Urinary miRNAs as a Diagnostic Tool for Bladder Cancer: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Eligibility Criteria
2.2. Data Extraction and Collection
3. Results
3.1. Study Selection
3.2. General Findings
3.3. Quality of the Selected Articles
3.4. miRNAs Identified as Bladder Cancer Diagnostic Markers
4. Discussion
4.1. miRNA Biomarker Isolated from Whole Urine
4.2. miRNA Biomarkers Isolated from Urine Supernatant
4.3. miRNA Biomarker Isolated from Urine Sediment
4.4. miRNA Biomarker Isolated from Urine Extracellular Vesicles
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.-Z.; Ting, H.-N.; Ng, K.-H.; Ong, T.-A. A review on the accuracy of bladder cancer detection methods. J. Cancer 2019, 10, 4038–4044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mancini, M.; Righetto, M.; Zumerle, S.; Montopoli, M.; Zattoni, F. The Bladder EpiCheck Test as a Non-Invasive Tool Based on the Identification of DNA Methylation in Bladder Cancer Cells in the Urine: A Review of Published Evidence. Int. J. Mol. Sciences 2020, 21, 6542. [Google Scholar] [CrossRef] [PubMed]
- Inman, B.A.; Tran, V.-T.; Fradet, Y.; Lacombe, L. Carcinoma of the Upper Urinary Tract Predictors of Survival and Competing Causes of Mortality. Cancer 2009, 115, 2853–2862. [Google Scholar] [CrossRef]
- Yafi, F.A.; Brimo, F.; Steinberg, J.; Aprikian, A.G.; Tanguay, S.; Kassouf, W. Prospective analysis of sensitivity and specificity of urinary cytology and other urinary biomarkers for bladder cancer. Urol. Oncol. Semin. Orig. Investig. 2015, 33, 66.e25–66.e31. [Google Scholar] [CrossRef]
- Sullivan, P.S.; Chan, J.B.; Levin, M.R.; Rao, J. Urine cytology and adjunct markers for detection and surveillance of bladder cancer. Am. J. Transl. Res. 2010, 2, 412–440. [Google Scholar]
- Babjuk, M.; Burger, M.; Capoun, O.; Cohen, D.; Comperat, E.M.; Escrig, J.L.D.; Gontero, P.; Liedberg, F.; Masson-Lecomte, A.; Mostafid, A.H.; et al. European Association of Urology Guidelines on Non-muscle-invasive Bladder Cancer (Ta, T1, and Carcinoma in Situ). Eur. Urol. 2022, 81, 75–94. [Google Scholar] [CrossRef]
- Jose Serrano, M.; Carmen Garrido-Navas, M.; Diaz Mochon, J.J.; Cristofanilli, M.; Gil-Bazo, I.; Pauwels, P.; Malapelle, U.; Russo, A.; Lorente, J.A.; Ruiz-Rodriguez, A.J.; et al. Precision Prevention and Cancer Interception: The New Challenges of Liquid Biopsy. Cancer Discov. 2020, 10, 1635–1644. [Google Scholar] [CrossRef]
- Ferro, M.; La Civita, E.; Liotti, A.; Cennamo, M.; Tortora, F.; Buonerba, C.; Crocetto, F.; Lucarelli, G.; Busetto, G.M.; Del Giudice, F.; et al. Liquid Biopsy Biomarkers in Urine: A Route towards Molecular Diagnosis and Personalized Medicine of Bladder Cancer. J. Pers. Med. 2021, 11, 237. [Google Scholar] [CrossRef]
- Grimaldi, A.M.; Nuzzo, S.; Condorelli, G.; Salvatore, M.; Incoronato, M. Prognostic and Clinicopathological Significance of MiR-155 in Breast Cancer: A Systematic Review. Int. J. Mol. Sci. 2020, 21, 5834. [Google Scholar] [CrossRef]
