Google Scholar] [CrossRef]
- Bumagina, N.A.; Antina, E.V. Review of Advances in Development of Fluorescent BODIPY Probes (Chemosensors and Chemodosimeters) for Cation Recognition. Coord. Chem. Rev. 2024, 505, 215688. [Google Scholar] [CrossRef]
- Dutta, M.; Das, D. Recent Developments in Fluorescent Sensors for Trace-Level Determination of Toxic-Metal Ions. TrAC Trends Anal. Chem. 2012, 32, 113–132. [Google Scholar] [CrossRef]
- Zhang, N.; Qiao, R.; Su, J.; Yan, J.; Xie, Z.; Qiao, Y.; Wang, X.; Zhong, J. Recent Advances of Electrospun Nanofibrous Membranes in the Development of Chemosensors for Heavy Metal Detection. Small 2017, 13, 1604293. [Google Scholar] [CrossRef]
- Tarapoulouzi, M.; Ortone, V.; Cinti, S. Heavy Metals Detection at Chemometrics-Powered Electrochemical (Bio)Sensors. Talanta 2022, 244, 123410. [Google Scholar] [CrossRef] [PubMed]
- Musikavanhu, B.; Liang, Y.; Xue, Z.; Feng, L.; Zhao, L. Strategies for Improving Selectivity and Sensitivity of Schiff Base Fluorescent Chemosensors for Toxic and Heavy Metals. Molecules 2023, 28, 6960. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Z.; Qi, J.; You, J.; Ma, J.; Chen, L. Colorimetric Detection of Heavy Metal Ions with Various Chromogenic Materials: Strategies and Applications. J. Hazard. Mater. 2023, 441, 129889. [Google Scholar] [CrossRef]
- Jiang, H.; Tang, D.; Li, N.; Li, J.; Li, Z.; Han, Q.; Liu, X.; Zhu, X. A Novel Chemosensor for the Distinguishable Detections of Cu2+ and Hg2+ by off–on Fluorescence and Ratiometric UV–Visible Absorption. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 250, 119365. [Google Scholar] [CrossRef]
- Oliveira, E.; Núñez, C.; Santos, H.M.; Fernández-Lodeiro, J.; Fernández-Lodeiro, A.; Capelo, J.L.; Lodeiro, C. Revisiting the Use of Gold and Silver Functionalised Nanoparticles as Colorimetric and Fluorometric Chemosensors for Metal Ions. Sens. Actuators B Chem. 2015, 212, 297–328. [Google Scholar] [CrossRef]
- Liu, W.; Li, X.; Li, Z.; Zhang, M.; Song, M. Voltammetric Metal Cation Sensors Based on Ferrocenylthiosemicarbazone. Inorg. Chem. Commun. 2007, 10, 1485–1488. [Google Scholar] [CrossRef]
- Celestina, J.J.; Tharmaraj, P.; Jeevika, A.; Sheela, C.D. Fabrication of Triazine Based Colorimetric and Electrochemical Sensor for the Quantification of Co2+ Ion. Microchem. J. 2020, 155, 104692. [Google Scholar] [CrossRef]
- Asha, J.B.; Suresh, P. Covalently Modified Graphene Oxide as Highly Fluorescent and Sustainable Carbonaceous Chemosensor for Selective Detection of Zirconium Ion in Complete Aqueous Medium. ACS Sustain. Chem. Eng. 2020, 8, 14301–14311. [Google Scholar] [CrossRef]
- Salem, M.A.S.; Khan, A.M.; Manea, Y.K.; Saleh, H.A.M.; Ahmad, M. Carbon Nanotubes Decorated with Coordination Polymers for Fluorescence Detection of Heavy-Metal Ions and Nitroaromatic Chemicals. ACS Omega 2023, 8, 1220–1231. [Google Scholar] [CrossRef]
- Thangaraj, B.; Ponram, M.; Ranganathan, S.; Sambath, B.; Cingaram, R.; Iyer, S.K.; Natesan Sundaramurthy, K. Development of Tissue Paper-Based Chemosensor and Demonstration for the Selective Detection of Cu2+ and Hg2+ Ions. RSC Adv. 2023, 13, 26023–26030. [Google Scholar] [CrossRef]
- Souii, A.; Ben M’hadheb-Gharbi, M.; Gharbi, J. Nucleic Acid-Based Biotechnologies for Food-Borne Pathogen Detection Using Routine Time-Intensive Culture-Based Methods and Fast Molecular Diagnostics. Food Sci. Biotechnol. 2016, 25, 11–20. [Google Scholar] [PubMed]
- Shephard, G.S. Chromatographic Determination of the Fumonisin Mycotoxins. J. Chromatogr. A 1998, 815, 31–39. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, G.; Lu, C.; Deng, R.; Zhi, A.; Guo, J.; Zhao, D.; Xu, Z. Rapid Detection of Listeria Monocytogenes in Raw Milk with Loop-Mediated Isothermal Amplification and Chemosensor. J. Food Sci. 2011, 76, M611–M615. [Google Scholar] [CrossRef]
- Ding, S.; Chen, X.; Yu, B.; Liu, Z. Electrochemical Biosensors for Clinical Detection of Bacterial Pathogens: Advances, Applications, and Challenges. Chem. Commun. 2024, 60, 9513–9525. [Google Scholar] [CrossRef]
