Curcumin Nanoparticles Enhance Antioxidant Efficacy of Diclofenac Sodium in Experimental Acute Inflammation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Drugs
2.2. Animals and Experimental Design
2.3. Drug Administration
2.4. Inflammatory Edema Assessment
2.5. Blood Samples
2.6. Tissue Homogenate
2.7. Oxidative Stress Parameters
2.8. Statistical Analysis
3. Results
3.1. Paw Edema
3.2. Oxidative Stress
4. Discussion
4.1. Effects on Paw Edema
4.2. Effects on Oxidative Stress Parameters
4.3. Potential Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arulselvan, P.; Fard, M.T.; Tan, W.S.; Gothai, S.; Fakurazi, S.; Norhaizan, M.E.; Kumar, S.S. Role of antioxidants and natural products in inflammation. Oxid. Med. Cell. Longev. 2016, 2016, 5276130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patil, K.R.; Mahajan, U.B.; Unger, B.S.; Goyal, S.N.; Belemkar, S.; Surana, S.J.; Ojha, S.; Patil, C.R. Animal Models of Inflammation for Screening of Anti-inflammatory Drugs: Implications for the Discovery and Development of Phytopharmaceuticals. Int. J. Mol. Sci. 2019, 20, 4367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Rosa, M.L.; Giroud, J.P.; Willoughby, D.A. Studies of the mediators of the acute inflammatory response induced in rats in different sites by carrageenan and turpentine. J. Pathol. 1971, 104, 15–29. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, M.T.; Hemmati, A.A.; Naghizadeh, B.; Mard, S.A.; Rezaie, A.; Ghorbanzadeh, B. A study of the mechanisms underlying the anti-inflammatory effect of ellagic acid in carrageenan-induced paw edema in rats. Indian J. Pharmacol. 2015, 47, 292. [Google Scholar] [CrossRef] [Green Version]
- Begum, R.; Sharma, M.; Pillai, K.K.; Aeri, V.; Sheliya, M.A. Inhibitory effect of Careya arborea on inflammatory biomarkers in carrageenan-induced inflammation. Pharm. Biol. 2015, 53, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.; Rahu, N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid. Med. Cell. Longev. 2016, 2016, 7432797. [Google Scholar] [CrossRef] [Green Version]
- Vonkeman, H.E.; van de Laar, M.A. Nonsteroidal anti-inflammatory drugs: Adverse effects and their prevention. Semin. Arthritis Rheum. 2010, 39, 294–312. [Google Scholar] [CrossRef] [PubMed]
- Kołodziejska, J.; Kołodziejczyk, M. Diclofenac in the treatment of pain in patients with rheumatic diseases. Reumatologia 2018, 56, 174–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rojo, C.; Álvarez-Figueroa, M.J.; Soto, M.; Canete, A.; Pessoa-Mahana, D.; López-Alarcón, C. Scavenging activity of diclofenac: Interaction with ABTS radical cation and peroxyl radicals. J. Chil. Chem. Soc. 2009, 54, 58–62. [Google Scholar] [CrossRef] [Green Version]
- Day, R.O.; Graham, G.G. Non-steroidal anti-inflammatory drugs (NSAIDs). BMJ 2013, 346, f3195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maroon, J.C.; Bost, J.W.; Maroon, A. Natural anti-inflammatory agents for pain relief. Surgical neurology international. Surg. Neurol. Int. 2010, 1, 80. [Google Scholar] [CrossRef] [Green Version]
