How Risk Factors Affect Head and Neck Squamous Cell Carcinoma (HNSCC) Tumor Immune Microenvironment (TIME): Their Influence on Immune Escape Mechanisms and Immunotherapy Strategy
Abstract
:1. Introduction
2. HNSCC Tumor Microenvironment: General Considerations
3. The Main Immunophenotypes Identify Specific Escape Mechanisms
4. Different Microenvironments in HNSCC
4.1. Difference between Carcinogen-Associated and Virus-Associated HNSCC
4.2. How Smoking Affects HNSCC TIME and Its Influence on Escape Mechanisms to Immunotherapy
4.3. How HPV Affects HNSCC TIME and Influences Escape Mechanisms
4.4. How EBV Affects Nasopharyngeal Cancer (NPC) TIME and Its Influence on Escape Mechanisms
5. How Different HNSCC Risk Factors Influence the Response to Immunotherapy in Clinical Trials
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, L.Q.M. Head and Neck Cancer. N. Engl. J. Med. 2020, 382, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Ang, K.K.; Harris, J.; Wheeler, R.; Weber, R.; Rosenthal, D.I.; Nguyen-Tân, P.F.; Westra, W.H.; Chung, C.H.; Jordan, R.C.; Lu, C.; et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N. Engl. J. Med. 2010, 363, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.P.; Chan, A.T.; Le, Q.T.; Blanchard, P.; Sun, Y.; Ma, J. Nasopharyngeal carcinoma. Lancet 2019, 394, 64–80. [Google Scholar] [CrossRef]
- Ferris, R.L.; Blumenschein, G., Jr.; Fayette, J.; Guigay, J.; Colevas, A.D.; Licitra, L.; Harrington, K.; Kasper, S.; Vokes, E.E.; Even, C.; et al. Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. N. Engl. J. Med. 2016, 375, 1856–1867. [Google Scholar] [CrossRef] [Green Version]
- Ferris, R.L.; Blumenschein, G., Jr.; Fayette, J.; Guigay, J.; Colevas, A.D.; Licitra, L.; Harrington, K.J.; Kasper, S.; Vokes, E.E.; Even, C.; et al. Nivolumab vs. investigator’s choice in recurrent or metastatic squamous cell carcinoma of the head and neck: 2-year long-term survival update of CheckMate 141 with analyses by tumor PD-L1 expression. Oral Oncol. 2018, 81, 45–51. [Google Scholar] [CrossRef]
- Burtness, B.; Harrington, K.J.; Greil, R.; Souliéres, D.; Tahara, M.; de Castro Jr, G.; Psyrri, A.; Basté, N.; Neupane, P.; Bratland, A.; et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): A randomised, open-label, phase 3 study. Lancet 2019, 394, 1915–1928. [Google Scholar] [CrossRef]
- Burtness, B.; Rischin, D.; Greil, R.; Soulières, D.; Tahara, M.; de Castro, G., Jr.; Psyrri, A.; Brana, I.; Basté, N.; Neupane, P.; et al. Pembrolizumab Alone or With Chemotherapy for Recurrent/Metastatic Head and Neck Squamous Cell Carcinoma in KEYNOTE-048: Subgroup Analysis by Programmed Death Ligand-1 Combined Positive Score. J. Clin. Oncol. 2022, 40, 2321–2332. [Google Scholar] [CrossRef]
- Succaria, F.; Kvistborg, P.; Stein, J.E.; Engle, E.L.; McMiller, T.L.; Rooper, L.M.; Thompson, E.; Berger, A.E.; Brekel, M.V.D.; Zuur, C.L.; et al. Characterization of the tumor immune microenvironment in human papillomavirus-positive and -negative head and neck squamous cell carcinomas. Cancer Immunol. Immunother. 2020, 70, 1227–1237. [Google Scholar] [CrossRef]
- Bhat, A.A.; Yousuf, P.; Wani, N.A.; Rizwan, A.; Chauhan, S.S.; Siddiqi, M.A.; Bedognetti, D.; El-Rifai, W.; Frenneaux, M.P.; Batra, S.K.; et al. Tumor microenvironment: An evil nexus promoting aggressive head and neck squamous cell carcinoma and avenue for targeted therapy. Signal Transduct. Target Ther. 2021, 6, 12. [Google Scholar] [CrossRef]
- Janis, V.; Slebos, R.J.C.; Martin-Gomez, L.; Wang, X. Effects of tobacco smoking on the tumor immune microenvironment in head and neck squamous cell carcinoma. Cancer Res. 2020, 26, 1474–1485. [Google Scholar]
- Ferris, R.L. Immunology and Immunotherapy of Head and Neck Cancer. J. Clin. Oncol. 2015, 33, 3293–3304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wondergem, N.E.; Nauta, I.H.; Muijlwijk, T.; Leemans, C.R.; van de Ven, R. The Immune Microenvironment in Head and Neck Squamous Cell Carcinoma: On Subsets and Subsites. Curr. Oncol. Rep. 2020, 22, 81. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, R.D.; Old, L.J.; Smyth, M.J. Cancer immunoediting: Integrating immunity’s roles in cancer suppression and promotion. Science 2011, 331, 1565–1570. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.S.; Mellman, I. Elements of cancer immunity and the cancer–immune set point. Nature 2017, 541, 321–330. [Google Scholar] [CrossRef]
- Herbst, R.S.; Soria, J.-C.; Kowanetz, M.; Fine, G.D.; Hamid, O.; Gordon, M.S.; Sosman, J.A.; McDermott, D.F.; Powderly, J.D.; Gettinger, S.N.; et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 2014, 515, 563–567. [Google Scholar] [CrossRef] [Green Version]
- Gajewski, T.F. The Next Hurdle in Cancer Immunotherapy: Overcoming the Non–T-Cell–Inflamed Tumor Microenvironment. Semin. Oncol. 2015, 42, 663–671. [Google Scholar] [CrossRef] [Green Version]
- Gajewski, T.F.; Woo, S.-R.; Zha, Y.; Spaapen, R.; Zheng, Y.; Corrales, L.; Spranger, S. Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Curr. Opin. Immunol. 2013, 25, 268–276. [Google Scholar] [CrossRef]