- Grimaldi, A.M.; Incoronato, M. Clinical Translatability of "Identified" Circulating miRNAs for Diagnosing Breast Cancer: Overview and Update. Cancers 2019, 11, 901. [Google Scholar] [CrossRef] [PubMed]
- Incoronato, M.; Grimaldi, A.M.; Mirabelli, P.; Cavaliere, C.; Parente, C.A.; Franzese, M.; Staibano, S.; Ilardi, G.; Russo, D.; Soricelli, A.; et al. Circulating miRNAs in Untreated Breast Cancer: An Exploratory Multimodality Morpho-Functional Study. Cancers 2019, 11, 876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herranz, H.; Cohen, S.M. MicroRNAs and gene regulatory networks: Managing the impact of noise in biological systems. Genes Dev. 2010, 24, 1339–1344. [Google Scholar] [CrossRef] [Green Version]
- Grimaldi, A.M.; Incoronato, M. miRNA-based Therapeutics in Breast Cancer: A Systematic Review. Front. Oncol. 2021, 11, 1472. [Google Scholar] [CrossRef] [PubMed]
- Enokida, H.; Yoshino, H.; Matsushita, R.; Nakagawa, M. The role of microRNAs in bladder cancer. Investig. Clin. Urol. 2016, 57 (Suppl. 1), S60–S76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hofbauer, S.L.; de Martino, M.; Lucca, I.; Haitel, A.; Susani, M.; Shariat, S.F.; Klatte, T. A urinary microRNA (miR) signature for diagnosis of bladder cancer. Urol. Oncol. 2018, 36, 531.e531–531.e538. [Google Scholar] [CrossRef] [PubMed]
- Koguchi, D.; Matsumoto, K.; Shiba, I.; Harano, T.; Okuda, S.; Mori, K.; Hirano, S.; Kitajima, K.; Ikeda, M.; Iwamura, M. Diagnostic Potential of Circulating Tumor Cells, Urinary MicroRNA, and Urinary Cell-Free DNA for Bladder Cancer: A Review. Int. J. Mol. Sci. 2022, 23, 9148. [Google Scholar] [CrossRef]
- Xiao, S.; Wang, J.; Xiao, N. Micro RNAs as noninvasive biomarkers in bladder cancer detection: A diagnostic meta-analysis based on qRT-PCR data. Int. J. Biol. Markers 2016, 31, e276–e285. [Google Scholar] [CrossRef]
- Whiting, P.F.; Rutjes, A.W.S.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.G.; Sterne, J.A.C.; Bossuyt, P.M.M.; Grp, Q. QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Du, L.; Jiang, X.; Duan, W.; Wang, R.; Wang, L.; Zheng, G.; Yan, K.; Li, J.; Zhang, X.; Pan, H.; et al. Cell-free microRNA expression signatures in urine serve as novel noninvasive biomarkers for diagnosis and recurrence prediction of bladder cancer. Oncotarget 2017, 8, 40832–40842. [Google Scholar] [CrossRef] [Green Version]
- Piao, X.M.; Jeong, P.; Kim, Y.H.; Byun, Y.J.; Xu, Y.; Kang, H.W.; Ha, Y.S.; Kim, W.T.; Lee, J.Y.; Woo, S.H.; et al. Urinary cell-free microRNA biomarker could discriminate bladder cancer from benign hematuria. Int. J. Cancer 2019, 144, 380–388. [Google Scholar] [CrossRef] [PubMed]