- Yuan, H.; Lin, J.H.; Dong, Z.S.; Chen, W.T.; Chan, Y.K.; Yeh, Y.C.; Chang, H.T.; Chen, C.F. Detection of Pathogens Using Graphene Quantum Dots and Gold Nanoclusters on Paper-Based Analytical Devices. Sens. Actuators B Chem. 2022, 363, 131824. [Google Scholar] [CrossRef]
- Sharma, P.S.; D’Souza, F.; Kutner, W. Graphene and Graphene Oxide Materials for Chemo- and Biosensing of Chemical and Biochemical Hazards. In Making and Exploiting Fullerenes, Graphene, and Carbon Nanotubes; Springer: Berlin/Heidelberg, Germany, 2013; pp. 237–265. [Google Scholar] [CrossRef]
- Li, Q.Q.; Wen, M.J.; Zhang, Y.S.; Guo, Z.S.; Bai, X.; Song, J.X.; Liu, P.; Wang, Y.Y.; Li, J.L. Multiple Fluorescence Response Behaviors towards Antibiotics and Bacteria Based on a Highly Stable Cd-MOF. J. Hazard. Mater. 2022, 423, 127132. [Google Scholar] [CrossRef]
- Ding, X.; Mauk, M.G.; Yin, K.; Kadimisetty, K.; Liu, C. Interfacing Pathogen Detection with Smartphones for Point-of-Care Applications. Anal. Chem. 2019, 91, 655–672. [Google Scholar] [CrossRef]
- Amadasi, A.; Dall’Asta, C.; Ingletto, G.; Pela, R.; Marchelli, R.; Cozzini, P. Explaining Cyclodextrin–Mycotoxin Interactions Using a ‘Natural’ Force Field. Bioorg. Med. Chem. 2007, 15, 4585–4594. [Google Scholar] [CrossRef]
- Hua, Y.; Ahmadi, Y.; Sonne, C.; Kim, K.H. Progress and Challenges in Sensing of Mycotoxins Using Molecularly Imprinted Polymers. Environ. Pollut. 2022, 305, 119218. [Google Scholar] [CrossRef] [PubMed]
- Azzouz, A.; Kumar, V.; Kim, K.H.; Ballesteros, E.; Rhadfi, T.; Malik, A.K. Advances in Colorimetric and Optical Sensing for Gaseous Volatile Organic Compounds. TrAC Trends Anal. Chem. 2019, 118, 502–516. [Google Scholar] [CrossRef]
- Feller, J.F.; Gatt, N.; Kumar, B.; Castro, M. Selectivity of Chemoresistive Sensors Made of Chemically Functionalized Carbon Nanotube Random Networks for Volatile Organic Compounds (VOC). Chemosensors 2014, 2, 26–40. [Google Scholar] [CrossRef]
- Li, Y.; Huang, X.; Witherspoon, E.; Wang, Z.; Dong, P.; Li, Q. Intelligent Electrochemical Sensors for Precise Identification of Volatile Organic Compounds Enabled by Neural Network Analysis. IEEE Sens. J. 2024, 24, 15011–15022. [Google Scholar] [CrossRef]
- Lawaniya, S.D.; Awasthi, A.; Menezes, P.W.; Awasthi, K. Detection of Foodborne Pathogens Through Volatile Organic Compounds Sensing via Metal Oxide Gas Sensors. Adv. Sens. Res. 2024, 4, 2400101. [Google Scholar] [CrossRef]
- Skorjanc, T.; Shetty, D.; Valant, M. Covalent Organic Polymers and Frameworks for Fluorescence-Based Sensors. ACS Sens. 2021, 6, 1461–1481. [Google Scholar] [PubMed]
- Ghawanmeh, A.A.; Tanash, S.A.; Al-Rawashdeh, N.A.F.; Albiss, B. The Recent Progress on Nanomaterial-Based Chemosensors for Diagnosis of Human Exhaled Breath: A Review. J. Mater. Sci. 2024, 59, 8573–8605. [Google Scholar] [CrossRef]
- Lu, T.; Al-Hamry, A.; Rosolen, J.M.; Hu, Z.; Hao, J.; Wang, Y.; Adiraju, A.; Yu, T.; Matsubara, E.Y.; Kanoun, O. Flexible Impedimetric Electronic Nose for High-Accurate Determination of Individual Volatile Organic Compounds by Tuning the Graphene Sensitive Properties. Chemosensors 2021, 9, 360. [Google Scholar] [CrossRef]
- Song, S.G.; Ha, S.; Cho, H.J.; Lee, M.; Jung, D.; Han, J.H.; Song, C. Single-Walled Carbon-Nanotube-Based Chemocapacitive Sensors with Molecular Receptors for Selective Detection of Chemical Warfare Agents. ACS Appl. Nano Mater. 2019, 2, 109–117. [Google Scholar] [CrossRef]
- Garg, N.; Deep, A.; Sharma, A.L. Metal-Organic Frameworks Based Nanostructure Platforms for Chemo-Resistive Sensing of Gases. Coord. Chem. Rev. 2021, 445, 214073. [Google Scholar] [CrossRef]
- Mirzaei, A.; Leonardi, S.G.; Neri, G. Detection of Hazardous Volatile Organic Compounds (VOCs) by Metal Oxide Nanostructures-Based Gas Sensors: A Review. Ceram. Int. 2016, 42, 15119–15141. [Google Scholar] [CrossRef]
- Kalkal, A.; Kadian, S.; Pradhan, R.; Manik, G.; Packirisamy, G. Recent Advances in Graphene Quantum Dot-Based Optical and Electrochemical (Bio)Analytical Sensors. Mater. Adv. 2021, 2, 5513–5541. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Yildiz, Z.; Yildiz, P.; Strachowski, P.; Forough, M.; Esmaeili, Y.; Naebe, M.; Abdollahi, M. Advanced Technologies in Biodegradable Packaging Using Intelligent Sensing to Fight Food Waste. Int. J. Biol. Macromol. 2024, 261, 129647. [Google Scholar] [CrossRef]