- Hosseinzadeh, L.; Behravan, J.; Mosaffa, F.; Bahrami, G.; Bahrami, A.R.; Karimi, G. Effect of Curcumin on doxorubicin-induced cytotoxicity in h9c2 cardiomyoblast cells. Iran. J. Basic Med. Sci. 2011, 14, 49–56. [Google Scholar]
- Dogaru, G.; Bulboaca, A.E.; Gheban, D.; Boarescu, P.M.; Rus, V.; Festila, D.; Sitar-Taut, A.V.; Stanescu, I. Effect of liposomal Curcumin on acetaminophen hepatotoxicity by down-regulation of oxidative stress and matrix metalloproteinases. In Vivo 2020, 34, 569–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulboacă, A.E.; Porfire, A.; Barbălată, C.; Bolboacă, S.D.; Nicula, C.; Boarescu, P.M.; Stanescu, I.; Dogaru, G. The effect of liposomal epigallocatechin gallate and metoclopramide hydrochloride co-administration on experimental migraine. Farmacia 2019, 67, 905–911. [Google Scholar] [CrossRef] [Green Version]
- Dogaru, G.; Bulboaca, A.; Boarescu, P.M.; Ciumarnean, L.; Rus, V.; Sitar-Taut, A.V.; Munteanu, C.; Bodisz, G.; Stanescu, I. The effect of mofettes on oxidative stress/antioxidant balance in experimental myocardial ischemia. In Vivo 2019, 33, 1911–1920. [Google Scholar] [CrossRef] [Green Version]
- Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of Curcumin: Problems and promises. Mol. Pharm. 2007, 4, 807–818. [Google Scholar] [CrossRef]
- Ghalandarlaki, N.; Alizadeh, A.M.; Ashkani-Esfahani, S. Nanotechnology-applied curcumin for different diseases therapy. Biomed. Res. Int. 2014, 2014, 394264. [Google Scholar] [CrossRef] [Green Version]
- Dai, W.; Zhang, D.; Duan, C.; Jia, L.; Wang, Y.; Feng, F.; Zhang, Q. Preparation and characteristics of oridonin-loaded nanostructured lipid carriers as a controlled-release delivery system. J. Microencapsul. 2010, 27, 234–241. [Google Scholar] [CrossRef]
- Da Silva-Buzanello, R.A.; De Souza, M.F.; De Oliveira, D.A.; Bona, E.; Leimann, F.V.; Filho, L.C.; Hermes de Araújo, P.H.; Salvador, S.R.; Odinei, F.; Gonçalves, H. Preparation of curcumin-loaded nanoparticles and determination of the antioxidant potential of Curcumin after encapsulation. Polimeros 2016, 26, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Gera, M.; Sharma, N.; Ghosh, M.; Huynh, D.L.; Lee, S.J.; Min, T.; Min, T.; Kwon, T.; Jeong, D.K. Nanoformulations of Curcumin: An emerging paradigm for improved remedial application. Oncotarget 2017, 8, 66680–66698. [Google Scholar] [CrossRef] [Green Version]
- Hatcher, H.; Planalp, R.; Cho, J.; Torti, F.M.; Torti, S.V. Curcumin: From ancient medicine to current clinical trials. Cell Mol. Life Sci. 2008, 65, 1631–1652. [Google Scholar] [CrossRef] [PubMed]
- Loram, L.C.; Fuller, A.; Fick, L.G.; Cartmell, T.; Poole, S.; Mitchell, D. Cytokine profiles during carrageenan-induced inflammatory hyperalgesia in rat muscle and hind paw. J. Pain 2007, 8, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Pop, R.M.; Sabin, O.; Suciu, Ș.; Vesa, S.C.; Socaci, S.A.; Chedea, V.S.; Bocsan, I.C.; Buzoianu, A.D. Nigella Sativa’s Anti-Inflammatory and Antioxidative Effects in Experimental Inflammation. Anti Oxid. 2020, 9, 92. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Archie, S.R.; Faruk, A.; Chowdhury, F.A.; Al Shoyaib, A.; Ahsan, C.R. Evaluation of the anti-inflammatory activities of diclofenac sodium sodium, prednisolone and atorvastatin in combination with ascorbic acid. Antiinflamm Antiallergy Agents Med. Chem. 2020, 19, 291–301. [Google Scholar] [CrossRef]