- Joyce, J.A.; Fearon, D.T. T cell exclusion, immune privilege, and the tumor microenvironment. Science 2015, 348, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Salmon, H.; Franciszkiewicz, K.; Damotte, D.; Dieu-Nosjean, M.-C.; Validire, P.; Trautmann, A.; Mami-Chouaib, F.; Donnadieu, E. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J. Clin. Investig. 2012, 122, 899–910. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.M.; Chen, D.S. Immune escape to PD-L1/PD-1 blockade: Seven steps to success (or failure). Ann. Oncol. 2016, 27, 1492–1504. [Google Scholar] [CrossRef] [PubMed]
- Hegde, P.S.; Karanikas, V.; Evers, S. The where, the when, and the how of immune monitoring for cancer immunotherapies in the era of checkpoint inhibition. Clin. Cancer Res. 2016, 22, 1865–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandal, R.; Senbabaoglu, Y.; Descrichard, A.; Havel, J.J.; Dalin, M.G.; Riaz, N.; Lee, K.W.; Ganly, I.; Hakimi, A.A.; Chan, T.A.; et al. The head and neck cancer immune landscape and its immunotherapeutic implications. JCI Insight 2016, 1, e89829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribbat-Idel, J.; Perner, S.; Kuppler, P.; Klapper, L.; Krupar, R.; Watermann, C.; Paulsen, F.O.; Offermann, A.; Bruchhage, K.-L.; Wollenberg, B.; et al. Immunologic ‘Cold’ Squamous Cell Carcinomas of the Head and Neck Are Associated with an Unfavorable Prognosis. Front. Med. 2021, 8, 622330. [Google Scholar] [CrossRef]
- Johnson, D.E.; Burtness, B.; Leemans, C.R.; Lui, V.W.Y.; Bauman, J.E.; Grandis, J.R. Head and neck squamous cell carcinoma. Nat. Rev. Dis. Prim. 2020, 6, 92. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Bethmann, D.; Kappler, M.; Ballesteros-Merino, C.; Eckert, A.; Bell, R.B.; Cheng, A.; Bui, T.; Leidner, R.; Urba, W.J.; et al. Multiparametric immune profiling in HPV– oral squamous cell cancer. JCI Insight 2017, 2, e93652. [Google Scholar] [CrossRef] [PubMed]
- Tsujikawa, T.; Kumar, S.; Borkar, R.N.; Azimi, V.; Thibault, G.; Chang, Y.H.; Balter, A.; Kawashima, R.; Choe, G.; Sauer, D.; et al. Quantitative Multiplex Immunohistochemistry Reveals Myeloid-Inflamed Tumor-Immune Complexity Associated with Poor Prognosis. Cell Rep. 2017, 19, 203–217. [Google Scholar] [CrossRef]
- Saloura, V.; Izumchenko, E.; Zuo, Z.; Bao, R.; Korzinkin, M.; Ozerov, I.; Zhavoronkov, A.; Sidransky, D.; Bedi, A.; Hoque, M.O.; et al. Immune profiles in primary squamous cell carcinoma of the head and neck. Oral Oncol. 2019, 96, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Chakravarthy, A.; Henderson, S.; Thirdbough, S.M.; Ottensmeier, C.H.; Su, X.; Lechner, M.; Feber, A.; Thomas, G.J.; Fenton, T.R. Human Papillomavirus Drives Tumor Development Throughout the Head and Neck: Improved Prognosis Is Associated with an Immune Response Largely Restricted to the Oropharynx. J. Clin. Oncol. 2016, 34, 4132–4141. [Google Scholar] [CrossRef] [PubMed]
- King, E.V.; Ottensmeier, C.H.; Thomas, G.J. The immune response in HPV+ oropharyngeal cancer. Oncoimmunology 2014, 3, e27254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, L.; Kwong, D.L.W.; Dai, W.; Wu, P.; Wang, Y.; Lee, A.W.M.; Guan, X.Y. The Stromal and Immune Landscape of Nasopharyngeal Carcinoma and Its Implications for Precision Medicine Targeting the Tumor Microenvironment. Front. Oncol. 2021, 11, 744889. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Guo, C.; Xiong, F.; Yu, J.; Ge, J.; Wang, H.; Liao, Q.; Zhou, Y.; Gong, Q.; Xiang, B. Single cell RNA-seq reveals the landscape of tumor and infiltrating immune cells in nasopharyngeal carcinoma. Cancer Lett. 2020, 477, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, C.P.; Morrow, K.; Velasco, C.; Wyczechowska, D.D.; Naura, A.S.; Rodriguez, P.C. Effects of cigarette smoke extract on primary activated T cells. Cell. Immunol. 2013, 282, 38–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Kuang, Z.; Zhang, D.; Gao, Y.; Mingzhen, Y.; Wang, T. Reactive oxygen species in immune cells: A new antitumor target. Biomed. Pharmacother. 2021, 133, 110978. [Google Scholar] [CrossRef]
- Gelderman, K.A.; Hultqvist, M.; Holmberg, J.; Olofsson, P.; Holmdahl, R. T cell surface redox levels determine T cell reactivity and arthritis susceptibility. Proc. Natl. Acad. Sci. USA 2006, 103, 12831–12836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joyce, D.; Albanese, C.; Steer, J.; Fu, M.; Bouzahzah, B.; Pestell, R.G. NF-κB and cell-cycle regulation: The cyclin connection. Cytokine Growth Factor Rev. 2001, 12, 73–90. [Google Scholar] [CrossRef]
- Alexandrov, L.B.; Zainal, S.N.; Wedge, D.C.; Aparicio, S.A.J.R.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Borresen-Dale, A.L.; et al. Signatures of mutational processes in human cancer. Nature 2013, 500, 415–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desrichard, A.; Kuo, F.; Chowell, D.; Lee, K.-W.; Riaz, N.; Wong, R.J.; Chan, T.A.; Morris, L.G.T. Tobacco Smoking-Associated Alterations in the Immune Microenvironment of Squamous Cell Carcinomas. J. Natl. Cancer Inst. 2018, 110, 1386–1392. [Google Scholar] [CrossRef]
- Tokunaga, R.; Zhang, W.; Naseem, M.; Puccini, A.; Berger, M.D.; Soni, S.; McSkane, M.; Baba, H.; Lenz, H.J. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation—A target for novel cancer therapy. Cancer Treat. Rev. 2018, 63, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Ayers, M.; Lunceford, J.; Nezbozhyn, M.; Murphy, E.; Loboda, A.; Kaufman, D.R.; Albright, A.; Cheng, J.D.; Kang, S.P.; Shankaran, V. IFN-γ–related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Investig. 2017, 127, 2930–2940. [Google Scholar] [CrossRef] [PubMed]