- Park, S.; Kim, M. Effect of Ammonia on Anaerobic Degradation of Amino Acids. KSCE J. Civ. Eng. 2016, 20, 129–136. [Google Scholar] [CrossRef]
- Dordevic, D.; Capikova, J.; Dordevic, S.; Tremlová, B.; Gajdács, M.; Kushkevych, I. Sulfur Content in Foods and Beverages and Its Role in Human and Animal Metabolism: A Scoping Review of Recent Studies. Heliyon 2023, 9, e15452. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Munekata, P.E.; Dominguez, R.; Pateiro, M.; Saraiva, J.A.; Franco, D. Main Groups of Microorganisms of Relevance for Food Safety and Stability: General Aspects and Overall Description. In Innovative Technologies for Food Preservation; Academic Press: Cambridge, MA, USA, 2017; p. 53. [Google Scholar] [CrossRef]
- Lakshmi, P.R.; Mohan, B.; Kang, P.; Nanjan, P.; Shanmugaraju, S. Recent Advances in Fluorescence Chemosensors for Ammonia Sensing in the Solution and Vapor Phases. Chem. Commun. 2023, 59, 1728–1743. [Google Scholar] [CrossRef]
- Geetha, M.; Anwar, H.; Bhattacharyya, B.; Sadasivuni, K.K. Advanced Chemosensor Techniques for Instantaneous Ammonia Monitoring. Microchem. J. 2024, 203, 110940. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, G.; Zeng, G.; Li, Z.; Chen, A.; Wang, J.; Jiang, L. Fluorescence Chemosensors for Hydrogen Sulfide Detection in Biological Systems. Analyst 2015, 140, 1772–1786. [Google Scholar] [CrossRef]
- Vargas, A.P.; Gámez, F.; Roales, J.; Lopes-Costa, T.; Pedrosa, J.M. A Paper-Based Ultrasensitive Optical Sensor for the Selective Detection of H2S Vapors. Chemosensors 2021, 9, 40. [Google Scholar] [CrossRef]
- Klyamer, D.; Bonegardt, D.; Krasnov, P.; Basova, T.; Maiorova, L. Chemiresistive NH3 and H2S Sensors Based on Thin Films of Vitamin B12 Derivatives. Sens. Actuators B Chem. 2024, 418, 136268. [Google Scholar] [CrossRef]
- Nami, M.; Taheri, M.; Deen, I.A.; Packirisamy, M.; Deen, M.J. Nanomaterials in Chemiresistive and Potentiometric Gas Sensors for Intelligent Food Packaging. TrAC Trends Anal. Chem. 2024, 174, 117664. [Google Scholar] [CrossRef]
- Mafe, A.N.; Edo, G.I.; Makia, R.S.; Joshua, O.A.; Akpoghelie, P.O.; Gaaz, T.S.; Jikah, A.N.; Yousif, E.; Isoje, E.F.; Igbuku, U.A.; et al. A Review on Food Spoilage Mechanisms, Food Borne Diseases and Commercial Aspects of Food Preservation and Processing. Food Chem. Adv. 2024, 5, 100852. [Google Scholar] [CrossRef]
- Lund, P.A.; De Biase, D.; Liran, O.; Scheler, O.; Mira, N.P.; Cetecioglu, Z.; Fernández, E.N.; Bover-Cid, S.; Hall, R.; Sauer, M.; et al. Understanding How Microorganisms Respond to Acid PH Is Central to Their Control and Successful Exploitation. Front. Microbiol. 2020, 11, 556140. [Google Scholar] [CrossRef]
- Marcelli, V.; Osimani, A.; Aquilanti, L. Research Progress in the Use of Lactic Acid Bacteria as Natural Biopreservatives against Pseudomonas Spp. in Meat and Meat Products: A Review. Food Res. Int. 2024, 196, 115129. [Google Scholar] [CrossRef] [PubMed]
- Yi, Z.; Xie, J. Assessment of Spoilage Potential and Amino Acids Deamination & Decarboxylation Activities of Shewanella Putrefaciens in Bigeye Tuna (Thunnus Obesus). LWT 2022, 156, 113016. [Google Scholar] [CrossRef]
- Banik, D.; Manna, S.K.; Maiti, A.; Mahapatra, A.K. Recent Advancements in Colorimetric and Fluorescent PH Chemosensors: From Design Principles to Applications. Crit. Rev. Anal. Chem. 2023, 53, 1313–1373. [Google Scholar] [CrossRef]
- Zhang, Z.; Fan, J.; Du, J.; Peng, X. Two-Channel Responsive Luminescent Chemosensors for Dioxygen Species: Molecular Oxygen, Singlet Oxygen and Superoxide Anion. Coord. Chem. Rev. 2021, 427, 213575. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, Z.; Yong, J.; Schenk, P.M.; Tian, D.; Xu, Z.P.; Zhang, R. Determination and Imaging of Small Biomolecules and Ions Using Ruthenium(II) Complex-Based Chemosensors. Top. Curr. Chem. 2022, 380, 199–243. [Google Scholar] [CrossRef]
