The Multiple Faces of Nitric Oxide in Chronic Granulomatous Disease: A Comprehensive Update
Abstract
:1. Introduction
2. Chronic Granulomatous Disease (CGD) and NADPH Oxidase (NOX)
3. Innate Immunity
4. Immunomodulatory Properties of NO
5. Relationship between NO and NADPH Oxidase
6. Impact of NO in the Pathophysiology of CGD
6.1. Susceptibility to Bacterial and Fungal Infections
6.2. Granuloma Formation
6.3. Chronic Inflammation
6.4. Neurological Symptoms
6.5. Mechanisms of Hypersensitivity in Respiratory and Gastrointestinal Symptoms
6.6. Autoimmune Diseases
7. Therapeutic Considerations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stuehr, D.J.; Santolini, J.; Wang, Z.-Q.; Wei, C.-C.; Adak, S. Update on Mechanism and Catalytic Regulation in the NO Synthases. J. Biol. Chem. 2004, 279, 36167–36170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medeiros, K.A.A.L.; Almeida-Souza, T.H.; Silva, R.S.; Santos, H.F.; Santos, E.V.; Gois, A.M.; Leal, P.C.; Santos, J.R. Involvement of Nitric Oxide in the Neurobiology of Fear-like Behavior. Nitric Oxide 2022, 124, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Igrunkova, A.; Fayzullin, A.; Churbanov, S.; Shevchenko, P.; Serejnikova, N.; Chepelova, N.; Pahomov, D.; Blinova, E.; Mikaelyan, K.; Zaborova, V.; et al. Spray with Nitric Oxide Donor Accelerates Wound Healing: Potential Off-The-Shelf Solution for Therapy? Drug Des. Dev. Ther. 2022, 16, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Forstermann, U.; Kleinert, H. Nitric Oxide Synthase: Expression and Expressional Control of the Three Isoforms. Naunyn-Schmiedebergs Arch. Pharmacol. 1995, 352, 351–364. [Google Scholar] [CrossRef]
- Lacza, Z.; Pankotai, E.; Csordás, A.; Gero, D.; Kiss, L.; Horváth, E.M.; Kollai, M.; Busija, D.W.; Szabó, C. Mitochondrial NO and Reactive Nitrogen Species Production: Does MtNOS Exist? Nitric Oxide 2006, 14, 162–168. [Google Scholar] [CrossRef]
- Man, M.-Q.; Wakefield, J.S.; Mauro, T.M.; Elias, P.M. Regulatory Role of Nitric Oxide in Cutaneous Inflammation. Inflammation 2022, 45, 949–964. [Google Scholar] [CrossRef]
- Jung, P.; Ha, E.; Zhang, M.; Fall, C.; Hwang, M.; Taylor, E.; Stetkevich, S.; Bhanot, A.; Wilson, C.G.; Figueroa, J.D.; et al. Neuroprotective Role of Nitric Oxide Inhalation and Nitrite in a Neonatal Rat Model of Hypoxic-Ischemic Injury. PLoS ONE 2022, 17, e0268282. [Google Scholar] [CrossRef]
- Kumar, R.; Coggan, A.R.; Ferreira, L.F. Nitric Oxide and Skeletal Muscle Contractile Function. Nitric Oxide 2022, 122–123, 54–61. [Google Scholar] [CrossRef]
- Rajendran, R.; Chathambath, A.; Al-Sehemi, A.G.; Pannipara, M.; Unnikrishnan, M.K.; Aleya, L.; Raghavan, R.P.; Mathew, B. Critical Role of Nitric Oxide in Impeding COVID-19 Transmission and Prevention: A Promising Possibility. Environ. Sci. Pollut. Res. 2022, 29, 38657–38672. [Google Scholar] [CrossRef]
- Lee, C.H.; Kim, H.J.; Lee, Y.-S.; Kang, G.M.; Lim, H.S.; Lee, S.; Song, D.K.; Kwon, O.; Hwang, I.; Son, M.; et al. Hypothalamic Macrophage Inducible Nitric Oxide Synthase Mediates Obesity-Associated Hypothalamic Inflammation. Cell Rep. 2018, 25, 934–946.e5. [Google Scholar] [CrossRef]
- Amini-Khoei, H.; Nasiri Boroujeni, S.; Maghsoudi, F.; Rahimi-Madiseh, M.; Bijad, E.; Moradi, M.; Lorigooini, Z. Possible Involvement of L-Arginine-Nitric Oxide Pathway in the Antidepressant Activity of Auraptene in Mice. Behav. Brain Funct. 2022, 18, 4. [Google Scholar] [CrossRef] [PubMed]
- Noroozi, N.; Shayan, M.; Maleki, A.; Eslami, F.; Rahimi, N.; Zakeri, R.; Abdolmaleki, Z.; Dehpour, A.R. Protective Effects of Dapsone on Scopolamine-Induced Memory Impairment in Mice: Involvement of Nitric Oxide Pathway. Dement. Geriatr. Cogn. Disord. Extra 2022, 12, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Ren, P.; Xiao, B.; Wang, L.-P.; Li, Y.-S.; Jin, H.; Jin, Q.-H. Nitric Oxide Impairs Spatial Learning and Memory in a Rat Model of Alzheimer’s Disease via Disturbance of Glutamate Response in the Hippocampal Dentate Gyrus during Spatial Learning. Behav. Brain Res. 2022, 422, 113750. [Google Scholar] [CrossRef]
- Massion, P.B.; Feron, O.; Dessy, C.; Balligand, J.-L. Nitric Oxide and Cardiac Function. Circ. Res. 2003, 93, 388–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Niroomand, F.; Liu, Z.; Zankl, A.; Katus, H.A.; Jahn, L.; Tiefenbacher, C.P. Expression of nitric oxide related enzymes in coronary heart disease. Basic Res. Cardiol. 2006, 101, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Büttner, P.; Werner, S.; Baskal, S.; Tsikas, D.; Adams, V.; Lurz, P.; Besler, C.; Knauth, S.; Bahls, M.; Schwedhelm, E.; et al. Arginine metabolism and nitric oxide turnover in the ZSF1 animal model for heart failure with preserved ejection fraction. Sci. Rep. 2021, 11, 20684. [Google Scholar] [CrossRef]