- El-Shal, A.S.; Shalaby, S.M.; Abouhashem, S.E.; Elbary, E.H.A.; Azazy, S.; Rashad, N.M.; Sarhan, W. Urinary exosomal microRNA-96-5p and microRNA-183-5p expression as potential biomarkers of bladder cancer. Mol. Biol. Rep. 2021, 48, 4361–4371. [Google Scholar] [CrossRef] [PubMed]
- Eissa, S.; Safwat, M.; Matboli, M.; Zaghloul, A.; El-Sawalhi, M.; Shaheen, A. Measurement of Urinary Level of a Specific Competing endogenous RNA network (FOS and RCAN mRNA/ miR-324-5p, miR-4738-3p, /lncRNA miR-497-HG) Enables Diagnosis of Bladder Cancer. Urol. Oncol. 2019, 37, 292.e219–292.e227. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Ping, J.; Wen, D. MicroRNA-186 regulates the invasion and metastasis of bladder cancer via vascular endothelial growth factor C. Exp. Ther. Med. 2017, 14, 3253–3258. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Shi, X.; Li, H.; Hui, J.; Liu, R.; Chen, Z.; Lu, Y.; Tan, W. Urinary Exosomal miRNAs as biomarkers of bladder Cancer and experimental verification of mechanism of miR-93-5p in bladder Cancer. BMC Cancer 2021, 21, 1293. [Google Scholar] [CrossRef] [PubMed]
- Spagnuolo, M.; Costantini, M.; Ferriero, M.; Varmi, M.; Sperduti, I.; Regazzo, G.; Cicchillitti, L.; Díaz Méndez, A.B.; Cigliana, G.; Pompeo, V.; et al. Urinary expression of let-7c cluster as non-invasive tool to assess the risk of disease progression in patients with high grade non-muscle invasive bladder Cancer: A pilot study. J. Exp. Clin. Cancer Res. 2020, 39, 68. [Google Scholar] [CrossRef] [Green Version]
- Baumgart, S.; Meschkat, P.; Edelmann, P.; Heinzelmann, J.; Pryalukhin, A.; Bohle, R.; Heinzelbecker, J.; Stöckle, M.; Junker, K. MicroRNAs in tumor samples and urinary extracellular vesicles as a putative diagnostic tool for muscle-invasive bladder cancer. J. Cancer Res. Clin. Oncol. 2019, 145, 2725–2736. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Liu, X.; Fang, A.; Wang, J.; Yang, Y.; Wang, L.; Du, L.; Wang, C. Direct quantitative detection for cell-free miR-155 in urine: A potential role in diagnosis and prognosis for non-muscle invasive bladder cancer. Oncotarget 2016, 7, 3255–3266. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, H.; Yoshiike, M.; Nozawa, S.; Usuba, W.; Katsuoka, Y.; Aida, K.; Kitajima, K.; Kudo, H.; Hoshikawa, M.; Yoshioka, Y.; et al. Expression Level of Urinary MicroRNA-146a-5p Is Increased in Patients With Bladder Cancer and Decreased in Those After Transurethral Resection. Clin. Genitourin. Cancer 2016, 14, e493–e499. [Google Scholar] [CrossRef]
- Hentschel, A.E.; Beijert, I.J.; Bosschieter, J.; Kauer, P.C.; Vis, A.N.; Lissenberg-Witte, B.I.; van Moorselaar, R.J.A.; Steenbergen, R.D.M.; Nieuwenhuijzen, J.A. Bladder cancer detection in urine using DNA methylation markers: A technical and prospective preclinical validation. Clin. Epigenet. 2022, 14, 19. [Google Scholar] [CrossRef]