- Banerjee, S.; Kuznetsova, R.T.; Papkovsky, D.B. Solid-State Oxygen Sensors Based on Phosphorescent Diiodo-Borondipyrromethene Dye. Sens. Actuators B Chem. 2015, 212, 229–234. [Google Scholar] [CrossRef]
- Shah, N.S.; Thotathil, V.; Zaidi, S.A.; Sheikh, H.; Mohamed, M.; Qureshi, A.; Sadasivuni, K.K. Picomolar or beyond Limit of Detection Using Molecularly Imprinted Polymer-Based Electrochemical Sensors: A Review. Biosensors 2022, 12, 1107. [Google Scholar] [CrossRef] [PubMed]
- Ashley, J.; Wu, K.; Hansen, M.F.; Schmidt, M.S.; Boisen, A.; Sun, Y. Quantitative Detection of Trace Level Cloxacillin in Food Samples Using Magnetic Molecularly Imprinted Polymer Extraction and Surface-Enhanced Raman Spectroscopy Nanopillars. Anal. Chem. 2017, 89, 11484–11490. [Google Scholar] [CrossRef]
- Tu, X.; Chen, W. Miniaturized Salting-Out Assisted Liquid-Liquid Extraction Combined with Disposable Pipette Extraction for Fast Sample Preparation of Neonicotinoid Pesticides in Bee Pollen. Molecules 2020, 25, 5703. [Google Scholar] [CrossRef]
- Upadhyay, Y.; Bothra, S.; Kumar, R.; Sahoo, S.K. Smartphone-Assisted Colorimetric Detection of Cr3+ Using Vitamin B6 Cofactor Functionalized Gold Nanoparticles and Its Applications in Real Sample Analyses. ChemistrySelect 2018, 3, 6892–6896. [Google Scholar] [CrossRef]
- Hu, Q.; Duan, C.; Wu, J.; Su, D.; Zeng, L.; Sheng, R. Colorimetric and Ratiometric Chemosensor for Visual Detection of Gaseous Phosgene Based on Anthracene Carboxyimide Membrane. Anal. Chem. 2018, 90, 8686–8691. [Google Scholar] [CrossRef] [PubMed]
- Quang, D.T.; Kim, J.S. Fluoro- and Chromogenic Chemodosimeters for Heavy Metal Ion Detection in Solution and Biospecimens. Chem. Rev. 2010, 110, 6280–6301. [Google Scholar] [CrossRef]
- Sarkar, H.S.; Ghosh, A.; Das, S.; Maiti, P.K.; Maitra, S.; Mandal, S.; Sahoo, P. Visualisation of DCP, a Nerve Agent Mimic, in Catfish Brain by a Simple Chemosensor. Sci. Rep. 2018, 8, 3402. [Google Scholar] [CrossRef]
- Kaur, A.; Sharma, H.; Kaur, S.; Singh, N.; Kaur, N. A Counterion Displacement Assay with a Biginelli Product: A Ratiometric Sensor for Hg2+ and the Resultant Complex as a Sensor for Cl−. RSC Adv. 2013, 3, 6160–6166. [Google Scholar] [CrossRef]
- Sapozhnikova, Y.; Lehotay, S.J. Evaluation of Different Parameters in the Extraction of Incurred Pesticides and Environmental Contaminants in Fish. J. Agric. Food Chem. 2015, 63, 5163–5168. [Google Scholar] [CrossRef]
- Dragone, R.; Grasso, G.; Muccini, M.; Toffanin, S. Portable Bio/Chemosensoristic Devices: Innovative Systems for Environmental Health and Food Safety Diagnostics. Front. Public Health 2017, 5, 239110. [Google Scholar] [CrossRef]
- Rincón, E.M.; Espinosa, E.; Serrano, L.; Zuliani, A.; Cova, C.M.; Rincón, E.; Espinosa, E.; Serrano, L.; Zuliani, A. Paving the Way for a Green Transition in the Design of Sensors and Biosensors for the Detection of Volatile Organic Compounds (VOCs). Biosensors 2022, 12, 51. [Google Scholar] [CrossRef]
- Qian, R.C.; Long, Y.T. Wearable Chemosensors: A Review of Recent Progress. ChemistryOpen 2018, 7, 118–130. [Google Scholar] [CrossRef] [PubMed]
- Meliana, C.; Liu, J.; Show, P.L.; Low, S.S. Biosensor in Smart Food Traceability System for Food Safety and Security. Bioengineered 2024, 15, 2310908. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chiang, L. Monitoring Chemical Processes Using Judicious Fusion of Multi-Rate Sensor Data. Sensors 2019, 19, 2240. [Google Scholar] [CrossRef]
- Zhang, C.; Bian, T.; Jiao, K.; Su, W.; Wu, K.-J.; Su, A.A.; He, C.; Zhang, C.; Bian, T.; Jiao, K.; et al. A Review on Artificial Intelligence Enabled Design, Synthesis, and Process Optimization of Chemical Products for Industry 4.0. Processes 2023, 11, 330. [Google Scholar] [CrossRef]
- (161a) Sensor Fusion Applications in Industrial Chemical Process Monitoring|AIChE. Available online: https://www.aiche.org/academy/conferences/aiche-spring-meeting-and-global-congress-on-process-safety/2020/proceeding/paper/161a-sensor-fusion-applications-industrial-chemical-process-monitoring?utm_source=chatgpt.com (accessed on 10 January 2025).