- Zhu, D.; Hou, J.; Qian, M.; Jin, D.; Hao, T.; Pan, Y.; Wang, H.; Wu, S.; Liu, S.; Wang, F.; et al. Nitrate-Functionalized Patch Confers Cardioprotection and Improves Heart Repair after Myocardial Infarction via Local Nitric Oxide Delivery. Nat. Commun. 2021, 12, 4501. [Google Scholar] [CrossRef]
- Tsuji, S.; Iharada, A.; Taniuchi, S.; Hasui, M.; Kaneko, K. Increased Production of Nitric Oxide by Phagocytic Stimulated Neutrophils in Patients with Chronic Granulomatous Disease. J. Pediatr. Hematol. Oncol. 2012, 34, 500–502. [Google Scholar] [CrossRef]
- Maydanaa, M.; Cabanillasb, D.; Regairazb, L.; Bastonsa, S.; Uriartea, V.; García, M.; Sosa, M.F.; Vinuesaa, M.; del Palacioc, P.; Morales, J. Enfermedad granulomatosa crónica: Infecciones múltiples como forma de presentación. Caso clínico pediátrico. Arch. Argent. Pediatr. 2018, 116, e744–e748. [Google Scholar]
- Anjani, G.; Vignesh, P.; Joshi, V.; Shandilya, J.K.; Bhattarai, D.; Sharma, J.; Rawat, A. Recent Advances in Chronic Granulomatous Disease. Genes Dis. 2020, 7, 84–92. [Google Scholar] [CrossRef]
- Wientjes, F.B.; Segal, A.W. NADPH Oxidase and the Respiratory Burst. Semin. Cell Biol. 1995, 6, 357–365. [Google Scholar] [CrossRef]
- Vermot, A.; Petit-Härtlein, I.; Smith, S.M.E.; Fieschi, F. NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology. Antioxidants 2021, 10, 890. [Google Scholar] [CrossRef]
- Medzhitov, R.; Janeway, C.A. Innate Immunity: Impact on the Adaptive Immune Response. Curr. Opin. Immunol. 1997, 9, 4–9. [Google Scholar] [CrossRef]
- Rich, R.R. Clinical Immunology: Principles and Practice, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 35–46. [Google Scholar]
- Weckel, A.; Guilbert, T.; Lambert, C.; Plainvert, C.; Goffinet, F.; Poyart, C.; Méhats, C.; Fouet, A. Streptococcuspyogenes Infects Human Endometrium by Limiting the Innate Immune Response. J. Clin. Investig. 2021, 131, e130746. [Google Scholar] [CrossRef] [PubMed]
- Rajeeve, K.; Das, S.; Prusty, B.K.; Rudel, T. Chlamydia Trachomatis Paralyses Neutrophils to Evade the Host Innate Immune Response. Nat. Microbiol. 2018, 3, 824–835. [Google Scholar] [CrossRef] [PubMed]
- Carty, M.; Guy, C.; Bowie, A.G. Detection of Viral Infections by Innate Immunity. Biochem. Pharmacol. 2021, 183, 114316. [Google Scholar] [CrossRef]
- Salazar, F.; Brown, G.D. Antifungal Innate Immunity: A Perspective from the Last 10 Years. J. Innate Immun. 2018, 10, 373–397. [Google Scholar] [CrossRef]
- Karaś, M.A.; Turska-Szewczuk, A.; Janczarek, M.; Szuster-Ciesielska, A. Glycoconjugates of Gram-Negative Bacteria and Parasitic Protozoa – Are They Similar in Orchestrating the Innate Immune Response? Innate Immun. 2019, 25, 73–96. [Google Scholar] [CrossRef]
- Motran, C.C.; Silvane, L.; Chiapello, L.S.; Theumer, M.G.; Ambrosio, L.F.; Volpini, X.; Celias, D.P.; Cervi, L. Helminth Infections: Recognition and Modulation of the Immune Response by Innate Immune Cells. Front. Immunol. 2018, 9, 664. [Google Scholar] [CrossRef]
- Constant, D.A.; Nice, T.J.; Rauch, I. Innate Immune Sensing by Epithelial Barriers. Curr. Opin. Immunol. 2021, 73, 1–8. [Google Scholar] [CrossRef]
- Eriksson, O.; Mohlin, C.; Nilsson, B.; Ekdahl, K.N. The Human Platelet as an Innate Immune Cell: Interactions between Activated Platelets and the Complement System. Front. Immunol. 2019, 10, 1590. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R.; Janeway, C. Innate Immunity. N. Engl. J. Med. 2000, 343, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Penberthy, K.K.; Lysiak, J.J.; Ravichandran, K.S. Rethinking Phagocytes: Clues from the Retina and Testes. Trends Cell Biol. 2018, 28, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Beutler, B. Innate Immunity: An Overview. Mol. Immunol. 2004, 40, 845–859. [Google Scholar] [CrossRef]
- Tarr, A.W.; Urbanowicz, R.A.; Ball, J.K. The Role of Humoral Innate Immunity in Hepatitis c Virus Infection. Viruses 2012, 4, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Dini, L.; Lentini, A.; Diez, G.D.; Rocha, M.; Falasca, L.; Serafino, L.; Vidal-Vanaclocha, F. Phagocytosis of Apoptotic Bodies by Liver Endothelial Cells. J. Cell Sci. 1995, 108, 967–973. [Google Scholar] [CrossRef]