- Cristescu, R.; Mogg, R.; Ayers, M.; Albright, A.; Murphy, E.; Yearley, J.; Sher, X.; Liu, X.Q.; Lu, H.; Nebozhyn, M.; et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade–based immunotherapy. Science 2018, 362, eaar3593. [Google Scholar] [CrossRef]
- Chheda, Z.S.; Sharma, R.K.; Jala, V.R.; Luster, A.D.; Haribabu, B. Chemoattractant Receptors BLT1 and CXCR3 Regulate Antitumor Immunity by Facilitating CD8 T Cell Migration into Tumors. J. Immunol. 2016, 197, 2016–2026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galon, J.; Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 2019, 18, 197–218. [Google Scholar] [CrossRef]
- Hao, Q.; Vadgama, J.V.; Wang, P. CCL2/CCR2 signaling in cancer pathogenesis. Cell Commun. Signal. 2020, 18, 82. [Google Scholar] [CrossRef]
- Harper, J.; Sainson, R.C.A. Regulation of the anti-tumour immune response by cancer-associated fibroblasts. Semin. Cancer Biol. 2014, 25, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Chanmee, T.; Ontong, P.; Konno, K.; Itano, N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers 2014, 6, 1670–1690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brooks, J.M.; Menezes, A.N.; Ibrahim, M.; Archer, L.; Lal, N.; Bagnall, C.J.; Von Zeidler, S.V.; Valentine, H.R.; Spruce, R.J.; Batis, N.; et al. Development and Validation of a Combined Hypoxia and Immune Prognostic Classifier for Head and Neck Cancer. Clin. Cancer Res. 2019, 25, 5315–5328. [Google Scholar] [CrossRef] [Green Version]
- Seiwert, T.Y.; Zuo, Z.; Keck, M.K.; Khattri, A.; Pedamallu, C.S.; Stricker, T.; Brown, C.; Pugh, T.P.; Stojanov, P.; Cho, J.; et al. Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas. Clin. Cancer Res. 2015, 21, 632–641. [Google Scholar] [CrossRef] [Green Version]
- Stransky, N.; Egloff, A.M.; Tward, A.D.; Kostic, A.D.; Cibulskis, K.; Sivachenko, A.; Kryukov, G.V.; Lawrance, M.S.; Sougnez, C.; McKenna, A.; et al. The mutational landscape of head and neck squamous cell carcinoma. Science 2011, 333, 1157–1160. [Google Scholar] [CrossRef] [Green Version]
- Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 2015, 517, 576–582. [Google Scholar] [CrossRef] [Green Version]
- Blagih, J.; Zani, F.; Chakravarty, P.; Hennequart, M.; Pilley, S.; Hobor, S.; Hock, A.K.; Walton, J.B.; Morton, J.P.; Gronroos, E.; et al. Cancer-Specific Loss of p53 Leads to a Modulation of Myeloid and T Cell Responses. Cell Rep. 2020, 30, 481–496.e6. [Google Scholar] [CrossRef] [PubMed]
- Crosbie, E.J.; Einstein, M.H.; Franceschi, S.; Kitchener, H.C. Human papillomavirus and cervical cancer. Lancet 2013, 382, 889–899. [Google Scholar] [CrossRef]
- Frazer, I.H. Interaction of human papillomaviruses with the host immune system: A well evolved relationship. Virology 2009, 384, 410–414. [Google Scholar] [CrossRef] [Green Version]
- Piersma, S.J. Immunosuppressive Tumor Microenvironment in Cervical Cancer Patients. Cancer Microenviron. 2011, 4, 361–375. [Google Scholar] [CrossRef] [Green Version]
- Koneva, L.A.; Zhang, Y.; Virani, S.; Hall, P.B.; McHugh, J.B.; Chepeha, D.B.; Wolf, G.T.; Carey, T.E.; Rozek, L.S.; Sartor, M.A. HPV Integration in HNSCC Correlates with Survival Outcomes, Immune Response Signatures, and Candidate Drivers. Mol. Cancer Res. 2018, 16, 90–102. [Google Scholar] [CrossRef] [Green Version]
- Doorbar, J.; Quint, W.; Banks, L.; Bravo, I.G.; Stoler, M.; Broker, T.R.; Stanley, M.A. The biology and life-cycle of human papillomaviruses. Vaccine 2012, 30 (Suppl. S5), F55–F70. [Google Scholar] [CrossRef]
- Welters, M.J.P.; Kenter, G.G.; Piersma, S.J.; Vloon, A.P.G.; Lowik, J.G.; Berends-van der Meer, D.M.; Drijfhout, J.W.; Valentijn, A.R.P.M.; Wafelman, A.R.; Oostendorp, J.; et al. Induction of tumor-specific CD4+ and CD8+ T-cell immunity in cervical cancer patients by a human papillomavirus type 16 E6 and E7 long peptides vaccine. Clin Cancer Res. 2008, 14, 178–187. [Google Scholar] [CrossRef] [Green Version]
- Iuliano, M.; Mangino, G.; Chiantore, M.V.; Zangrillo, M.S.; Accardi, R.; Tommasino, M.; Fiorucci, G.; Romeo, G. Human Papillomavirus E6 and E7 oncoproteins affect the cell microenvironment by classical secretion and extracellular vesicles delivery of inflammatory mediators. Cytokine 2018, 106, 182–189. [Google Scholar] [CrossRef]
- Nisar, S.; Yousuf, P.; Masoodi, T.; Wani, N.A.; Hashem, S.; Singh, M.; Sageena, G.; Mishra, D.; Kumar, R.; Haris, M.; et al. Chemokine-Cytokine Networks in the Head and Neck Tumor Microenvironment. Int. J. Mol. Sci. 2021, 22, 4584. [Google Scholar] [CrossRef]
- McLane, L.M.; Abdel-Hakeem, M.S.; Wherry, E.J. CD8 T Cell Exhaustion During Chronic Viral Infection and Cancer. Annu. Rev. Immunol. 2019, 37, 457–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batlle, E.; Massagué, J. Transforming Growth Factor-β Signaling in Immunity and Cancer. Immunity 2019, 50, 924–940. [Google Scholar] [CrossRef]
- Raposo, G.; Stoorvogel, W. Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell Biol. 2013, 200, 373–383. [Google Scholar] [CrossRef] [Green Version]
- Honegger, A.; Leitz, J.; Bulkescher, J.; Hoppe-Seyler, K.; Hoppe-Seyler, F. Silencing of human papillomavirus (HPV) E6/E7 oncogene expression affects both the contents and the amounts of extracellular microvesicles released from HPV-positive cancer cells. Int. J. Cancer 2013, 133, 1631–1642. [Google Scholar] [CrossRef]