- Flores-Cerrillo, J.; He, Q.P.; Wang, J.; Yu, H. Editorial: Smart Manufacturing: Advances and Applications of Artificial Intelligence, Machine Learning and Industrial Internet of Things in the Chemical and Biochemical Industry. Front. Chem. Eng. 2023, 5, 1309165. [Google Scholar] [CrossRef]
- Du, Y.; Yu, D.G.; Yi, T. Electrospun Nanofibers as Chemosensors for Detecting Environmental Pollutants: A Review. Chemosensors 2023, 11, 208. [Google Scholar] [CrossRef]
- Wu, D.; Huang, W.; Lin, Z.; Duan, C.; He, C.; Wu, S.; Wang, D. Highly Sensitive Multiresponsive Chemosensor for Selective Detection of Hg2+ in Natural Water and Different Monitoring Environments. Inorg. Chem. 2008, 47, 7190–7201. [Google Scholar] [CrossRef]
- Gowri, A.; Kathiravan, A. Fluorescent Chemosensor for Detection of Water Pollutants. In Sensors in Water Pollutants Monitoring: Role of Material; Springer: Singapore, 2020; pp. 147–160. [Google Scholar] [CrossRef]
- Martin, M.A.; Olives, A.I.; del Castillo, B.; Menendez, J.C. Trends in the Design and Application of Optical Chemosensors in Pharmaceutical and Biomedical Analysis. Curr. Pharm. Anal. 2008, 4, 106–117. [Google Scholar] [CrossRef]
- Lee, C.; Han, S.; Park, J.H. Electrochemical Detection of Microplastics in Water Using Ultramicroelectrodes. Chemosensors 2024, 12, 278. [Google Scholar] [CrossRef]
- Hu, C.; Wu, K.; Dai, X.; Hu, S. Simultaneous Determination of Lead(II) and Cadmium(II) at a Diacetyldioxime Modified Carbon Paste Electrode by Differential Pulse Stripping Voltammetry. Talanta 2003, 60, 17–24. [Google Scholar] [CrossRef]
- Dai, X.; Nekraseova, O.; Hyde, M.E.; Compton, R.G. Anodic Stripping Voltammetry of Arsenic(III) Using Gold Nanoparticle-Modified Electrodes. Anal. Chem. 2004, 76, 5924–5929. [Google Scholar] [CrossRef] [PubMed]
- Ayerdurai, V.; Cieplak, M.; Kutner, W. Molecularly Imprinted Polymer-Based Electrochemical Sensors for Food Contaminants Determination. TrAC Trends Anal. Chem. 2023, 158, 116830. [Google Scholar] [CrossRef]
- Nadporozhskaya, M.; Kovsh, N.; Paolesse, R.; Lvova, L. Recent Advances in Chemical Sensors for Soil Analysis: A Review. Chemosensors 2022, 10, 35. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Gupta, S.P. Sensors for Waste Management. In Sensors for Environmental Monitoring, Identification, and Assessment; IGI Global Scientific Publishing: Hershey, PA, USA, 2024; pp. 231–250. [Google Scholar] [CrossRef]
- Verdejo, B.; Inclán, M.; Clares, M.P.; Bonastre-Sabater, I.; Ruiz-Gasent, M.; García-España, E. Fluorescent Chemosensors Based on Polyamine Ligands: A Review. Chemosensors 2022, 10, 1. [Google Scholar] [CrossRef]
- Sun, H.; Xiao, K.; Zeng, Z.; Yang, B.; Duan, H.; Zhao, H.; Zhang, Y. Electroactive Biofilm-Based Sensor for Volatile Fatty Acids Monitoring: A Review. Chem. Eng. J. 2022, 449, 137833. [Google Scholar] [CrossRef]
- Mahadeva, S.K.; Walus, K.; Stoeber, B. Paper as a Platform for Sensing Applications and Other Devices: A Review. ACS Appl. Mater. Interfaces. 2015, 7, 8345–8362. [Google Scholar] [CrossRef]
- Ishihara, S.; Azzarelli, J.M.; Krikorian, M.; Swager, T.M. Ultratrace Detection of Toxic Chemicals: Triggered Disassembly of Supramolecular Nanotube Wrappers. J. Am. Chem. Soc. 2016, 138, 8221–8227. [Google Scholar] [CrossRef]
- Iskierko, Z.; Checinska, A.; Sharma, P.S.; Golebiewska, K.; Noworyta, K.; Borowicz, P.; Fronc, K.; Bandi, V.; D’Souza, F.; Kutner, W. Molecularly Imprinted Polymer Based Extended-Gate Field-Effect Transistor Chemosensors for Phenylalanine Enantioselective Sensing. J. Mater. Chem. C Mater. 2017, 5, 969–977. [Google Scholar] [CrossRef]