- Allen, L.-A.H.; Aderem, A. Mechanisms of Phagocytosis. Curr. Opin. Immunol. 1996, 8, 36–40. [Google Scholar] [CrossRef]
- Mitrović, M.; Arapović, J.; Traven, L.; Krmpotić, A.; Jonjić, S. Innate Immunity Regulates Adaptive Immune Response: Lessons Learned from Studying the Interplay between NK and CD8+ T Cells during MCMV Infection. Med. Microbiol. Immunol. 2012, 201, 487–495. [Google Scholar] [CrossRef] [Green Version]
- Mayordomo, A.C.; Silva, J.E.; Gorlino, C.V.; Arias, J.L.; Berón, W.; Di Genaro, M.S. IL-12/23p40 Overproduction by Dendritic Cells Leads to an Increased Th1 and Th17 Polarization in a Model of Yersinia Enterocolitica-Induced Reactive Arthritis in TNFRp55-/- Mice. PLoS ONE 2018, 13, e0193573. [Google Scholar] [CrossRef] [Green Version]
- Goldblatt, D.; Thrasher, A.J. Chronic granulomatous disease. Clin. Exp. Immunol. 2000, 122, 11–19. [Google Scholar] [CrossRef]
- Akar-Ghibril, N. Defects of the Innate Immune System and Related Immune Deficiencies. Clin. Rev. Allergy Immunol. 2021, 63, 36–54. [Google Scholar] [CrossRef]
- Bogdan, C.; Röllinghoff, M.; Diefenbach, A. The Role of Nitric Oxide in Innate Immunity. Immunol. Rev. 2000, 173, 17–26. [Google Scholar] [CrossRef]
- Frances, R. Bacterial DNA Activates Cell Mediated Immune Response and Nitric Oxide Overproduction in Peritoneal Macrophages from Patients with Cirrhosis and Ascites. Gut 2004, 53, 860–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davicino, R.C.; Eliçabe, R.J.; Di Genaro, M.S.; Rabinovich, G.A. Coupling Pathogen Recognition to Innate Immunity through Glycan-Dependent Mechanisms. Int. Immunopharmacol. 2011, 11, 1457–1463. [Google Scholar] [CrossRef]
- Eliçabe, R.J.; Arias, J.L.; Rabinovich, G.A.; Di Genaro, M.S. TNFRp55 Modulates IL-6 and Nitric Oxide Responses Following Yersinia Lipopolysaccharide Stimulation in Peritoneal Macrophages. Immunobiology 2011, 216, 1322–1330. [Google Scholar] [CrossRef]
- Zhang, T.; Ma, C.; Zhang, Z.; Zhang, H.; Hu, H. NF-κB signaling in inflammation and cancer. Med. Comm. 2021, 16, 618–653. [Google Scholar] [CrossRef]
- Abramson, S.B.; Amin, A.R.; Clancy, R.M.; Attur, M. The Role of Nitric Oxide in Tissue Destruction. Best Pract. Res. Clin. Rheumatol. 2001, 15, 831–845. [Google Scholar] [CrossRef] [PubMed]
- Gopallawa, I.; Freund, J.R.; Lee, R.J. Bitter Taste Receptors Stimulate Phagocytosis in Human Macrophages through Calcium, Nitric Oxide, and Cyclic-GMP Signaling. Cell. Mol. Life Sci. 2020, 78, 271–286. [Google Scholar] [CrossRef]
- Tsai, W.C.; Strieter, R.M.; Zisman, D.A.; Wilkowski, J.M.; Bucknell, K.A.; Chen, G.H.; Standiford, T.J. Nitric Oxide Is Required for Effective Innate Immunity against Klebsiella Pneumoniae. Infect. Immun. 1997, 65, 1870–1875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, C.V.; Rocha, B.F.B.; Oliveira, E.; Teixeira-Carvalho, A.; Martins-Filho, O.A.; Murta, S.M.F.; Peruhype-Magalhães, V. Leishmania Infantum Induces High Phagocytic Capacity and Intracellular Nitric Oxide Production by Human Proinflammatory Monocyte. Memórias Do Inst. Oswaldo Cruz 2020, 115, e190408. [Google Scholar] [CrossRef] [PubMed]
- Jofre, B.L.; Eliçabe, R.J.; Silva, J.E.; Pérez Sáez, J.M.; Paez, M.D.; Callegari, E.; Mariño, K.V.; Di Genaro, M.S.; Rabinovich, G.A.; Davicino, R.C. Galectin-1 Cooperates with Yersinia Outer Protein (Yop) P to Thwart Protective Immunity by Repressing Nitric Oxide Production. Biomolecules 2021, 11, 1636. [Google Scholar] [CrossRef]
- Cabral, F.V.; Pelegrino, M.T.; Seabra, A.B.; Ribeiro, M.S. Nitric-Oxide Releasing Chitosan Nanoparticles towards Effective Treatment of Cutaneous Leishmaniasis. Nitric Oxide 2021, 113–114, 31–38. [Google Scholar] [CrossRef] [PubMed]
- García-Ortiz, A.; Serrador, J.M. Nitric Oxide Signaling in T Cell-Mediated Immunity. Trends Mol. Med. 2018, 24, 412–427. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Charles, I.G.; Smith, A.; Ure, J.; Feng, G.; Huang, F.; Xu, D.; Mullers, W.; Moncada, S.; Liew, F.Y. Altered Immune Responses in Mice Lacking Inducible Nitric Oxide Synthase. Nature 1995, 375, 408–411. [Google Scholar] [CrossRef] [PubMed]
- Taylor-Robinson, A.W.; Liew, F.Y.; Severn, A.; Xu, D.; McSorley, S.J.; Garside, P.; Padron, J.; Phillips, R.S. Regulation of the Immune Response by Nitric Oxide Differentially Produced by T Helper Type 1 and T Helper Type 2 Cells. Eur. J. Immunol. 1994, 24, 980–984. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, R.; Lu, G.; Shen, Y.; Peng, L.; Zhu, C.; Cui, M.; Wang, W.; Arnaboldi, P.; Tang, M.; et al. T Cell–Derived Inducible Nitric Oxide Synthase Switches off TH17 Cell Differentiation. J. Exp. Med. 2013, 210, 1447–1462. [Google Scholar] [CrossRef] [Green Version]