- Raposo, G.; Nijman, H.W.; Stoorvogel, W.; Liejendekker, R.; Harding, C.V.; Melief, C.J.; Geuze, H.J. B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 1996, 183, 1161–1172. [Google Scholar] [CrossRef]
- Marar, C.; Starich, B.; Wirtz, D. Extracellular vesicles in immunomodulation and tumor progression. Nat. Immunol. 2021, 22, 560–570. [Google Scholar] [CrossRef]
- Guenat, D.; Hermetet, F.; Prétet, J.-L.; Mougin, C. Exosomes and Other Extracellular Vesicles in HPV Transmission and Carcinogenesis. Viruses 2017, 9, 211. [Google Scholar] [CrossRef] [Green Version]
- Spitkovsky, D.; Hehner, S.P.; Hofmann, T.G.; Möller, A.; Schmitz, M.L. The human papillomavirus oncoprotein E7 attenuates NF-κB activation by targeting the IκB kinase complex. J. Biol. Chem. 2002, 277, 25576–25582. [Google Scholar] [CrossRef] [Green Version]
- Karim, R.; Meyers, C.; Backendorf, C.; Ludings, K.; Offringa, R.; van Ommen, G.J.B.; Melief, J.M.; van der Burg, S.H.; Boer, J.M. Human papillomavirus deregulates the response of a cellular network comprising of chemotactic and proinflammatory genes. PLoS ONE 2011, 6, e17848. [Google Scholar] [CrossRef] [Green Version]
- Das, C.R.; Tiwari, D.; Dongre, A.; Khan, M.A.; Husain, S.A.; Sarma, A.; Bose, S.; Bose, P.D. Deregulated TNF-Alpha Levels Along with HPV Genotype 16 Infection Are Associated with Pathogenesis of Cervical Neoplasia in Northeast Indian Patients. Viral Immunol. 2018, 31, 282–291. [Google Scholar] [CrossRef]
- Mangino, G.; Chiantore, M.V.; Iuliano, M.; Fiorucci, G.; Romeo, G. Inflammatory microenvironment and human papillomavirus-induced carcinogenesis. Cytokine Growth Factor Rev. 2016, 30, 103–111. [Google Scholar] [CrossRef]
- Briard, B.; Place, D.E.; Kanneganti, T.-D. DNA Sensing in the Innate Immune Response. Physiology 2020, 35, 112–124. [Google Scholar] [CrossRef]
- Wang, S.; Zhuang, X.; Gao, C.; Qiao, T. Expression of p16, p53, and TLR9 in HPV-Associated Head and Neck Squamous Cell Carcinoma: Clinicopathological Correlations and Potential Prognostic Significance. Onco. Targets. Ther. 2021, 14, 867. [Google Scholar] [CrossRef]
- Luo, X.; Donnelly, C.R.; Gong, W.; Health, B.R.; Hao, Y.; Donnelly, L.A.; Moghbeli, T.; Tan, Y.S.; Lin, X.; Bellile, E.; et al. HPV16 drives cancer immune escape via NLRX1-mediated degradation of STING. J. Clin. Investig. 2020, 130, 1635–1652. [Google Scholar] [CrossRef] [Green Version]
- Cillo, A.R.; Kurten, C.H.L.; Tabib, T.; Qi, Z.; Onkar, S.; Wang, T.; Liu, A.; Duvvuri, U.; Kim, S.; Soose, R.; et al. Immune Landscape of Viral- and Carcinogen-Driven Head and Neck Cancer. Immunity 2020, 52, 183–199.e9. [Google Scholar] [CrossRef]
- Salehiniya, H.; Mohammadian, M.; Mohammadian-Hafshejani, A.; Mahdavifar, N. Nasopharyngeal cancer in the world: Epidemiology, incidence, mortality and risk factors. World Cancer Res. J. 2018, 5, e1046. [Google Scholar]
- Gondhowiardjo, S.A.; Adham, M.; Lisnawati, L.; Kodrat, H.; Tobing, D.L.; Handoko., H.; Haryoga, I.M.; Dwiyono, A.G.; Kristian, Y.A. Current Immune-Related Molecular Approach in Combating Nasopharyngeal Cancer. World J. Oncol. 2019, 10, 157–161. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.B.; Manet, E.; Gruffat, H.; Busson, P.; Blondel, M.; Fahraeus, R. EBNA1: Oncogenic Activity, Immune Evasion and Biochemical Functions Provide Targets for Novel Therapeutic Strategies against Epstein-Barr Virus- Associated Cancers. Cancers 2018, 10, 109. [Google Scholar] [CrossRef] [Green Version]
- Tsang, C.M.; Lui, V.W.Y.; Bruce, J.P.; Pugh, T.J.; Lo, K.W. Translational genomics of nasopharyngeal cancer. Semin. Cancer Biol. 2020, 61, 84–100. [Google Scholar] [CrossRef]
- Wong, K.C.W.; Hiu, E.H.; Lo, K.W.; Lam, W.K.J.; Johnson, D.; Li, L.; Tao, Q.; Chan, K.C.A.; To, K.F.; King, A.D.; et al. Nasopharyngeal carcinoma: An evolving paradigm. Nat. Rev. Clin. Oncol. 2021, 18, 679–695. [Google Scholar] [CrossRef]
- Bauer, M.; Jasinski-Bergner, S.; Mandelboim, O.; Wickenhauser, C.; Seliger, B. Epstein–Barr Virus—Associated Malignancies and Immune Escape: The Role of the Tumor Microenvironment and Tumor Cell Evasion Strategies. Cancers 2021, 13, 5189. [Google Scholar] [CrossRef]
- Liu, Y.; He, S.; Wang, X.L.; Peng, W.; Chen, Q.Y.; Chi, D.M.; Chen, J.R.; Han, B.W.; Lin, G.W.; Li, Y.Q.; et al. Tumour heterogeneity and intercellular networks of nasopharyngeal carcinoma at single cell resolution. Nat. Commun. 2021, 12, 741. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Yang, J.; Li, M.; Huang, N.; Chen, Y.; Wu, X.; Wang, X.; Qiu, S.; Wang, H.; Li, X. Viral IL-10 promotes cell proliferation and cell cycle progression via JAK2/STAT3 signaling pathway in nasopharyngeal carcinoma cells. Biotechnol. Appl. Biochem. 2020, 67, 929–938. [Google Scholar] [CrossRef] [PubMed]
- Zlotnik, A.; Moore, K.W. Interleukin 10. Cytokine 1991, 3, 366–371. [Google Scholar] [CrossRef]
- Baumforth, K.R.N.; Birgersdotter, A.; Reynolds, G.M.; Wei, W.; Kapatai, G.; Flavell, J.R.; Kalk, E.; Piper, K.; Lee, S.; Machado, L.; et al. Expression of the Epstein-Barr virus-encoded Epstein-Barr virus nuclear antigen 1 in Hodgkin’s lymphoma cells mediates Up-regulation of CCL20 and the migration of regulatory T cells. Am. J. Pathol. 2008, 173, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Keryer-Bibens, C.; Pioche-Durieu, C.; Villemant, C.; Souquère, S.; Nishi, N.; Hirashima, M.; Middeldorp, J.; Busson, P. Exosomes released by EBV-infected nasopharyngeal carcinoma cells convey the viral latent membrane protein 1 and the immunomodulatory protein galectin 9. BMC Cancer 2006, 6, 283. [Google Scholar] [CrossRef] [Green Version]