- Pierre, A.C. The Sol-Gel Encapsulation of Enzymes. Biocatal. Biotransformation 2004, 22, 145–170. [Google Scholar] [CrossRef]
- Babazadeh-Mamaqani, M.; Roghani-Mamaqani, H.; Abdollahi, A.; Salami-Kalajahi, M. Optical Chemosensors Based on Spiropyran-Doped Polymer Nanoparticles for Sensing PH of Aqueous Media. Langmuir 2022, 38, 9410–9420. [Google Scholar] [CrossRef]
- Lee, M.; Palanisamy, S.; Zhou, B.H.; Wang, L.Y.; Chen, C.Y.; Lee, C.Y.; Yuan, S.S.F.; Wang, Y.M. Ultrasensitive Electrical Detection of Follicle-Stimulating Hormone Using a Functionalized Silicon Nanowire Transistor Chemosensor. ACS Appl. Mater. Interfaces 2018, 10, 36120–36127. [Google Scholar] [CrossRef] [PubMed]
- Abou-Melha, K.S. Analytical Chemistry Optical Chemosensor for Spectrophotometric Determination of Nitrite in Wastewater. ChemistrySelect 2020, 5, 6216–6223. [Google Scholar] [CrossRef]
- Mansha, M.; Akram Khan, S.; Aziz, M.A.; Zeeshan Khan, A.; Ali, S.; Khan, M. Optical Chemical Sensing of Iodide Ions: A Comprehensive Review for the Synthetic Strategies of Iodide Sensing Probes, Challenges, and Future Aspects. Chem. Rec. 2022, 22, e202200059. [Google Scholar] [CrossRef] [PubMed]
- Park, J.K.; Shin, J.; Jang, S.; Seol, M.L.; Kang, J.; Choi, S.; Eom, H.; Kwon, O.; Park, S.; Noh, D.Y.; et al. Rational Design of Fluorescent/Colorimetric Chemosensors for Detecting Transition Metal Ions by Varying Functional Groups. Inorganics 2022, 10, 189. [Google Scholar] [CrossRef]
- Gao, Y.Y.; He, J.; Li, X.H.; Li, J.H.; Wu, H.; Wen, T.; Li, J.; Hao, G.F.; Yoon, J. Fluorescent Chemosensors Facilitate the Visualization of Plant Health and Their Living Environment in Sustainable Agriculture. Chem. Soc. Rev. 2024, 53, 6992–7090. [Google Scholar] [CrossRef]
- Sharma, P.; Naithani, S.; Yadav, V.; Sangeeta; Guchhait, B.; Kumar, S.; Goswami, T. Indium Nanocubes Based Recyclable Fluorescent Chemosensor for Sustainable Environmental Monitoring: PH-Induced Fluorescence Transition and Selective Detection of Pd(II) Ions. Sci. Total Environ. 2024, 920, 171043. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, N.; Bai, W.; Bao, Y. Fluorescent Chemosensors Based on Conjugated Polymers with N-Heterocyclic Moieties: Two Decades of Progress. Polym. Chem. 2020, 11, 3095–3114. [Google Scholar] [CrossRef]
- Goshisht, M.K.; Patra, G.K.; Tripathi, N. Fluorescent Schiff Base Sensors as a Versatile Tool for Metal Ion Detection: Strategies, Mechanistic Insights, and Applications. Mater. Adv. 2022, 3, 2612–2669. [Google Scholar] [CrossRef]
- Hasan, M.M.; Hossain, S.; Mofijur, M.; Kabir, Z.; Badruddin, I.A.; Yunus Khan, T.M.; Jassim, E. Harnessing Solar Power: A Review of Photovoltaic Innovations, Solar Thermal Systems, and the Dawn of Energy Storage Solutions. Energies 2023, 16, 6456. [Google Scholar] [CrossRef]
- Li, Z.; Askim, J.R.; Suslick, K.S. The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays. Chem. Rev. 2019, 119, 231–292. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.C.; Steinbrueck, A.; Sedgwick, A.C.; James, T.D. Fluorescent Chemosensors for Ion and Molecule Recognition: The Next Chapter. Front. Sens. 2021, 2, 731928. [Google Scholar] [CrossRef]
- Karuk Elmas, Ş.N.; Berk Gunay, I.; Karagoz, A.; Bostanci, A.; Sadi, G.; Yilmaz, I. A Novel Fluorescent Probe Based on Perylene Derivative for Hg2+ Ions and Biological Thiols and Its Application in Live Cell Imaging and Theoretical Calculations. Electroanalysis 2020, 32, 775–780. [Google Scholar] [CrossRef]