- Cartwright, A.N.R.; Suo, S.; Badrinath, S.; Kumar, S.; Melms, J.; Luoma, A.; Bagati, A.; Saadatpour, A.; Izar, B.; Yuan, G.-C.; et al. Immunosuppressive Myeloid Cells Induce Nitric Oxide–Dependent DNA Damage and P53 Pathway Activation in CD8+ T Cells. Cancer Immunol. Res. 2021, 9, 470–485. [Google Scholar] [CrossRef]
- Thwe, P.M.; Amiel, E. The Role of Nitric Oxide in Metabolic Regulation of Dendritic Cell Immune Function. Cancer Lett. 2018, 412, 236–242. [Google Scholar] [CrossRef]
- Palmieri, E.M.; McGinity, C.; Wink, D.A.; McVicar, D.W. Nitric Oxide in Macrophage Immunometabolism: Hiding in Plain Sight. Metabolites 2020, 10, 429. [Google Scholar] [CrossRef]
- Monteiro, H.P.; Rodrigues, E.G.; Amorim Reis, A.K.C.; Longo, L.S.; Ogata, F.T.; Moretti, A.I.S.; da Costa, P.E.; Teodoro, A.C.S.; Toledo, M.S.; Stern, A. Nitric Oxide and Interactions with Reactive Oxygen Species in the Development of Melanoma, Breast, and Colon Cancer: A Redox Signaling Perspective. Nitric Oxide 2019, 89, 1–13. [Google Scholar] [CrossRef]
- Mijatović, S.; Savić-Radojević, A.; Plješa-Ercegovac, M.; Simić, T.; Nicoletti, F.; Maksimović-Ivanić, D. The Double-Faced Role of Nitric Oxide and Reactive Oxygen Species in Solid Tumors. Antioxidants 2020, 9, 374. [Google Scholar] [CrossRef] [PubMed]
- Matziouridou, C.; Rocha, S.D.C.; Haabeth, O.A.; Rudi, K.; Carlsen, H.; Kielland, A. INOS- and NOX1-Dependent ROS Production Maintains Bacterial Homeostasis in the Ileum of Mice. Mucosal Immunol. 2017, 11, 774–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Baud, O.; Vartanian, T.; Volpe, J.J.; Rosenberg, P.A. Peroxynitrite Generated by Inducible Nitric Oxide Synthase and NADPH Oxidase Mediates Microglial Toxicity to Oligodendrocytes. Proc. Natl. Acad. Sci. USA 2005, 102, 9936–9941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breitbach, K.; Klocke, S.; Tschernig, T.; van Rooijen, N.; Baumann, U.; Steinmetz, I. Role of Inducible Nitric Oxide Synthase and NADPH Oxidase in Early Control of Burkholderia Pseudomallei Infection in Mice. Infect. Immun. 2006, 74, 6300–6309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaul, N.; Forman, H.J. Activation of NFκB by the Respiratory Burst of Macrophages. Free Radic. Biol. Med. 1996, 21, 401–405. [Google Scholar] [CrossRef]
- Liu, J.; Iwata, K.; Zhu, K.; Matsumoto, M.; Matsumoto, K.; Asaoka, N.; Zhang, X.; Ibi, M.; Katsuyama, M.; Tsutsui, M.; et al. NOX1/NADPH Oxidase in Bone Marrow-Derived Cells Modulates Intestinal Barrier Function. Free Radic. Biol. Med. 2020, 147, 90–101. [Google Scholar] [CrossRef]
- Lanone, S.; Bloc, S.; Foresti, R.; Almolki, A.; Taillé, C.; Callebert, J.; Conti, M.; Goven, D.; Aubier, M.; Dureuil, B.; et al. Bilirubin Decreases NOS2 Expression via Inhibition of NAD(P)H Oxidase: Implications for Protection against Endotoxic Shock in Rats. FASEB J. 2005, 19, 1890–1892. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Tyml, K.; Wilson, J.X. INOS Expression Requires NADPH Oxidase-Dependent Redox Signaling in Microvascular Endothelial Cells. J. Cell. Physiol. 2008, 217, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Jang, A.; Choi, G.; Kim, Y.; Lee, G.; Hyun, K. Neuroprotective Properties of Ethanolic Extract of Citrus Unshiu Markovich Peel through NADPH Oxidase 2 Inhibition in Chemotherapy-Induced Neuropathic Pain Animal Model. Phytother. Res. 2021, 35, 6918–6931. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, K.P.; Bali, P.; Anwar, S.; Kaul, A.; Singh, O.P.; Gupta, B.K.; Kumari, N.; Alam, M.N.; Raziuddin, M.; et al. INOS Polymorphism Modulates INOS/NO Expression via Impaired Antioxidant and ROS Content in P. Vivax and P. Falciparum Infection. Redox Biol. 2018, 15, 192–206. [Google Scholar] [CrossRef]
- Hou, L.; Zhang, L.; Hong, J.-S.; Zhang, D.; Zhao, J.; Wang, Q. NADPH Oxidase and Neurodegenerative Diseases: Mechanisms and Therapy. Antioxid. Redox Signal. 2020, 33, 374–393. [Google Scholar] [CrossRef] [PubMed]
- Aviello, G.; Knaus, U.G. NADPH Oxidases and ROS Signaling in the Gastrointestinal Tract. Mucosal Immunol. 2018, 11, 1011–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breitenbach, M.; Rinnerthaler, M.; Weber, M.; Breitenbach-Koller, H.; Karl, T.; Cullen, P.; Basu, S.; Haskova, D.; Hasek, J. The Defense and Signaling Role of NADPH Oxidases in Eukaryotic Cells. Wien. Med. Wochenschr. 2018, 168, 286–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, D.C. How the Phagocyte NADPH Oxidase Regulates Innate Immunity. Free Radic. Biol. Med. 2018, 125, 44–52. [Google Scholar] [CrossRef]