- Shah, K.M.; Stewart, S.E.; Wei, W.; Woodman, C.B.J.; O’Neil, J.D.; Dawson, C.W.; Young, L.S. The EBV-encoded latent membrane proteins, LMP2A and LMP2B, limit the actions of interferon by targeting interferon receptors for degradation. Oncogene 2009, 28, 3903–3914. [Google Scholar] [CrossRef] [Green Version]
- Nachmani, D.; Stern-Ginossar, N.; Sarid, R.; Mandelboim, O. Diverse herpesvirus microRNAs target the stress-induced immune ligand MICB to escape recognition by natural killer cells. Cell Host Microbe 2009, 5, 376–385. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.-C.; Liu, T.-Y.; Hsu, S.-M.; Lin, C.-W. Epstein-Barr Virus–Encoded miR-BART20-5p Inhibits T-bet Translation with Secondary Suppression of p53 in Invasive Nasal NK/T-Cell Lymphoma. Am. J. Pathol. 2013, 182, 1865–1875. [Google Scholar] [CrossRef]
- Haneklaus, M.; Gerlic, M.; Kurowska-Stolarska, M.; Rainey, A.A.; Pich, D.; McInnes, I.B.; Hammerschmidt, W.; O’Neill, L.A.; Masters, S. Cutting edge: miR-223 and EBV miR-BART15 regulate the NLRP3 inflammasome and IL-1β production. J. Immunol. 2012, 189, 3795–3799. [Google Scholar] [CrossRef] [Green Version]
- Zeligs, K.P.; Neuman, M.K.; Annunziata, C.M. Molecular Pathways: The Balance between Cancer and the Immune System Challenges the Therapeutic Specificity of Targeting Nuclear Factor-κB Signaling for Cancer Treatment. Clin. Cancer Res. 2016, 22, 4302–4308. [Google Scholar] [CrossRef] [Green Version]
- Lalle, G.; Twardowski, J.; Grinberg-Bleyer, Y. NF-κB in Cancer Immunity: Friend or Foe? Cells 2021, 10, 355. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Chung, G.T.Y.; Lui, V.W.Y.; To, K.F.; Ma, B.B.Y.; Chow, C.; Woo, J.K.S.; Yip, K.Y.; Seo, J.; Hui, E.P.; et al. Exome and genome sequencing of nasopharynx cancer identifies NF-κB pathway activating mutations. Nat. Commun. 2017, 8, 14121. [Google Scholar] [PubMed]
- Facciabene, A.; Motz, G.T.; Coukos, G. T-regulatory cells: Key players in tumor immune escape and angiogenesis. Cancer Res. 2012, 72, 2162–2171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seiwert, T.Y.; Burtness, B.; Mehra, R.; Weiss, J.; Berger, R.; Eder, J.P.; Heath, K.; McClanahan, T.; Luncerford, J.; Gause, C.; et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): An open-label, multicentre, phase 1b trial. Lancet Oncol. 2016, 17, 956–965. [Google Scholar]
- Mehra, R.; Seiwert, T.Y.; Gupta, S.; Weiss, J.; Gluck, I.; Eder, J.P.; Burtness, B.; Tahara, M.; Keam, B.; Kang, H.; et al. Efficacy and safety of pembrolizumab in recurrent/metastatic head and neck squamous cell carcinoma: Pooled analyses after long-term follow-up in KEYNOTE-012. Br. J. Cancer 2018, 119, 153–159. [Google Scholar] [CrossRef]
- Zandberg, D.P.; Algazi, A.P.; Jimeno, A.; Good, J.; Fayette, J.; Bouganin, N.; Ready, N.E.; Clement, P.M.; Even, C.; Jang, R.W.; et al. Durvalumab for recurrent or metastatic head and neck squamous cell carcinoma: Results from a single-arm, phase II study in patients with ≥25% tumour cell PD-L1 expression who have progressed on platinum-based chemotherapy. Eur. J. Cancer 2019, 107, 142–152. [Google Scholar] [CrossRef] [Green Version]
- Cohen, E.E.W.; Soulières, D.; Le Tourneau, C.; Dinis, J.; Licitra, L.; Ahn, M.J.; Soria, A.; Machiels, J.P.; Mach, N.; Mehra, R.; et al. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): A randomised, open-label, phase 3 study. Lancet 2019, 393, 156–167. [Google Scholar] [CrossRef]
- Galvis, M.M.; Borges, G.A.; de Olivero, T.B.; de Toledo, I.P.; Castilho, R.M.; Guerra, E.N.S.; Kowalski, L.P.; Squarize, C.H. Immunotherapy improves efficacy and safety of patients with HPV positive and negative head and neck cancer: A systematic review and meta-analysis. Crit. Rev. Oncol. Hematol. 2020, 150, 102966. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, G.; Maroun, C.A.; Wu, I.X.Y.; Huang, D.; Seiwert, T.Y.; Liu, Y.; Mandal, R.; Zhang, X. Programmed Death-1/Programmed Death-Ligand 1-Axis Blockade in Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma Stratified by Human Papillomavirus Status: A Systematic Review and Meta-Analysis. Front. Immunol. 2021, 12, 645170. [Google Scholar] [CrossRef]
- Mayoux, M.; Roller, A.; Pulko, V.; Sammicheli, S.; Chen, S.; Sum, E.; Jost, C.; Fransen, M.F.; Buser, R.B.; Kowanetz, M.; et al. Dendritic cells dictate responses to PD-L1 blockade cancer immunotherapy. Sci. Transl. Med. 2020, 12, aav7431. [Google Scholar] [CrossRef]
- Qureshi, H.A.; Zhu, X.; Yang, G.H.; Steadele, M.; Pierce, R.H.; Futran, N.D.; Lee, S.M.; Méndez, E.; Houghton, A.M. Impact of HPV status on immune responses in head and neck squamous cell carcinoma. Oral Oncol. 2022, 127, 105774. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.-C.; Cao, R.B.; Fu, C.; Chen, W.B.; Li, P.D.; Lin, G.H.; Qian, X.J.; Li, Y.T.; Liu, Q. The efficacy and safety of PD-1/PD-L1 inhibitors in patients with recurrent or metastatic nasopharyngeal carcinoma: A systematic review and meta-analysis. Oral Oncol. 2020, 104, 104640. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.B.Y.; Lim, W.T.; Coh, B.C.; Hui, E.O.; Lo, K.W.; Pettinger, A.; Foster, N.R.; Riess, J.W.; Agulnik, M.; Chang, A.Y.C.; et al. Antitumor Activity of Nivolumab in Recurrent and Metastatic Nasopharyngeal Carcinoma: An International, Multicenter Study of the Mayo Clinic Phase 2 Consortium (NCI-9742). J. Clin. Oncol. 2018, 36, 1412–1418. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.; Lee, S.H.; Ejadi, S.; Even, C.; Cohen, R.B.; Le Tourneau, C.; Mehnert, J.M.; Algazi, A.; van Brummelen, E.; Saraf, S.; et al. Safety and Antitumor Activity of Pembrolizumab in Patients with Programmed Death-Ligand 1-Positive Nasopharyngeal Carcinoma: Results of the KEYNOTE-028 Study. J. Clin. Oncol. 2017, 35, 4050–4056. [Google Scholar] [CrossRef]