- Boarescu, P.-M.; Boarescu, I.; Bocșan, I.C.; Pop, R.M.; Gheban, D.; Bulboacă, A.E.; Nicula, C.; Râjnoveanu, R.-M.; Bolboacă, S.D. Curcumin Nanoparticles Protect against Isoproterenol Induced Myocardial Infarction by Alleviating Myocardial Tissue Oxidative Stress, Electrocardiogram, and Biological Changes. Molecules 2019, 24, 2802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boarescu, P.M.; Chirilă, I.; Bulboacă, A.E.; Bocsan, I.C.; Pop, R.M.; Gheban, D.; Bolboacă, S.D. Effects of curcumin nanoparticles in isoproterenol-induced myocardial infarction. Oxid. Med. Cell Longev. 2019, 2019, 7847142. [Google Scholar] [CrossRef] [PubMed]
- Mitev, D.; Gradeva, H.; Stoyanova, Z.; Petrova, N.; Karova, N.; Dimov, D.; Iliev, V.; Koychev, A.; Prakova, G.; Vlaykova, T. Evaluation of thiol compounds and lipid peroxidative products in plasma of patients with COPD. Trakia J. Sci. 2010, 8, 306–314. [Google Scholar]
- Miranda, K.M.; Espey, M.G.; Wink, D.A. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 2001, 5, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 2005, 38, 1103–1111. [Google Scholar] [CrossRef] [PubMed]
- Erel, O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin. Biochem. 2004, 37, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.L. Measurement of protein thiol groups and glutathione in plasma. Methods Enzymol. 1994, 233, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Abuelo, Á.; Hernández, J.; Benedito, J.L.; Castillo, C. Oxidative stress index (OSi) as a new tool to assess redox status in dairy cattle during the transition period. Animal 2013, 7, 1374–1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Almeida, M.; da Rocha, B.A.; Francisco, C.R.L.; Miranda, C.G.; de Freitas Santos, P.D.; de Araújo, P.H.H.; Sayer, C.; Leimann, F.V.; Gonçalves, O.H.; Bersani-Amado, C.A. Evaluation of the in vivo acute anti-inflammatory response of curcu-min-loaded nanoparticles. Food Funct. 2018, 9, 440–449. [Google Scholar] [CrossRef]
- Boarescu, P.-M.; Boarescu, I.; Bulboacă, A.E.; Bocșan, I.C.; Pop, R.M.; Gheban, D.; Râjnoveanu, R.-M.; Râjnoveanu, A.; Roşian, Ş.H.; Buzoianu, A.D.; et al. Multi-Organ Protective Effects of Curcumin Nanoparticles on Drug-Induced Acute My-ocardial Infarction in Rats with Type 1 Diabetes Mellitus. Appl. Sci. 2021, 11, 5497. [Google Scholar] [CrossRef]
- Abbas, S.S.; Schaalan, M.F.; Bahgat, A.K.; El-Denshary, E.S. Possible potentiation by certain antioxidants of the anti-inflammatory effects of diclofenac in rats. Sci. World J. 2014, 2014, 731462. [Google Scholar] [CrossRef] [Green Version]
- Tastekin, N.; Aydogdu, N.; Dokmeci, D.; Usta, U.; Birtane, M.; Erbas, H.; Ture, M. Protective effects of L-carnitine and alpha-lipoic acid in rats with adjuvant arthritis. Pharmacol. Res. 2007, 56, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Salem, H.A.; Zaki, H.F.; Bahgat, A.K. Can Tomato and Grape Seed Extracts Modify the Anti-Inflammatory Effect of Diclofenac in Acute Inflammation? New Egypt J. Med. 2008, 38, 393–402. [Google Scholar]