- Heropolitanska-Pliszka, E.; Berk, K.; Maciejczyk, M.; Sawicka-Powierza, J.; Bernatowska, E.; Wolska-Kusnierz, B.; Pac, M.; Dabrowska-Leonik, N.; Piatosa, B.; Lewandowicz-Uszynska, A.; et al. Systemic Redox Imbalance in Patients with Chronic Granulomatous Disease. J. Clin. Med. 2020, 9, 1397. [Google Scholar] [CrossRef]
- Condino-Neto, A.; Muscara, M.; Grumach, A.; Carneiro-Sampaio, M.; Nucci, G. Neutrophils and Mononuclear Cells from Patients with Chronic Granulomatous Disease Release Nitric Oxide. Br. J. Clin. Pharmacol. 1993, 35, 485–490. [Google Scholar] [CrossRef] [Green Version]
- Clark, S.R.; Coffey, M.J.; Maclean, R.M.; Collins, P.W.; Lewis, M.J.; Cross, A.R.; O’Donnell, V.B. Characterization of Nitric Oxide Consumption Pathways by Normal, Chronic Granulomatous Disease and Myeloperoxidase-Deficient Human Neutrophils. J. Immunol. 2002, 169, 5889–5896. [Google Scholar] [CrossRef] [Green Version]
- Tsuji, S.; Taniuchi, S.; Hasui, M.; Yamamoto, A.; Kobayashi, Y. Increased Nitric Oxide Production by Neutrophils from Patients with Chronic Granulomatous Disease on Trimethoprim–Sulfamethoxazole. Nitric Oxide 2002, 7, 283–288. [Google Scholar] [CrossRef]
- Blancas-Galicia, L.; Santos-Chávez, E.; Deswarte, C.; Mignac, Q.; Medina-Vera, I.; León-Lara, X.; Roynard, M.; Scheffler-Mendoza, S.C.; Rioja-Valencia, R.; Alvirde-Ayala, A.; et al. Genetic, Immunological, and Clinical Features of the First Mexican Cohort of Patients with Chronic Granulomatous Disease. J. Clin. Immunol. 2020, 40, 475–493. [Google Scholar] [CrossRef]
- Williams, G.T.; Williams, W.J. Granulomatous Inflammation—A Review. J. Clin. Pathol. 1983, 36, 723–733. [Google Scholar] [CrossRef]
- Lewis, C.J.; Cobb, B.A. Adaptive Immune Defects against Glycoantigens in Chronic Granulomatous Disease via Dysregulated Nitric Oxide Production. Eur. J. Immunol. 2011, 41, 2562–2572. [Google Scholar] [CrossRef] [PubMed]
- Mantegazza, A.R.; Savina, A.; Vermeulen, M.; Pérez, L.; Geffner, J.; Hermine, O.; Rosenzweig, S.D.; Faure, F.; Amigorena, S. NADPH Oxidase Controls Phagosomal PH and Antigen Cross-Presentation in Human Dendritic Cells. Blood 2008, 112, 4712–4722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deffert, C.; Carnesecchi, S.; Yuan, H.; Rougemont, A.-L.; Kelkka, T.; Holmdahl, R.; Krause, K.-H.; Schäppi, M.G. Hyperinflammation of Chronic Granulomatous Disease Is Abolished by NOX2 Reconstitution in Macrophages and Dendritic Cells. J. Pathol. 2012, 228, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Meissner, F.; Seger, R.A.; Moshous, D.; Fischer, A.; Reichenbach, J.; Zychlinsky, A. Inflammasome Activation in NADPH Oxidase Defective Mononuclear Phagocytes from Patients with Chronic Granulomatous Disease. Blood 2010, 116, 1570–1573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poole, R.K. Nitric Oxide and Other Small Signalling Molecules, 1st ed.; Oxford Academic Press: London, UK; Elsevier: Alpharetta, GA, USA, 2018; pp. 62–115. [Google Scholar]
- Shi, C.-S.; Shenderov, K.; Huang, N.-N.; Kabat, J.; Abu-Asab, M.; Fitzgerald, K.A.; Sher, A.; Kehrl, J.H. Activation of Autophagy by Inflammatory Signals Limits IL-1β Production by Targeting Ubiquitinated Inflammasomes for Destruction. Nat. Immunol. 2012, 13, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Saitoh, T.; Akira, S. Regulation of inflammasomes by autophagy. J. Allergy Clin. Immunol. 2016, 138, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, S.; Korolchuk, V.I.; Renna, M.; Imarisio, S.; Fleming, A.; Williams, A.; Garcia-Arencibia, M.; Rose, C.; Luo, S.; Underwood, B.R.; et al. Complex Inhibitory Effects of Nitric Oxide on Autophagy. Mol. Cell 2011, 43, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Schwenkenbecher, P.; Neyazi, A.; Donnerstag, F.; Ringshausen, F.C.; Jacobs, R.; Stoll, M.; Kirschner, P.; Länger, F.P.; Valizada, E.; Gingele, S.; et al. Chronic Granulomatous Disease First Diagnosed in Adulthood Presenting with Spinal Cord Infection. Front. Immunol. 2018, 9, 1258. [Google Scholar] [CrossRef]
- Hadfield, M.G.; Ghatak, N.R.; Laine, F.J.; Myer, E.C.; Massie, F.S.; Kramer, W.M. Brain Lesions in Chronic Granulomatous Disease. Acta Neuropathol. 1991, 81, 467–470. [Google Scholar] [CrossRef]