- Moisoiu, T.; Dragomir, M.P.; Iancu, S.D.; Schallenberg, S.; Birolo, G.; Ferrero, G.; Burghelea, D.; Stefancu, A.; Cozan, R.G.; Licarete, E.; et al. Combined miRNA and SERS urine liquid biopsy for the point-of-care diagnosis and molecular stratification of bladder cancer. Mol. Med. 2022, 28, 39. [Google Scholar] [CrossRef]
- Lin, J.T.; Tsai, K.W. Circulating miRNAs Act as Diagnostic Biomarkers for Bladder Cancer in Urine. Int. J. Mol. Sci. 2021, 22, 4278. [Google Scholar] [CrossRef] [PubMed]
- Erdmann, K.; Salomo, K.; Klimova, A.; Heberling, U.; Lohse-Fischer, A.; Fuehrer, R.; Thomas, C.; Roeder, I.; Froehner, M.; Wirth, M.P.; et al. Urinary MicroRNAs as Potential Markers for Non-Invasive Diagnosis of Bladder Cancer. Int. J. Mol. Sci. 2020, 21, 3814. [Google Scholar] [CrossRef]
- Güllü Amuran, G.; Tinay, I.; Filinte, D.; Ilgin, C.; Peker Eyüboğlu, I.; Akkiprik, M. Urinary micro-RNA expressions and protein concentrations may differentiate bladder cancer patients from healthy controls. Int. Urol. Nephrol. 2020, 52, 461–468. [Google Scholar] [CrossRef]
- Ghorbanmehr, N.; Gharbi, S.; Korsching, E.; Tavallaei, M.; Einollahi, B.; Mowla, S.J. miR-21-5p, miR-141-3p, and miR-205-5p levels in urine-promising biomarkers for the identification of prostate and bladder cancer. Prostate 2019, 79, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Nekoohesh, L.; Modarressi, M.H.; Mowla, S.J.; Sadroddiny, E.; Etemadian, M.; Afsharpad, M.; Zolfaghari, F.; Barzegari, M.; Saffari, M.; Oskooei, V.K.; et al. Expression profile of miRNAs in urine samples of bladder cancer patients. Biomark. Med. 2018, 12, 1311–1321. [Google Scholar] [CrossRef] [PubMed]
- Pardini, B.; Cordero, F.; Naccarati, A.; Viberti, C.; Birolo, G.; Oderda, M.; Di Gaetano, C.; Arigoni, M.; Martina, F.; Calogero, R.A.; et al. microRNA profiles in urine by next-generation sequencing can stratify bladder cancer subtypes. Oncotarget 2018, 9, 20658–20669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juracek, J.; Peltanova, B.; Dolezel, J.; Fedorko, M.; Pacik, D.; Radova, L.; Vesela, P.; Svoboda, M.; Slaby, O.; Stanik, M. Genome-wide identification of urinary cell-free microRNAs for non-invasive detection of bladder cancer. J. Cell. Mol. Med. 2018, 22, 2033–2038. [Google Scholar] [CrossRef] [Green Version]
- Mearini, E.; Poli, G.; Cochetti, G.; Boni, A.; Egidi, M.G.; Brancorsini, S. Expression of urinary miRNAs targeting NLRs inflammasomes in bladder cancer. Onco Targets Ther. 2017, 10, 2665–2673. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.Q.; Yuan, H.; Zhong, J.Y.; Wu, B.T.; Zhang, L.; Wang, Y.B. High urine miR-126 level predicts bladder cancer in hematuria patients. Biomed. Res.-India 2017, 28, 6216–6219. [Google Scholar]