- Mehta, J.; Rayalam, S.; Wang, X. Cytoprotective Effects of Natural Compounds against Oxidative Stress. Anti Oxid. 2018, 7, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villalonga, N.; David, M.; Bielańska, J.; González, T.; Parra, D.; Soler, C.; Comes, N.; Valenzuela, C.; Felipe, A. Immunomodulatory effects of diclofenac in leukocytes through the targeting of Kv1.3 voltage-dependent potassium channels. Biochem. Pharmacol. 2010, 80, 858–866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, M.Y.; Yim, J.Y.; Yim, J.M.; Kang, I.J.; Rho, H.W.; Kim, H.S.; Yhim, H.Y.; Lee, N.R.; Song, E.K.; Kwak, J.Y.; et al. Use of Curcumin to decrease nitric oxide production during the induction of antitumor responses by IL-2. J. Immunother. 2011, 34, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Baser, H.; Can, U.; Karasoy, D.; Ay, A.S.; Baser, S.; Yerlikaya, F.H.; Ecirli, S. Evaluation of oxidant/antioxidants status in patients with mild acute pancreatitis. Acta Gastroenterol. Belg. 2016, 79, 23–28. [Google Scholar] [PubMed]
- Toiu, A.; Mocan, A.; Vlase, L.; Pârvu, A.E.; Vodnar, D.C.; Gheldiu, A.M.; Moldovan, C.; Oniga, I. Phytochemical composition, antioxidant, antimicrobial and in vivo anti-inflammatory activity of traditionally used Romanian Ajuga laxmannii (Murray) Benth. (“Nobleman’s Beard”–Barba Împăratului). Front. Pharmacol. 2018, 9, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreicut, A.D.; Pârvu, A.E.; Mot, A.C.; Pârvu, M.; Fischer Fodor, E.; Cătoi, A.F.; Feldihan, V.; Cecan, M.; Irimie, A. Phytochemical analysis of anti-inflammatory and antioxidant effects of Mahonia aquifolium flower and fruit extracts. Oxid. Med. Cell Longev. 2018, 2018, 2879793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eser, A.; Hizli, D.; Haltas, H.; Namuslu, M.; Kosus, A.; Kosus, N.; Kafali, H. Effects of Curcumin on ovarian ischemia–reperfusion injury in a rat model. Biomed. Rep. 2015, 3, 807–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al–Rubaei, Z.M.; Mohammad, T.U.; Ali, L.K. Effects of local Curcumin on oxidative stress and total antioxidant capacity in vivo study. Pak. J. Biol Sci. 2014, 17, 1237–1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, X.F.; Zhang, L.L.; Zhang, D.Z.; Yang, L.; Fan, Y.Y.; Dong, S.P. Clinical significance of serum total oxidant/antioxidant status in patients with operable and advanced gastric cancer. Onco Targets Ther. 2018, 11, 6767–6775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pârvu, M.; Moţ, C.A.; Pârvu, A.E.; Mircea, C.; Stoeber, L.; Roşca-Casian, O.; Ţigu, A.B. Allium sativum Extract Chemical Composition, Antioxidant Activity and Antifungal Effect against Meyerozyma guilliermondii and Rhodotorula mucilaginosa Causing Onychomycosis. Molecules 2019, 24, 3958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumas, M.; Esrefoglu, M.; Bayindir, N.; Iraz, M.; Ayhan, S.; Meydan, S. Protective Effects of Curcumin on Cadmium-Induced Renal Injury in Young and Aged Rats. Bezmialem. Sci. 2016, 3, 92–98. [Google Scholar] [CrossRef]