- Prabhat, N.; Chakravarty, K.; Pattnaik, S.N.; Takkar, A.; Ray, S.; Lal, V. Systemic Lupus Erythematosus with Autoimmune Neurological Manifestations in a Carrier of Chronic Granulomatous Disease—A Rare Presentation. J. Neuroimmunol. 2020, 343, 577229. [Google Scholar] [CrossRef]
- Mori, H.; Mishina, M. Structure and Function of the NMDA Receptor Channel. Neuropharmacology 1995, 34, 1219–1237. [Google Scholar] [CrossRef]
- Pao, M.; Wiggs, E.A.; Anastacio, M.M.; Hyun, J.; DeCarlo, E.S.; Miller, J.T.; Anderson, V.L.; Malech, H.L.; Gallin, J.I.; Holland, S.M. Cognitive Function in Patients with Chronic Granulomatous Disease: A Preliminary Report. Psychosomatics 2004, 45, 230–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kishida, K.T.; Hoeffer, C.A.; Hu, D.; Pao, M.; Holland, S.M.; Klann, E. Synaptic Plasticity Deficits and Mild Memory Impairments in Mouse Models of Chronic Granulomatous Disease. Mol. Cell. Biol. 2006, 26, 5908–5920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garthwaite, J.; Garthwaite, G.; Palmer, R.M.J.; Moncada, S. NMDA Receptor Activation Induces Nitric Oxide Synthesis from Arginine in Rat Brain Slices. Eur. J. Pharmacol. Mol. Pharmacol. 1989, 172, 413–416. [Google Scholar] [CrossRef]
- Olthof, B.M.J.; Gartside, S.E.; Rees, A. Puncta of Neuronal Nitric Oxide Synthase (NNOS) Mediate NMDA Receptor Signaling in the Auditory Midbrain. J. Neurosci. 2018, 39, 876–887. [Google Scholar] [CrossRef] [Green Version]
- Faria, M.P.; Laverde, C.F.; Nunes-de-Souza, R.L. Anxiogenesis Induced by Social Defeat in Male Mice: Role of Nitric Oxide, NMDA, and CRF1 Receptors in the Medial Prefrontal Cortex and BNST. Neuropharmacology 2020, 166, 107973. [Google Scholar] [CrossRef]
- Weitzdoerfer, R.; Hoeger, H.; Engidawork, E.; Engelmann, M.; Singewald, N.; Lubec, G.; Lubec, B. Neuronal Nitric Oxide Synthase Knock-out Mice Show Impaired Cognitive Performance. Nitric Oxide 2004, 10, 130–140. [Google Scholar] [CrossRef]
- Paul, V.; Ekambaram, P. Involvement of nitric oxide in learning & memory processes. Indian J. Med. Res. 2011, 133, 471–478. [Google Scholar]
- Yeo, I.J.; Yun, J.; Son, D.J.; Han, S.-B.; Hong, J.T. Antifungal Drug Miconazole Ameliorated Memory Deficits in a Mouse Model of LPS-Induced Memory Loss through Targeting INOS. Cell Death Dis. 2020, 11, 623. [Google Scholar] [CrossRef]
- Wang, B.; Han, S. Inhibition of Inducible Nitric Oxide Synthase Attenuates Deficits in Synaptic Plasticity and Brain Functions Following Traumatic Brain Injury. Cerebellum 2018, 17, 477–484. [Google Scholar] [CrossRef]
- Contestabile, A. Roles of NMDA Receptor Activity and Nitric Oxide Production in Brain Development. Brain Res. Rev. 2000, 32, 476–509. [Google Scholar] [CrossRef]
- Szydlowska, K.; Tymianski, M. Calcium, Ischemia and Excitotoxicity. Cell Calcium 2010, 47, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Lam, T.I.; Brennan-Minnella, A.M.; Won, S.J.; Shen, Y.; Hefner, C.; Shi, Y.; Sun, D.; Swanson, R.A. Intracellular PH Reduction Prevents Excitotoxic and Ischemic Neuronal Death by Inhibiting NADPH Oxidase. Proc. Natl. Acad. Sci. USA 2013, 110, E4362–E4368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Golledge, J. Neuronal Nitric Oxide Synthase and Sympathetic Nerve Activity in Neurovascular and Metabolic Systems. Curr. Neurovascular Res. 2013, 10, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Liu, J.; Li, H.; Peng, Y.; Zhao, S. Mimicking Hypersensitivity Pneumonitis as an Uncommon Initial Presentation of Chronic Granulomatous Disease in Children. Orphanet J. Rare Dis. 2017, 12, 169. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Yang, H.; Li, H.; Liu, J.; Zhao, S. Hypersensitive Pneumonitis: An Initial Presentation of Chronic Granulomatous Disease in a Child. J. Clin. Immunol. 2018, 38, 155–158. [Google Scholar] [CrossRef]
- Esenboga, S.; Emiralioglu, N.; Cagdas, D.; Erman, B.; De Boer, M.; Oguz, B.; Kiper, N.; Tezcan, İ. Diagnosis of Interstitial Lung Disease Caused by Possible Hypersensitivity Pneumonitis in a Child: Think CGD. J. Clin. Immunol. 2017, 37, 269–272. [Google Scholar] [CrossRef]
- Chandra, D.; Cherian, S.V. Hypersensitivity Pneumonitis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Shirai, T.; Ikeda, M.; Morita, S.; Asada, K.; Suda, T.; Chida, K. Elevated Alveolar Nitric Oxide Concentration after Environmental Challenge in Hypersensitivity Pneumonitis. Respirology 2010, 15, 721–722. [Google Scholar] [CrossRef]