- Pospisilova, S.; Pazourkova, E.; Horinek, A.; Brisuda, A.; Svobodova, I.; Soukup, V.; Hrbacek, J.; Capoun, O.; Hanus, T.; Mares, J.; et al. MicroRNAs in urine supernatant as potential non-invasive markers for bladder cancer detection. Neoplasma 2016, 63, 799–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sapre, N.; Macintyre, G.; Clarkson, M.; Naeem, H.; Cmero, M.; Kowalczyk, A.; Anderson, P.D.; Costello, A.J.; Corcoran, N.M.; Hovens, C.M. A urinary microRNA signature can predict the presence of bladder urothelial carcinoma in patients undergoing surveillance. Br. J. Cancer 2016, 114, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Urquidi, V.; Netherton, M.; Gomes-Giacoia, E.; Serie, D.J.; Eckel-Passow, J.; Rosser, C.J.; Goodison, S. A microRNA biomarker panel for the non-invasive detection of bladder cancer. Oncotarget 2016, 7, 86290–86299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarry, J.; Schadendorf, D.; Greenwood, C.; Spatz, A.; van Kempen, L.C. The validity of circulating microRNAs in oncology: Five years of challenges and contradictions. Mol. Oncol. 2014, 8, 819–829. [Google Scholar] [CrossRef] [PubMed]
- Witwer, K.W. Circulating MicroRNA Biomarker Studies: Pitfalls and Potential Solutions. Clin. Chem. 2015, 61, 56–63. [Google Scholar] [CrossRef]
- Ono, S.; Lam, S.; Nagahara, M.; Hoon, D.S.B. Circulating microRNA Biomarkers as Liquid Biopsy for Cancer Patients: Pros and Cons of Current Assays. J. Clin. Med. 2015, 4, 1890–1907. [Google Scholar] [CrossRef] [Green Version]
- Echeverry, G.; Hortin, G.L.; Rai, A.J. Introduction to urinalysis: Historical perspectives and clinical application. Methods Mol. Biol. 2010, 641, 1–12. [Google Scholar] [CrossRef]
- Wu, X. Urinalysis: A Review of Methods and Procedures. Crit. Care Nurs. Clin. N. Am. 2010, 22, 121–128. [Google Scholar] [CrossRef]
- Hentschel, A.E.; Nieuwenhuijzen, J.A.; Bosschieter, J.; van Splunter, A.P.; Lissenberg-Witte, B.I.; van der Voorn, J.P.; Segerink, L.I.; van Moorselaar, R.J.A.; Steenbergen, R.D.M. Comparative Analysis of Urine Fractions for Optimal Bladder Cancer Detection Using DNA Methylation Markers. Cancers 2020, 12, 859. [Google Scholar] [CrossRef] [Green Version]
- Bosschieter, J.; Nieuwenhuijzen, J.A.; Hentschel, A.; van Splunter, A.P.; Segerink, L.I.; Vis, A.N.; Wilting, S.M.; Lissenberg-Witte, B.I.; van Moorselaar, R.J.A.; Steenbergen, R.D.M. A two-gene methylation signature for the diagnosis of bladder cancer in urine. Epigenomics 2019, 11, 337–347. [Google Scholar] [CrossRef]
- Ingenito, F.; Roscigno, G.; Affinito, A.; Nuzzo, S.; Scognamiglio, I.; Quintavalle, C.; Condorelli, G. The Role of Exo-miRNAs in Cancer: A Focus on Therapeutic and Diagnostic Applications. Int. J. Mol. Sci. 2019, 20, 4687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.C.; Chen, T.H.; Huang, Y.M.; Wei, P.L.; Lin, J.C. Involvement of microRNA in Solid Cancer: Role and Regulatory Mechanisms. Biomedicines 2021, 9, 343. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhang, J.L.; Yang, D.X. miR-96-5p promotes the proliferation and migration of ovarian cancer cells by suppressing Caveolae1. J. Ovarian Res. 2019, 12, 57. [Google Scholar] [CrossRef] [PubMed]