- Yang, Y.; Qu, S.; Li, L.; Hu, C.; Xu, M.; Li, W.; Zhou, T.; Shen, L.; Wu, H.; Lang, J.; et al. Camrelizumab versus placebo in combination with gemcitabine and cisplatin as first-line treatment for recurrent or metastatic nasopharyngeal carcinoma (CAPTAIN-1st): A multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2021, 22, 1162–1174. [Google Scholar] [CrossRef]
- Economopoulou; Pantazopoulos, A.; Spathis, A.; Kotsantis, I.; Kyriazoglou, A.; Kavourakis, G.; Zakopoulou, R.; Chatzidakis, I.; Anastasiou, M.; Prevenzanou, M.; et al. Immunotherapy in Nonendemic Nasopharyngeal Carcinoma: Real-World Data from Two Nonendemic Regions. Cells 2021, 11, 32. [Google Scholar] [CrossRef]
- Garcia-Diaz, A.; Shin, D.S.; Moreno, B.H.; Saco, J.; Escuin-Ordinas, H.; Rodriguez, G.A.; Zaretsky, J.M.; Sun, L.; Hugo, W.; Wang, X.; et al. Interferon Receptor Signaling Pathways Regulating PD-L1 and PD-L2 Expression. Cell Rep. 2017, 19, 1189–1201. [Google Scholar] [CrossRef] [Green Version]
- Akhurst, R.J.; Hata, A. Targeting the TGFβ signalling pathway in disease. Nat. Rev. Drug Discov. 2012, 11, 790–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulley, J.L.; Schlom, J.; Barcellos-Hoff, M.H.; Wang, X.; Seoane, J.; Audhuy, F.; Lan, Y.; Dussault, I.; Moustakas, A. Dual inhibition of TGF-β and PD-L1: A novel approach to cancer treatment. Mol. Oncol. 2021, 16, 2117–2134. [Google Scholar] [CrossRef] [PubMed]
- Masterson, L.; Howard, J.; Gonzalez-Cruz, J.; Jackson, C.; Barnett, C.; Overton, L.; Liu, H.; Ladwa, R.; Simpson, F.; McGrath, M.; et al. Immune checkpoint inhibitors in advanced nasopharyngeal carcinoma: Beyond an era of chemoradiation? Int. J. Cancer 2020, 146, 2305–2314. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-P.; Yin, J.H.; Li, W.F.; Li, H.J.; Chen, D.P.; Zhang, C.J.; Lv, J.W.; Wang, Y.Q.; Li, X.M.; Li, J.Y.; et al. Single-cell transcriptomics reveals regulators underlying immune cell diversity and immune subtypes associated with prognosis in nasopharyngeal carcinoma. Cell Res. 2020, 30, 1024–1042. [Google Scholar] [CrossRef]
- Chen, Y.-P.; Lv, J.W.; Mao, Y.P.; Li, X.M.; Li, J.Y.; Wang, Y.Q.; Xu, C.; Li, Y.Q.; He, Q.M.; Yang, X.J.; et al. Unraveling tumour microenvironment heterogeneity in nasopharyngeal carcinoma identifies biologically distinct immune subtypes predicting prognosis and immunotherapy responses. Mol. Cancer 2021, 20, 14. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Xu, J.; Wang, W.; Liang, C.; Hua, J.; Liu, J.; Zhang, B.; Meng, Q.; Yu, X.; Shi, S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New finding and future perspective. Mol. Cancer 2021, 20, 131. [Google Scholar] [CrossRef]
Factors Influencing TIME | Involvement in TIME | Carcinogen- Associated Tumors (ref) | HPV- Associated Tumors (ref) | EBV- Associated Tumors (ref) |
---|---|---|---|---|
P53 | Block of apoptosis and increased mutational charge | ++ (48−50−51) exp | + (56) rev | + (88) exp |
LAG3 TIM3 TIGIT PD-1 | T-cell exhaustion | + (60, 66) rev | ++ (79) rev | |
+ (60, 66) rev + (60) rev + (60) rev | ++ (79) rev ++ (79) rev ++ (79) rev | |||
TMB | Increased tumor antigens | ++ (37) exp | ||
TCD8+ | Infiltrate-positive | -- (23) exp | ++ (28) exp | -- (84) cli |
TCD4+ | Infiltrate-positive | -- (10, 51) rev, exp | -- (55,60) rev c, rev | |
T regs | Infiltrate-negative | ++ (10, 51) rev, exp | ++ (28) exp | ++ (85) exp |
TAM M2 | Infiltrate-negative | ++ (43) rev | - (28) exp | ++ (93) rev |
NK cells | Infiltrate-positive | -- (23) exp | -- (55) rev c | + (88) exp |
DC CD11b+ | Infiltrate-positive Inhibition of antigen presentation | ++ (10, 51) rev, exp | -- (59) rev | |
IFNγ | Inflammatory response | -- (23) exp | -- (71−73) rev | -(71) rev |
CXCL9,10,11/ CXCR3 axis | Immune cell recruitment | - (42) exp | ++(78) rev | |
CCL2 IL-8 CCL20 | Proinflammatory Immunosuppression Treg recruitment | ++ (44) rev | -- (59) rev -- (59) rev -- (59) rev | ++ (84) cli |
TGF-β | Immunosuppression | ++ (45,46) rev | ++ (61) rev | |
IL-10 | Immunosuppression | ++ (45,46) rev | ++ (60) rev | ++ (82) exp |
IL-6 CXCL12 | Proinflammatory T-cell recruitment | ++ (45,46) rev | -- (70) rev + (59) rev |
Clinical Trial and Authors | Study Design | Setting | Intervention Drugs and ICIs | Population | ORR | PFS | OS |
---|---|---|---|---|---|---|---|
Keynote-012 [94] Seiwert, T.Y.; et al., Lancet Oncol. 2016 | 1b, nonrandomized, open-label | R/M HNSCC 2°line | Pembrolizumab | 84 pts -23 (38%) HPV+ vs. 37 (62%) HPV- -61 (78%) PD-L1 > 1 -51 (85%) with tobacco use | 18% (8 of 45; 95% CI 8–32); 25% in HPV + vs. 19% in HPV- | 2 m (95% CI 2–4); 4 m in HPV+ and 2 m in HPV- | 13 m (95% CI 5- not reached), not reached in HPV+ vs. 8 m in HPV- |