- Girard, M.; Cormier, Y. Hypersensitivity pneumonitis. Curr. Opin. Allergy Clin. Immunol. 2010, 10, 99–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boughton-Smith, N.K.; Evans, S.M.; Whittle, B.J.R.; Moncada, S.; Hawkey, C.J.; Cole, A.T.; Balsitis, M. Nitric Oxide Synthase Activity in Ulcerative Colitis and Crohn’s Disease. Lancet 1993, 342, 338.e2. [Google Scholar] [CrossRef]
- Cross, R.K.; Wilson, K.T. Nitric Oxide in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2003, 9, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Marciano, B.E.; Rosenzweig, S.D.; Kleiner, D.E.; Anderson, V.L.; Darnell, D.N.; Anaya-O’Brien, S.; Hilligoss, D.M.; Malech, H.L.; Gallin, J.I.; Holland, S.M. Gastrointestinal Involvement in Chronic Granulomatous Disease. Pediatrics 2004, 114, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Angelino, G.; De Angelis, P.; Faraci, S.; Rea, F.; Romeo, E.F.; Torroni, F.; Tambucci, R.; Claps, A.; Francalanci, P.; Chiriaco, M.; et al. Inflammatory Bowel Disease in Chronic Granulomatous Disease: An Emerging Problem over a Twenty Years’ Experience. Pediatric Allergy Immunol. 2017, 28, 801–809. [Google Scholar] [CrossRef]
- Kalra, N.; Ghaffari, G. The Association between Autoimmune Disorders and Chronic Granulomatous Disease. Pediatric Allergy Immunol. Pulmonol. 2014, 27, 147–150. [Google Scholar] [CrossRef]
- Yu, H.-H.; Yang, Y.-H.; Chiang, B.-L. Chronic Granulomatous Disease: A Comprehensive Review. Clin. Rev. Allergy Immunol. 2020, 61, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Rawat, A.; Bhattad, S.; Singh, S. Chronic Granulomatous Disease. Indian J. Pediatr. 2016, 83, 345–353. [Google Scholar] [CrossRef]
- Chávez, M.D.; Tse, H.M. Targeting Mitochondrial-Derived Reactive Oxygen Species in T Cell-Mediated Autoimmune Diseases. Front. Immunol. 2021, 12, 3972. [Google Scholar] [CrossRef]
- Kraaij, M.D.; Savage, N.D.L.; van der Kooij, S.W.; Koekkoek, K.; Wang, J.; van den Berg, J.M.; Ottenhoff, T.H.M.; Kuijpers, T.W.; Holmdahl, R.; van Kooten, C.; et al. Induction of Regulatory T Cells by Macrophages Is Dependent on Production of Reactive Oxygen Species. Proc. Natl. Acad. Sci. USA 2010, 107, 17686–17691. [Google Scholar] [CrossRef] [Green Version]
- Hatzioannou, A.; Boumpas, A.; Papadopoulou, M.; Papafragkos, I.; Varveri, A.; Alissafi, T.; Verginis, P. Regulatory T Cells in Autoimmunity and Cancer: A Duplicitous Lifestyle. Front. Immunol. 2021, 12, 731947. [Google Scholar] [CrossRef]
- Si, C.; Zhang, R.; Wu, T.; Lu, G.; Hu, Y.; Zhang, H.; Xu, F.; Wei, P.; Chen, K.; Tang, H.; et al. Dendritic Cell-Derived Nitric Oxide Inhibits the Differentiation of Effector Dendritic Cells. Oncotarget 2016, 7, 74834–74845. [Google Scholar] [CrossRef] [Green Version]
- Martin-Gayo, E.; Yu, X.G. Role of Dendritic Cells in Natural Immune Control of HIV-1 Infection. Front. Immunol. 2019, 10, 1306. [Google Scholar] [CrossRef] [PubMed]
- Stagg, A.J. Intestinal Dendritic Cells in Health and Gut Inflammation. Front. Immunol. 2018, 9, 2883. [Google Scholar] [CrossRef] [PubMed]
- Hey, Y.-Y.; Tan, J.K.H.; O’Neill, H.C. Redefining Myeloid Cell Subsets in Murine Spleen. Front. Immunol. 2016, 6, 652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundquist, M.; Wick, M.J. Salmonella Induces Death of CD8 + Dendritic Cells but Not CD11cintCD11b+ Inflammatory Cells in Vivo via MyD88 and TNFR1. J. Leukoc. Biol. 2008, 85, 225–234. [Google Scholar] [CrossRef]
- Fernandez-Boyanapalli, R.; McPhillips, K.A.; Frasch, S.C.; Janssen, W.J.; Dinauer, M.C.; Riches, D.W.H.; Henson, P.M.; Byrne, A.; Bratton, D.L. Impaired Phagocytosis of Apoptotic Cells by Macrophages in Chronic Granulomatous Disease Is Reversed by IFN-γ in a Nitric Oxide-Dependent Manner. J. Immunol. 2010, 185, 4030–4041. [Google Scholar] [CrossRef] [Green Version]
- Roxo-Junior, P.; Simão, H.M.L. Chronic Granulomatous Disease: Why an Inflammatory Disease? Braz. J. Med. Biol. Res. 2014, 47, 924–928. [Google Scholar] [CrossRef] [Green Version]
- Cachat, J.; Deffert, C.; Alessandrini, M.; Roux-Lombard, P.; Le Gouellec, A.; Stasia, M.-J.; Hugues, S.; Krause, K.-H. Altered Humoral Immune Responses and IgG Subtypes in NOX2-Deficient Mice and Patients: A Key Role for NOX2 in Antigen-Presenting Cells. Front. Immunol. 2018, 9, 1555. [Google Scholar] [CrossRef] [Green Version]
- Leiding, J.W.; Holland, S.M. Chronic Granulomatous Disease. In GeneReviews® [Internet]; Adam, M.P., Everman, D.B., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Eds.; Updated 2022; University of Washington: Seattle, WA, USA, 2012; pp. 1993–2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK99496/ (accessed on 29 July 2022).