- Anderson, O.; Reed, I.K.G. Regulation of cell growth and migration by miR-96 and miR-183 in a breast cancer model of epithelial-mesenchymal transition. PLoS ONE 2020, 15, e0233187. [Google Scholar] [CrossRef]
Publication Year (Reference) | Other Biospecimens | Urine Specimen | Centrifuge Protocol | Study Cohort | Method | Reference Gene | miRNA (↑ Increase; ↓ Decrease) | Multiple-miRNA Signature | Diagnostic Power (AUC) |
---|---|---|---|---|---|---|---|---|---|
2022 [20] | - | Sediment and whole urine | 800× g for 10 min at RT | Cohort: BC 108 and CTRL 100 | qMSP | ACTB | miR- 129 ↑, miR-935 ↑ | no | miR-129 AUC = 0.83 miR-935 AUC = 0.79 |
2022 [21] | - | Supernatant | 3600× g for 10 min | Prospective cohort (Romania): BC 15 and CTRL 16 Retrospective cohort (Italy): BC 66 and CTRL 50 | NGS and RT-qPCR and SERS | miR-28-3p and miR-361-3p | BC vs. CTRL: miR-34a-5p ↑, miR-205-5p ↑, and miR-210-3p ↑. Luminal vs. basal BC: miR-615-3p ↑ and miR-185-5p ↓ | yes | BC vs. CTRL = AUC = 0.92 Luminal vs. Basal = AUC = 0.95 |
2021 [22] | Tissues and cell lines | Exosome | (1) 3000× g for 20 min at 4 °C (2) 17,000× g for 30 min and filtered 0.22 μm (3) 110,000× g for 70 min at 4 °C | Discovery Cohort: BC 12 (6 NMIBC and 6 MIBC) and CTRL 4. Validation Cohort: BC 53 and CTRL 51 | NGS and RT-qPCR | exogenous cel-miR-39 and U6 snRNA | miR-93-5p ↑ and miR-516a-5p ↑ | yes | AUC= 0.87 |
2021 [23] | Serum | Exosome | (1) 3000× g for 30 min (2) 13,000× g for 5 min at 4 °C (3) Kit for Exosomal purification | Cohort: BC 51, Benign urinary Bladder Lesions (BL) 21 and CTRL 28 | RT-qPCR | SNORD68 | miR-96-5p ↑ and miR-183-5p ↑ | yes | miR-96-5p Sens = 80.4 Spec = 91.8 AUC = 0.85 miR-183-5p Sens = 78.4 Spec = 81.6 AUC = 0.83; miR-96-5p + miR-183-5p Sens = 88.2 Spec = 87.8 AUC = 0.88; miR-96-5p + cytology Sens = 82.4 Spec = 91.8 AUC = 0.87; miR-183-5p + cytology Sens = 80.4 Spec = 91.8 AUC = 0.85 |
2021 [24] | - | Whole urine | miRNeasy Serum/Plasma kit | Discovery cohort: BC 10 and CTRL 10.Validation cohort: BC 80 and CTRL 100. | NGS and RT-qPCR | not reported | let-7b-5p ↑, miR-149-5p ↑, miR-146a-5p ↑ and miR-423-5p ↑ | - | not reported |
2020 [25] | - | Sediment | (1) 1500× g for 10 min at 4 °C (2) 870× g for 5 min at 4 °C | Cohort: BC 104 and CTRL 46 | RT-qPCR | RNU44 and RNU48 | miR-96 ↑, miR-125b ↓, miR-126 ↑, miR-145 ↓, miR-183 ↑, and miR-221 ↓ | yes | miR-125b + miR-145 + miR-183 + miR-221 + VUC Sens = 84,6%, Spec = 95.7% AUC = 0.88 |
2020 [26] | Tissue | Supernatant | (1) 4500 rpm for 30 min at 4 °C (2) 8900 rpm for 5 min at 4 °C | Cohort: BC 57 and CTRL 20 | RT-qPCR | exogenous UniSp2 | let-7c ↑ | no | AUC = 0.80 |
2020 [27] | - | Exosome | (1) 1000 rpm for 10 min at 4 °C (2) 2500 rpm for 10 min at 4 °C | Cohort: BC 59 and CTRL 34 and Follow-up patients without recurrence 12 | RT-qPCR | RNU48 and RNU6 | miR-19b1-5p ↑, miR-136-3p ↑, miR-139-5p ↑, miR-210-3p ↑ | yes | Sens = 80.0%, Spec = 88.2%, AUC = 0.903 |