- Baba, S.P.; Bhatnagar, A. Role of thiols in oxidative stress. Curr. Opin. Toxicol. 2018, 7, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Edwards, R.L.; Luis, P.B.; Varuzza, P.V.; Joseph, A.I.; Presley, S.H.; Chaturvedi, R.; Schneider, C. The anti–inflammatory activity of Curcumin is mediated by its oxidative metabolites. J. Biol. Chem. 2017, 292, 21243–21252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calzoni, E.; Cesaretti, A.; Polchi, A.; Di Michele, A.; Tancini, B.; Emiliani, C. Biocompatible Polymer Nanoparticles for Drug Delivery Applications in Cancer and Neurodegenerative Disorder Therapies. J. Funct. Biomater. 2019, 10, 4. [Google Scholar] [CrossRef] [Green Version]
- Rachmawati, H.; Al Shaal, L.; Müller, R.H.; Keck, C.M. Development of curcumin nanocrystal: Physical aspects. J. Pharm. Sci. 2013, 102, 204–214. [Google Scholar] [CrossRef]
- Nabofa, W.E.; Alashe, O.O.; Oyeyemi, O.T.; Attah, A.F.; Oyagbemi, A.A.; Omobowale, T.O.; Adedapo, A.A.; Alada, A.R.A. Cardioprotective Effects of Curcumin-Nisin Based Poly Lactic Acid Nanoparticle on Myocardial Infarction in Guinea Pigs. Sci. Rep. 2018, 8, 16649. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, A.; Fernández-Hernando, C.; Cirino, G.; Sessa, W.C. Akt1 is critical for acute inflammation and histamine-mediated vascular leakage. Proc. Natl. Acad. Sci. USA 2009, 106, 14552–14557. [Google Scholar] [CrossRef] [Green Version]
Group. | Abb. | Intervention|Treatment |
---|---|---|
1 Control group | C | none|saline solution |
2. Acute inflammation (AI) model group | AI | acute paw inflammation (API)|saline solution |
3. AI treated with Diclofenac sodium (D) | AID | acute paw inflammation|5 mg/kg b.w. Diclofenac sodium after API |
4. AI treated with conventional curcumin (cC) in a dose of 200 mg/kg b.w. | AIcC200 | acute paw inflammation|200 mg/kg b.w. cC and after API |
5. AI treated with cC in a dose of 200 mg/kg b.w. and D | AIcC200D | acute paw inflammation|200 mg/kg b.w. cC and 5 mg/kg b.w. Diclofenac sodium after API |
6. AI with curcumin nanoparticles (nC) in a dose of 200 mg/kg b.w. | AInC200 | acute paw inflammation|200 mg/kg b.w. nC after API |
7. AI with nC in a dose of 200 mg/kg b.w. and D | AInC200D | acute paw inflammation|200 mg/kg b.w. nC and 5 mg/kg b.w. Diclofenac sodium after API |
Abbreviations | 1 h | 3 h | 5 h | 7 h | 24 h |
---|---|---|---|---|---|
AID, % | 0 | 29 | 49 | 53 | 49 |
AIcC200, % | 12 | 11 | 14 | 1 | 6 |
AIcC200D, % | 17 | 33 | 54 | 68 | 71 |
AInC200, % | 23 | 19 | 29 | 37 | 47 |
AInC200D, % | 26 | 35 | 59 | 77 | 81 |
Abbreviations | 1 h | 3 h | 5 h | 7 h | 24 h |
---|---|---|---|---|---|
AIcC200 vs. | |||||
AI | 0.318 | 0.003 | 0.003 | 0.916 | 0.793 |
AID | 0.371 | 0.001 | 0.001 | 0.001 | 0.004 |
AIcC200D vs. | |||||
AI | 0.599 | 0.001 | 0.001 | 0.001 | 0.001 |
AID | 0.674 | 0.270 | 0.141 | 0.001 | 0.024 |
AIcC200 | 0.958 | 0.001 | 0.001 | 0.001 | 0.001 |
AInC200 vs. | |||||