- Slack, M.A.; Thomsen, I.P. Prevention of Infectious Complications in Patients with Chronic Granulomatous Disease. J. Pediatric Infect. Dis. Soc. 2018, 7, S25–S30. [Google Scholar] [CrossRef] [Green Version]
- Assari, T. Chronic Granulomatous Disease; Fundamental Stages in Our Understanding of CGD. Med. Immunol. 2006, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Lacey, C.A.; Chambers, C.A.; Mitchell, W.J.; Skyberg, J.A. IFN-γ-Dependent Nitric Oxide Suppresses Brucella -Induced Arthritis by Inhibition of Inflammasome Activation. J. Leukoc. Biol. 2019, 106, 27–34. [Google Scholar] [CrossRef]
- Naderi beni, F.; Fattahi, F.; Mirshafiey, A.; Ansari, M.; Mohsenzadegan, M.; Movahedi, M.; Pourpak, Z.; Moin, M. Increased Production of Nitric Oxide by Neutrophils from Patients with Chronic Granulomatous Disease on Interferon-Gamma Treatment. Int. Immunopharmacol. 2012, 12, 689–693. [Google Scholar] [CrossRef] [PubMed]
- Nagarkoti, S.; Sadaf, S.; Awasthi, D.; Chandra, T.; Jagavelu, K.; Kumar, S.; Dikshit, M. L-Arginine and Tetrahydrobiopterin Supported Nitric Oxide Production Is Crucial for the Microbicidal Activity of Neutrophils. Free Radic. Res. 2019, 53, 281–292. [Google Scholar] [CrossRef] [PubMed]
- McNeill, E.; Stylianou, E.; Crabtree, M.J.; Harrington-Kandt, R.; Kolb, A.-L.; Diotallevi, M.; Hale, A.B.; Bettencourt, P.; Tanner, R.; O’Shea, M.K.; et al. Regulation of Mycobacterial Infection by Macrophage Gch1 and Tetrahydrobiopterin. Nat. Commun. 2018, 9, 5409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, L.; Yin, Q.; Tong, Y.; Gui, J.; Liu, X.; Feng, X.; Yin, J.; Liu, J.; Guo, Y.; Yao, Y.; et al. Clinical and Genetic Characteristics of Chinese Pediatric Patients with Chronic Granulomatous Disease. Pediatric Allergy Immunol. 2019, 30, 378–386. [Google Scholar] [CrossRef]
- Gennery, A.R. Progress in Treating Chronic Granulomatous Disease. Br. J. Haematol. 2020, 192, 251–264. [Google Scholar] [CrossRef] [PubMed]
- de Luca, A.; Smeekens, S.P.; Casagrande, A.; Iannitti, R.; Conway, K.L.; Gresnigt, M.S.; Begun, J.; Plantinga, T.S.; Joosten, L.A.B.; van der Meer, J.W.M.; et al. IL-1 Receptor Blockade Restores Autophagy and Reduces Inflammation in Chronic Granulomatous Disease in Mice and in Humans. Proc. Natl. Acad. Sci. USA 2014, 111, 3526–3531. [Google Scholar] [CrossRef]
Cutaneous Manifestations | Gastrointestinal Manifestations | Autoimmune Manifestations | Infections | Ophthalmic Manifestations |
---|---|---|---|---|
Photosensitive malar rash Discoid lupus erythematosus Recurrent aphthous Seborrheic dermatitis Infections Abscesses recurring on skin | Colitis/Diarrhea Inflammatory bowel disease Stomatitis Autoimmune hepatitis Granulomatous enteritis Recurrent liver infections Liver abscess | Lupus, Lupus-like síndrome Arthritis Oral ulcers Raynaud’s phenomenon IgA nephropathy | Staphylococcus aureus Aspergillus fumigatus, Nocardia Burkholderia cepacia Serratia marcescens | Chorioretinitis |
Manifestations Treatment | Prevention of Primary Manifestations | Cure | Pregnancy Management |
---|---|---|---|
New azole drugs for fungal infections. Long courses of antibacterials. Abscesses may require percutaneous drainage or excisional surgery. Combination of antimicrobials and corticosteroids for inflammatory response | Antibacterials and antifungals combined with immunomodulatory therapy (IFN-ɣ). | Allogeneic hematopoietic stem cell transplantation (HSCT) | Trimethoprim, a folic acid antagonist, is discontinued during pregnancy. Sulfamethoxazole is typically administered. Data regarding the teratogenicity of itraconazole are limited. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garay, J.A.; Silva, J.E.; Di Genaro, M.S.; Davicino, R.C. The Multiple Faces of Nitric Oxide in Chronic Granulomatous Disease: A Comprehensive Update. Biomedicines 2022, 10, 2570. https://doi.org/10.3390/biomedicines10102570
Garay JA, Silva JE, Di Genaro MS, Davicino RC. The Multiple Faces of Nitric Oxide in Chronic Granulomatous Disease: A Comprehensive Update. Biomedicines. 2022; 10(10):2570. https://doi.org/10.3390/biomedicines10102570
Chicago/Turabian StyleGaray, Juan Agustín, Juan Eduardo Silva, María Silvia Di Genaro, and Roberto Carlos Davicino. 2022. "The Multiple Faces of Nitric Oxide in Chronic Granulomatous Disease: A Comprehensive Update" Biomedicines 10, no. 10: 2570. https://doi.org/10.3390/biomedicines10102570
APA StyleGaray, J. A., Silva, J. E., Di Genaro, M. S., & Davicino, R. C. (2022). The Multiple Faces of Nitric Oxide in Chronic Granulomatous Disease: A Comprehensive Update. Biomedicines, 10(10), 2570. https://doi.org/10.3390/biomedicines10102570