2019 [28] | Tissue | Exosome | (1) 2000× g for 20 min at 4 °C (2) 15,000× g for 30 min at 4 ° C | Discovery cohort: Tissue NMIBC 10 and MIBC 14; Validation Cohort: Tissue NMIBC 22 and MIBC 36. Urine samples MIBC 20 and NMIBC 17 | Microarray and RT-qPCR | RNU48 | miR-146b-5p ↑ and miR-155-5p ↑ | - | not reported |
2019 [29] | Plasma and tissue | Sediment | 4000 rpm for 10 to 20 min at R.T. | Cohort: BC 98 and BL 48 and CTRL 50 | RT-qPCR | RNU6 | miR-324-5p ↑ and miR-4738-3p ↑ | no | BC vs. all not BC: miR-324-5p Sens = 87.8, Spec = 86.7, AUC = 0.883 miR-4738-3p Sens = 84.7, Spec = 80.6, AUC = 0.827 BC vs. benign cases: miR-324-5p Sens = 76.5, Spec = 89.6, AUC = 0.801 miR-4738-3p Sens = 76.5, Spec = 93.8, AUC = 0.815 NMIBC vs. MIBC miR-324-5p Sens = 49.4, Spec = 46.7, AUC = 0.490 miR-4738-3p Sens = 48.2, Spec = 46.7, AUC = 0.490 Low-grade BC miR-324-5p Sens = 58.9, Spec = 40.0, AUC = 0.531 miR-4738-3p Sens = 58.9, Spec = 44, AUC = 0.551 |
2019 [30] | - | Supernatant | 2500 rpm for 15 min at 4 °C | Discovery Cohort: BC 35 BC and CTRL 20 Training Cohort: BC 174 and CTRL 114Validation Cohort: BC 117 and CTRL 97 | Microarray, RT-qPCR | Ratio of up- and down expressed miRNAs | miR-6124 ↑ and miR-4511 ↓ | yes | BC vs. CTRL Sens = 91.5, Spec = 74.2, AUC = 0.865 NMIBC vs. CTRL Sens = 88.9, Spec =77.3, AUC = 0.855 MIBC vs. CTRL Sens = 94.4, Spec = 74.2, AUC = 0.887 |
2019 [31] | - | Whole urine | - | Cohort: BC 45 and CTRL 23 and Bbenign prostatic hyperplasia (BPH) 22 | RT-qPCR | 5S rRNA | miR-21-5p ↑, miR-141-3p ↑, and miR-205-5p ↑ | no | miR-21-5p Sens = 84.0, Spec =59.0, AUC = 0.76 miR-141-3p Sens = 71.0, Spec = 71.0, AUC = 0.74 miR-205-5p Sens = 82.0, Spec = 62.0, AUC = 0.73 |
2018 [16] | - | Whole urine | - | Discovery cohort: BC 8 [low-grade BC (LGNMIBC) and 4 high-grade BC (HGNMIBC)] and CTRL 8 Validation cohort: BC 115 (56 LGNMIBC, 34 HGNMIBC, 25 MIBC) and CTRL 87 | Microarray and RT-qPCR | RNU48 and miR-103 | let-7c ↓, miR-148a ↓, miR-204a ↓, miR-135a ↑, miR-135b ↑, miR-345 ↑ | yes | BC vc CRTL AUC = 0.88LGNMIBC vs. CTRL AUC = 0.88 HGNMIBC vs. CTRL AUC = 0.93 MIBC vs. CTRL AUC = 0.91 |
2018 [32] | - | Whole urine | - | Cohort: BC 66, CTRL 53 | RT-qPCR | 5S rRNA | miR-10b ↑, and miR-34b ↑, miR-103 ↑, miR-141 ↓ | yes | Sens = 75.0, Spec = 63.5, AUC = 0.72 |
2018 [33] | - | Supernatant | (1) 3000× g for 10 min (2) 12,000× g for 10 min at 4 °C | Discovery cohort: BC 66 and CTRL 48. Validation cohort: BC 46 and CTRL 16. | NGS and RT-qPCR | miR-28-3p and miR-361-3p | Model 1: age, smoking status and miR-30a-5p ↓, let-7c-5p ↓, miR-486-5p ↑ | yes | AUC = 0.7 |
2018 [34] | - | Supernatant | 2000× g for 15 min at 4 °C | Cohort: BC 205 and CTRL 99 and non-metastatic clear-cell renal cell carcinoma 30 | Microarray and RT-qPCR | not specified | miR-93-5p ↑, miR-31-5p ↑ | yes | Sens = 74.0, Spec =75.0, AUC = 0.81 |