- Sharma, N.; Kaur, N. Fluorenone Appended Colorimetric Sensor for Cascade Detection of Fluoride and Calcium Gluconate with Applications in Solid State and Logic Gate Systems. ChemistrySelect 2023, 8, e202204459. [Google Scholar] [CrossRef]
- Picchetti, P.; Pearce, A.K.; Parkinson, S.J.; Grimm, L.M.; O’Reilly, R.K.; Biedermann, F. Polymersome-Encapsulated Chemosensors: New Design Strategies toward Biofluid-Applicable Cucurbit[7]Uril Indicator Displacement Assays. Macromolecules 2024, 57, 4062–4071. [Google Scholar] [CrossRef]
- Zeng, J.; Xu, X.; Xue, L.; Xu, Y.; Wang, X.; Zhang, Y.; Wang, H. A Novel Pyridine and Julolidine Based Chemosensor for Al3+ Detection. ChemistrySelect 2023, 8, e202204556. [Google Scholar] [CrossRef]
- Helal, A.; Nguyen, H.L.; Al-Ahmed, A.; Cordova, K.E.; Yamani, Z.H. An Ultrasensitive and Selective Metal-Organic Framework Chemosensor for Palladium Detection in Water. Inorg. Chem. 2019, 58, 1738–1741. [Google Scholar] [CrossRef]
- Sivakumar, R.; Lee, N.Y. Paper-Based Fluorescence Chemosensors for Metal Ion Detection in Biological and Environmental Samples. Biochip. J. 2021, 15, 216–232. [Google Scholar] [CrossRef]
- Simeonov, S.; Szekeres, A.; Covei, M.; Stroescu, H.; Nicolescu, M.; Chesler, P.; Hornoiu, C.; Gartner, M. Sol-Gel Multilayered Niobium (Vanadium)-Doped TiO2 for CO Sensing and Photocatalytic Degradation of Methylene Blue. Materials 2024, 17, 1923. [Google Scholar] [CrossRef]
- Pal, S.; Yu, S.S.; Kung, C.W. Group 4 Metal-Based Metal—Organic Frameworks for Chemical Sensors. Chemosensors 2021, 9, 306. [Google Scholar] [CrossRef]
- González-Morales, D.; Valencia, A.; Díaz-Nuñez, A.; Fuentes-Estrada, M.; López-Santos, O.; García-Beltrán, O. Development of a Low-Cost UV-Vis Spectrophotometer and Its Application for the Detection of Mercuric Ions Assisted by Chemosensors. Sensors 2020, 20, 906. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Lee, S.; Zhang, A.; Yoon, J. Self-Immolative Colorimetric, Fluorescent and Chemiluminescent Chemosensors. Chem. Soc. Rev. 2018, 47, 6900–6916. [Google Scholar] [CrossRef]
- Krämer, J.; Kang, R.; Grimm, L.M.; De Cola, L.; Picchetti, P.; Biedermann, F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem. Rev. 2022, 122, 3459–3636. [Google Scholar] [CrossRef]
- Wang, X.; Yu, J.; Ji, W.; Arabi, M.; Fu, L.; Li, B.; Chen, L. On-Off-On Fluorescent Chemosensors Based on N/P-Codoped Carbon Dots for Detection of Microcystin-LR. ACS Appl. Nano Mater. 2021, 4, 6852–6860. [Google Scholar] [CrossRef]
- Niu, H.; Yang, Y.; Zhang, H. Efficient One-Pot Synthesis of Hydrophilic and Fluorescent Molecularly Imprinted Polymer Nanoparticles for Direct Drug Quantification in Real Biological Samples. Biosens. Bioelectron. 2015, 74, 440–446. [Google Scholar] [CrossRef] [PubMed]
- MacAgnano, A.; Perri, V.; Zampetti, E.; Bearzotti, A.; De Cesare, F. Humidity Effects on a Novel Eco-Friendly Chemosensor Based on Electrospun PANi/PHB Nanofibres. Sens. Actuators B Chem. 2016, 232, 16–27. [Google Scholar] [CrossRef]
- Kumarasinghe, K.G.U.R.; Silva, A.U.T. De Indole-Based Fluorometric and Colorimetric Chemosensors for the Selective Detection of Cu2+: A Brief Review From the Year 2011–2021. Vidyodaya J. Sci. 2023, 1, s1. [Google Scholar] [CrossRef]
- Kimoto, H.; Takahashi, M.; Masuko, M.; Sato, K.; Hirahara, Y.; Iiyama, M.; Suzuki, Y.; Hashimoto, T.; Hayashita, T. High-Throughput Analysis of Bacterial Toxic Lipopolysaccharide in Water by Dual-Wavelength Monitoring Using a Ratiometric Fluorescent Chemosensor. Anal. Chem. 2023, 95, 12349–12357. [Google Scholar] [CrossRef]