AI | 0.040 | 0.001 | 0.001 | 0.001 | 0.002 |
AID | 0.027 | 0.018 | 0.001 | 0.003 | 0.563 |
AInC200D vs. | |||||
AI | 0.035 | 0.001 | 0.001 | 0.001 | 0.001 |
AID | 0.021 | 0.052 | 0.010 | 0.001 | 0.031 |
AInC200 | 0.713 | 0.002 | 0.001 | 0.001 | 0.021 |
Abbreviation | MDA [nmol/mL] | NOx [μmol/L] | TOS [µmol H2O2 equiv./L] | TAC [mmol Trolox/L] | SH [mg%] | OSI [µmol H2O2 equiv./L/mmol Trolox/L] | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Serum | Tissue | Serum | Tissue | Serum | Tissue | Serum | Tissue | Serum | Tissue | Serum | Tissue | |
AIcC200 vs. | ||||||||||||
AI | 0.128 | 0.004 | 0.318 | 0.041 | 0.227 | 0.372 | 0.001 | 0.001 | 0.495 | 0.001 | 0.004 | 0.270 |
AID | 0.248 | 0.010 | 0.001 | 0.010 | 0.227 | 0.058 | 0.001 | 0.001 | 0.270 | 0.713 | 0.270 | 0.083 |
AIcC200D vs. | ||||||||||||
AI | 0.005 | 0.001 | 0.001 | 0.001 | 0.001 | 0.012 | 0.001 | 0.001 | 0.001 | 0.002 | 0.001 | 0.010 |
AID | 0.636 | 0.958 | 0.007 | 0.066 | 0.713 | 0.462 | 0.001 | 0.001 | 0.002 | 0.318 | 0.564 | 0.318 |
AIcC200 | 0.014 | 0.010 | 0.001 | 0.001 | 0.002 | 0.012 | 0.001 | 0.010 | 0.002 | 0.564 | 0.002 | 0.010 |
AInC200 vs. | ||||||||||||
AI | 0.024 | 0.001 | 0.010 | 0.003 | 0.005 | 0.127 | 0.001 | 0.001 | 0.001 | 0.002 | 0.001 | 0.041 |
AID | 0.875 | 0.074 | 0.066 | 0.494 | 0.713 | 0.595 | 0.001 | 0.001 | 0.006 | 0.344 | 0.713 | 0.958 |
AInC200D vs. | ||||||||||||
AI | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
AID | 0.128 | 0.318 | 0.001 | 0.003 | 0.189 | 0.005 | 0.001 | 0.001 | 0.004 | 0.093 | 0.104 | 0.004 |
AInC200 | 0.172 | 0.003 | 0.001 | 0.001 | 0.018 | 0.004 | 0.001 | 0.016 | 0.066 | 0.528 | 0.018 | 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boarescu, I.; Boarescu, P.-M.; Pop, R.M.; Bocșan, I.C.; Gheban, D.; Râjnoveanu, R.-M.; Râjnoveanu, A.; Bulboacă, A.E.; Buzoianu, A.D.; Bolboacă, S.D. Curcumin Nanoparticles Enhance Antioxidant Efficacy of Diclofenac Sodium in Experimental Acute Inflammation. Biomedicines 2022, 10, 61. https://doi.org/10.3390/biomedicines10010061
Boarescu I, Boarescu P-M, Pop RM, Bocșan IC, Gheban D, Râjnoveanu R-M, Râjnoveanu A, Bulboacă AE, Buzoianu AD, Bolboacă SD. Curcumin Nanoparticles Enhance Antioxidant Efficacy of Diclofenac Sodium in Experimental Acute Inflammation. Biomedicines. 2022; 10(1):61. https://doi.org/10.3390/biomedicines10010061
Chicago/Turabian StyleBoarescu, Ioana, Paul-Mihai Boarescu, Raluca Maria Pop, Ioana Corina Bocșan, Dan Gheban, Ruxandra-Mioara Râjnoveanu, Armand Râjnoveanu, Adriana Elena Bulboacă, Anca Dana Buzoianu, and Sorana D. Bolboacă. 2022. "Curcumin Nanoparticles Enhance Antioxidant Efficacy of Diclofenac Sodium in Experimental Acute Inflammation" Biomedicines 10, no. 1: 61. https://doi.org/10.3390/biomedicines10010061
APA StyleBoarescu, I., Boarescu, P. -M., Pop, R. M., Bocșan, I. C., Gheban, D., Râjnoveanu, R. -M., Râjnoveanu, A., Bulboacă, A. E., Buzoianu, A. D., & Bolboacă, S. D. (2022). Curcumin Nanoparticles Enhance Antioxidant Efficacy of Diclofenac Sodium in Experimental Acute Inflammation. Biomedicines, 10(1), 61. https://doi.org/10.3390/biomedicines10010061