Hawk Study [96] Zandberg, D.P. et al., Eur J Cancer, 2018 | Phase II, single-arm | R/M HNSCC 2°line | Durvalumab | 112 pts with PD-L1 > 25% -34 (34.3%) HPV+ vs. 65 (65.7%) HPV- -69 of 102 (61.8%) with tobacco use | 16.2% (95% CI 9.9–24.4); 29.4% in HPV + vs. 10.8% in HPV-. | 2.1 m (95% CI 1.9–3.7); 3.6 m in HPV+ and 1.8 m in HPV- | 7.1 m (95% CI, 4.9–9.9); 10.2 m in HPV+ vs. 5 m in HPV- |
CheckMate 141 [6] Ferris, R.L.; Oral Oncol. 2018 | Phase III, randomized, open-label | R/M HNSCC 2°line | Nivolumab vs. standard care 2:1 | 240 pts received Nivolumab, and 121 received standard care -113 (26.2%) HPV+ in Nivolumab group and 65 (24.0%) in standard care -148 (57.3%) PD-L1 > 1 -191 (79.6%) with tobacco use in Nivolumab group and 85 (70.2%) in standard care | 13.3% (95% CI, 9.3–18.3), including 6 CR and 26 PR, in Nivolumab group vs. 5.8% (95% CI, 2.4–11.6), including 1 CR and 6 PR, in standard care ORR in HPV+: 15.9% in Nivolumab group vs. 3.4% in standard care (OR: 5.28; 95% CI 0.64–43.4); ORR in HPV-: 8% in Nivolumab group vs. 11.1 in standard care (OR: 0.70; 95% CI 0.16–2.99) ORR in PD-L1 > 1: 17% in Nivolumab group vs. 1.6% in standard care (OR: 12.33; 95% CI 1.58–96.04) | 2 m (95% CI, 1.9–2.1) in Nivolumab group vs. 2.3 m (95% CI, 1.9–3.1) in standard care | 7.5 m (95% CI, 5.5–9.1) in Nivolumab group and 5.1 m (95% CI, 4–6) in standard care OS in HPV+: 9.1 m in Nivolumab group vs. 4.4 in standard care (HR: 0.56; 95% CI 0.35–0.99); OS in HPV-: 7.5 m in Nivolumab group vs. 5.8 in standard care (HR: 0.73; 95% CI 0.42–1.25, p: 0.55) OS in PD-L1 > 1: 8.7 m in Nivolumab group vs. 4.6 in standard care (HR: 0.55; 95% CI 0.36–0.83) |
Keynote-040 [97] Cohen, E.E.W. et al. Lancet (2019) | Phase III, randomized, open-label | R/M HNSCC 2°line | Pembrolizumab vs. standard care | 247 pts received Pembrolizumab, and 248 received standard care -61 (25%) HPV+ in Pembrolizumab group and 58 (23%) in standard care -196 (79%) PD-L1 CPS > 1 in Pembrolizumab group and 191 (77%) in standard care -179 (72%) with tobacco use in Pembrolizumab group and 182 (73%) in standard care | 14.6 (95%CI 10.4–19.6) in Pembrolizumab group vs. 10.1% (95% CI 6.6–14.5) in standard care ORR in PD-L1 > 1: 17.3% in Pembrolizumab group vs. 9.9% in standard care | 2.1 m (95%CI 2.1–2.3) in Pembrolizumab group vs. 2.3 m (95% CI 2.1–2.8) in standard care (HR: 0.96; 95% CI 0.79–1.16) PFS in PD-L1 CPS > 1; 2.2 m in Pembrolizumab group vs. 2.3 in standard care (HR: 0.86; 95% CI 0.69–1.06) | 8.4 m (95%CI 6.4–9.4) in Pembrolizumab group vs. 6.9 m (95% CI 5.9–8.0) in standard care OS in PD-L1 CPS > 1; 8.7 m in Pembrolizumab group vs. 7.1 in standard care (HR: 0.74; 95% CI 0.58–0.93); OS in PD-L1 CPS > 50; 11.6 m in Pembrolizumab group vs. 6.6 in standard care (HR: 0.53; 95% CI 0.35–0.81) |
Keynote-048 [7] Burtness, B. et al. Lancet (2019) | Phase III, randomized, open-label | R/M HNSCC 1°st line | Pembrolizumab alone vs. Pembrolizumab plus platinum and 5-FU vs. EXTREME | 301 pts received Pembrolizumab alone, 281 pts received Pembrolizumab with chemotherapy, and 300 pts received EXTREME -63 (21%) HPV+ in Pembrolizumab-alone group, 60 (21%) in Pembrolizumab with chemotherapy group, and 66 (22%) in EXTREME group -257 (85%) PD-L1 CPS > 1 in Pembrolizumab-alone group, 242 (86%) in Pembrolizumab with chemotherapy group, and 255 (86%) in EXTREME group -239 (79%) with tobacco use in Pembrolizumab-alone group, 224 (80%) in Pembrolizumab with chemotherapy group, and 234 (78%) in EXTREME group | -16.9% in Pembrolizumab-alone group vs. 36% in EXTREME group in all pts -19.1% in Pembrolizumab-alone group vs. 34.9% in EXTREME group in CPS > 1 -23.3% in Pembrolizumab-alone group vs. 36.1% in EXTREME group in CPS > 20 (HR: 0.99; 95% CI 0.76–1.29) -35.6% in Pembrolizumab with chemo group vs. 36.3% m in EXTREME group in all pts -36.4% in Pembrolizumab with chemo group vs. 35.7% m in EXTREME group in CPS > 1 -42.9% in Pembrolizumab with chemo group vs. 38.2% m in EXTREME group in CPS > 20 | -2.3 m in Pembrolizumab-alone group vs. 5.2 m in EXTREME group in all pts (HR: 1.29; 95% CI 1.09–1.53) -3.2 m in Pembrolizumab-alone group vs. 5.0 m in EXTREME group in CPS > 1 (HR: 1.13; 95% CI 0.94–1.36) -3.4 m in Pembrolizumab-alone group vs. 5.3 m in EXTREME group in CPS > 20 (HR: 0.99; 95% CI 0.76–1.29) -4.9 m in Pembrolizumab with chemo group vs. 5.2 m in EXTREME group in all pts (HR: 0.93; 95% CI 0.78–1.11) -5.1 m in Pembrolizumab with chemo group vs. 5.0 m in EXTREME group in CPS > 1 (HR: 0.84; 95% CI 0.69–1.02) -5.8 m in Pembrolizumab with chemo group vs. 5.3 m in EXTREME group in CPS > 20 (HR: 0.76; 95% CI 0.58–1.01) | -11.5 m in Pembrolizumab-alone group vs. 10.7 m in EXTREME group in all pts (HR: 0.83; 95% CI 0.70–0.99) -12.3 m in Pembrolizumab-alone group vs. 10.3 m in EXTREME group in CPS > 1 (HR: 0.74; 95% CI 0.61–0.90) -14.8 m in Pembrolizumab-alone group vs. 10.7 m in EXTREME group in CPS > 20 (HR: 0.58; 95% CI 0.44–0.78) -13.0 m in Pembrolizumab with chemo group vs. 10.7 m in EXTREME group in all pts (HR: 0.72; 95% CI 0.60–0.87) -14.7 m in Pembrolizumab with chemotherapy group vs. 11 m in EXTREME group in CPS > 20 (HR: 0.60; 95% CI 0.45–0.82) -13.6 m in Pembrolizumab with chemotherapy group vs. 10.4 m in EXTREME group in CPS > 1 (HR: 0.65; 95% CI 0.53–0.8) |
Clinical Trial and Authors | Study Design | Setting | Intervention: Drugs and ICIs | Population | Response | PFS | OS |
---|---|---|---|---|---|---|---|