- Mishra, G.K.; Barfidokht, A.; Tehrani, F.; Mishra, R.K. Food Safety Analysis Using Electrochemical Biosensors. Foods 2018, 7, 141. [Google Scholar] [CrossRef]
- Zhuang, Y.T.; Chen, S.; Jiang, R.; Yu, Y.L.; Wang, J.H. Ultrasensitive Colorimetric Chromium Chemosensor Based on Dye Color Switching under the Cr(VI)-Stimulated Au NPs Catalytic Activity. Anal. Chem. 2019, 91, 5346–5353. [Google Scholar] [CrossRef]
- Radwan, A.; El-Sewify, I.M.; Shahat, A.; Azzazy, H.M.E.; Khalil, M.M.H.; El-Shahat, M.F. Multiuse Al-MOF Chemosensors for Visual Detection and Removal of Mercury Ions in Water and Skin-Whitening Cosmetics. ACS Sustain. Chem. Eng. 2020, 8, 15097–15107. [Google Scholar] [CrossRef]
- Abd El-Fattah, W.; Guesmi, A.; Ben Hamadi, N.; Khalil, M.A.; Shahat, A. A Highly Sensitive Chemosensor Based on a Metal-Organic Framework for Determining Zinc Ions in Cosmetics Creams and Wastewater. Appl. Organomet. Chem. 2024, 38, e7407. [Google Scholar] [CrossRef]
- Rauytanapanit, M.; Suraritdechachai, S.; Vilaivan, T.; Praneenararat, T. Introducing Students to Chemical Security Concepts through Interdisciplinary Experiments Using Organic Chemosensors in Engaging Applications of Chemistry. J. Chem. Educ. 2020, 97, 1779–1788. [Google Scholar] [CrossRef]
- Calabria, D.; Guardigli, M.; Severi, P.; Trozzi, I.; Pace, A.; Cinti, S.; Zangheri, M.; Mirasoli, M. A Smartphone-Based Chemosensor to Evaluate Antioxidants in Agri-Food Matrices by in Situ AuNP Formation. Sensors 2021, 21, 5432. [Google Scholar] [CrossRef]
Chemosensor Type | Target Analyte | LoD, μmol L−1 | Selectivity (Interfering Species Tested) | Detection Mechanism | Reference |
---|---|---|---|---|---|
Electrochemical | Carbofuran | 0.02 | - | DPV | [56] |
Electrochemical | Dicloran | 4.80 × 10−4 | - | SWV | [56] |
Turn-on fluorescent | Paraquat | 5.14 × 10−1 | - | Fluorescence | [57] |
Electrochemical | Carbaryl | 4.97 × 10−15 | - | Potentiometry | [58] |
Fluorescent | Hg2+ | 1.30 | - | Fluorescence | [59] |
Fluorescent | Cu2+ | 1.45 | - | Fluorescence | [59] |
Colorimetric electrochemical | Co2+ | 0.03 | Zn2+, Cd2+, Cu2+, Cr3+, Pb2+, Mg2+, Fe2+, Fe3+, Al3+, Hg2+, Na+, K+, As2+, Ni2+, Ca2+, Bi2+, So42−, Cr2O72−, Co32− and No3− | Colorimetry and electrochemistry | [67] |
Electrochemical | 2-Chlorophenol | 1.50 | - | DPV | [75] |
Electrochemical | Bisphenol A | 5.00 × 10−3 | - | Chronoamperometry | [75] |
Electrochemical | 2-Nitrophenol | 1.00 × 10−4 | - | CV | [75] |
Electrochemical | Microcystin-LR | 9.65 × 10−9 | - | Chronoamperometry | [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albu, C.; Chira, A.; Radu, G.-L.; Eremia, S.A.V. Advances in Cost-Effective Chemosensors for Sustainable Monitoring in Food Safety and Processing. Chemosensors 2025, 13, 113. https://doi.org/10.3390/chemosensors13030113
Albu C, Chira A, Radu G-L, Eremia SAV. Advances in Cost-Effective Chemosensors for Sustainable Monitoring in Food Safety and Processing. Chemosensors. 2025; 13(3):113. https://doi.org/10.3390/chemosensors13030113
Chicago/Turabian StyleAlbu, Camelia, Ana Chira, Gabriel-Lucian Radu, and Sandra A. V. Eremia. 2025. "Advances in Cost-Effective Chemosensors for Sustainable Monitoring in Food Safety and Processing" Chemosensors 13, no. 3: 113. https://doi.org/10.3390/chemosensors13030113
APA StyleAlbu, C., Chira, A., Radu, G.-L., & Eremia, S. A. V. (2025). Advances in Cost-Effective Chemosensors for Sustainable Monitoring in Food Safety and Processing. Chemosensors, 13(3), 113. https://doi.org/10.3390/chemosensors13030113