NCI-9742 [103] Ma, B.B.Y. et al. J. Clin. Oncol. (2018) | Multicenter, phase II | R/M NPC previously treated | Nivolumab | 45 pts received Nivolumab: -24 (53.3%) pts had PD-L1 in tumor cells < 1%, 18 pts (40%) had PD-L1 > 1, and 3 (6.7%) pts unknown -31 (68.9%) pts had PD-L1 in immune cells <1%, 10 pts (22.2%) had PD-L1 > 1, and 4 (8.9%) pts unknown -26 (57.8%) pts had HLA-A expression, 15 pts (33.3%) had HLA-A loss, and 4 (8.9%) pts unknown -21 (46.7%) pts had HLA-B expression, 20 pts (44.4%) had HLA-A loss, and 4 (8.9%) pts unknown | Trend of EBV DNA in cycle 1: not detectable in 1 (2.2%) pt, increasing in 19 (42.2%) pts, and decreasing in 25 (55.6%) pts. Confirmed response rate: 20.5% (95% CI 9.8–35.3): -CR in 1 (2.3%) pt, PR in 8 (18.2%) pts, SD in 15 (34.1%) pts, PD in 18 (40.9%) pts, and 2 (4.5%) pts NA 13% RR in 3 of 23 pts with PD-L1 tumor cells <1%, 29% RR in 2 of 7 pts with PD-L1 tumor cells <10%, and 33% RR in 4 of 11 pts with PD-L1 tumor cells > 10% | 2.8 m (95% CI 1.8–7.4) PFS: -4.8 m (95% CI 2.7–14) in pts with loss of HLA-A and/or HLA-B -1.8 m (95% CI 1.7–7.4) in pts expressing HLA-A and/or HLA-B | 17.1 m (95% CI, 10.9-NR) OS: -NR (95% CI 59.2%−96.8%) in pts with loss of HLA-A and/or HLA-B -10.9 m (95% CI 9.7-NR) in pts expressing HLA-A and/or HLA-B, p = 0.08 |
Keynote-028 [104] Hsu C. et al., J. Clin. Oncolo, (2017) | Phase 1b, nonrandomized, open-label | R/M NPC previously treated | Pembrolizumab | 27 pts with PD-L1 > 1% received Pembrolizumab -10 (37%) pts had nonkeratinizing differentiated histology of NPC, 8 (29.6%) had undifferentiated histology, 6 (22.2%) had keratinizing squamous cells, and 3 (11.1%) were unclassified | 25.9% (95% CI 11.1–46.3): -no CR 0% (95% CI, 0–12.8); PR in 7 (25.9%) pts, SD in 14 (51.9%) pts, and PD in 6 (22.2%) In 7 pts with PR, the DOR was 17.1 m (4.8 to > 22.1+1m), and all 7 of these pts had PD-L1 expression in the tumor only | 6.5 m (95% CI, 3.6–13.4). 50% and 33.4% PFS rate at 6 and 12 months, respectively | 16.5 m (95% CI, 10.1-NR) 85.2% and 63% OS rate at 6 and 12 months, respectively |
CAPTAIN-1ST [105] Yang, Y. et al. Lancet Oncol. (2021) | Multicenter, Phase III, randomized, double-blind | R/M NPC In 1°st line | Camrelizumab plus cis-gem (cam group) vs. placebo plus cis-gem (place group) | 134 pts in cam group; 129 pts in place group - Positive baseline plasma EBV DNA level in 95 (71%) pts in cam group and 86 (67%) in place group; negative baseline plasma EBV DNA level in 39 (29%) in cam group and 43 (33%) in place group - Nonkeratinizing differentiated histology of NPC in 21 (16%) pts in cam group and 21 (16%) in place group, undifferentiated histology in 110 (82%) in cam group and 106 (82%) in place group, keratinizing squamous cells in 1 (<1%) in cam group and 1 (<1%) in place group, and other types in in 2 (1%) in cam group and 1 (>1%) in place group | 87.3% (95% CI 80.5–92.4) in cam group and 80.6% (95% CI, 72.7–87.1) in place group -CR in 7 (5%) in cam group and 4 (3%) in place group, PR in 110 (82%) in cam group and 100 (78%) in place group, SD in 12 (9%) in cam group and 18 (14%) in place group, PD in 2 (1%) in cam group and 4 (3%) in place group, and NA in 3 (2%) in cam group and 3 (2%) in place group | 9.7 m (95%, CI 8.3–11.4) in cam group vs. 6.9 m (95% CI, 5.9–7.3); HR: 0.54 (95% CI, 0.39–0.76) -9.9 m (95%, CI 8.1–12.3) in EBV DNA + cam group and 6.8 m (95%, CI 5.7–7.1) in EBV DNA+ place group -15.1 m (95%, CI 9.5-NR) in EBV DNA- cam group and 9.5 m (95%, CI 6.6–12.2) in EBV DNA- place group -11.4 m (95% CI 7-NR) in nonkeratinizing differentiated histology of NPC in cam group and 7.8 (95% CI 5.4–10.9) in place group, 10.2 m (95% CI 8.3–13.7) in undifferentiated histology in cam group and 6.9 m (95% CI 5.7–7.6) in place group, and 12.4 (95% CI 9.7–13.9) in other types in cam group and 7.1 (95% CI 5.8–8.3) in place group | NR in cam group and 22.6 m in place group (HR: 0.67, 95% CI 0.41–1.11) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galizia, D.; Minei, S.; Maldi, E.; Chilà, G.; Polidori, A.; Merlano, M.C. How Risk Factors Affect Head and Neck Squamous Cell Carcinoma (HNSCC) Tumor Immune Microenvironment (TIME): Their Influence on Immune Escape Mechanisms and Immunotherapy Strategy. Biomedicines 2022, 10, 2498. https://doi.org/10.3390/biomedicines10102498
Galizia D, Minei S, Maldi E, Chilà G, Polidori A, Merlano MC. How Risk Factors Affect Head and Neck Squamous Cell Carcinoma (HNSCC) Tumor Immune Microenvironment (TIME): Their Influence on Immune Escape Mechanisms and Immunotherapy Strategy. Biomedicines. 2022; 10(10):2498. https://doi.org/10.3390/biomedicines10102498
Chicago/Turabian StyleGalizia, Danilo, Silvia Minei, Elena Maldi, Giovanna Chilà, Alessio Polidori, and Marco Carlo Merlano. 2022. "How Risk Factors Affect Head and Neck Squamous Cell Carcinoma (HNSCC) Tumor Immune Microenvironment (TIME): Their Influence on Immune Escape Mechanisms and Immunotherapy Strategy" Biomedicines 10, no. 10: 2498. https://doi.org/10.3390/biomedicines10102498
APA StyleGalizia, D., Minei, S., Maldi, E., Chilà, G., Polidori, A., & Merlano, M. C. (2022). How Risk Factors Affect Head and Neck Squamous Cell Carcinoma (HNSCC) Tumor Immune Microenvironment (TIME): Their Influence on Immune Escape Mechanisms and Immunotherapy Strategy. Biomedicines, 10(10), 2498. https://doi.org/10.3390/biomedicines10102498