2017 [35] | Tissue and blood | Whole urine | - | Cohort: BC 76 and CTRL 66 | RT-qPCR | U6 | miR-186 ↓ | - | not reported |
2017 [36] | - | Sediment | 2000× g for 10 min at 4 °C | Cohort: BC 46 and CTRL “0” 28 and CTRL “1” (bladder inflammation) 31 | RT-qPCR | RNU6 | miR-141-3p ↓, miR-19a-3p ↑ miR-17-5p ↑, miR-106a-5p ↑ | yes | HG vs. LG BC miR-17-5p AUC = 0.57; HR vs. LR BC miR-17-5p AUC = 0.61, miR-19a-3p AUC = 0.60; NMI-LG vs. NMI-HG miR-17-5p AUC = 0.63; BC vs. CTRL miR-17-5p + miR-106a-5p + miR-19a-3p AUC = 0.87 |
2017 [37] | - | Supernatant | (1) 1500× g for 10 min at 4 °C (2) 13,800× g for 15 min at 4 °C | Discovery cohort: BC 6 and CTRL 6 Training cohort: BC 150 and CTRL 150 Validation Cohort: BC 120, CTRL 120 | NGS and RT-qPCR | miR-532-5p and let-7b-5p | miR-7-5p ↑, miR-22-3p ↑, miR-29a-3p ↑, miR-126-5p ↑, miR-200a-3p ↓, miR-375 ↑, and miR-423-5p ↓ | yes | Logistic regression analysis Sens = 85.0 %, Spec = 86.7 %, AUC: 0.92) |
2017 [38] | - | Whole urine | - | Cohort: BC 134 and CTRL 268 (urinary tract infection, UTI) | RT-qPCR | RNA U6 | miR-126 ↑ | - | not reported |
2016 [39] | Cell lines and tissues | Whole urine | - | Cohort: BC 28, CTRL 10 with UTI, CTRL 19 | Microarray and RT-qPCR | miR-21-5p | miR146a-5p ↑ | no | Sens = 100, Spec = 53.5, AUC = 0.77 |
2016 [40] | Tissue | Supernatant | (1) 3000× g for 10 min (2) 16,000× g for 10 min at 4 °C | Discovery cohort: BC 30 and CTRL 30 Validation Cohort: BC 162 and Cystitis 76 and CTRL 86 | RT-qPCR-Direct | U6 and RNU48 | miR-155 ↑ | no | Sens = 80.2, Spec = 84.6 AUC = 0.80 |
2016 [41] | - | Supernatant | 4000 rpm for 10 min at 10 °C | Discovery cohort: BC 46 and CTRL 13 Validation Cohort: BC 27 and CTRL 23 | Microarray and RT-qPCR | miR-191, miR-28-3p and miR-200b | miR-125b ↓, miR-30b ↓, miR-204 ↓, miR-99a ↓, and miR-532-3p ↓ | no | BC vs. CTRL miR-125b Sens = 59.26, Spec = 95.65, AUC = 0.801 miR- 99a Sens = 74.07, Spec = 82.61, AUC = 0.738 miR-204 Sens = 53.85 Spec = 100 AUC = 0.771 miR-30b Sens = 66.67 Spec = 82.61 AUC = 0.760 miR-532-3p Sens = 59.26 Spec = 86.96 AUC = 0.818 |
2016 [42] | - | Whole urine | - | Discovery cohort: BC 30 and Previous BC affected but now without recurrence 30 and CTRL 21 Validation cohort: BC 25 and CTRL 25 | RT-qPCR | urine osmolarity | miR-16 ↑, miR-200c ↑, miR-205 ↑, miR-21 ↑, miR-221 ↑, miR-34a ↑ | yes | BC Recurrence vs. BC without recurrence Sens = 80.0, Spec = 48.0, AUC = 0.74; CTRL vs. T1 stage: AUC = 0.92 |
2016 [43] | - | Sediment | 600× g for 5 min at 4 °C | Discovery cohort: BC 27 and CTRL 58 Validation cohort: BC 61 and CTRL 60 | Microarray and RT-qPCR | RNU6 | ↑: miR-652, miR-199a-3p, miR-140-5p, miR-93, miR-142-5p, miR-224, miR-96, miR-766, miR-223, miR-99b, miR-140-3p, let-7b, miR-141, miR-191, miR-146b-5p, miR-491-5p, miR-339-3p, miR-200c, miR-106b*, miR-143, miR-429, miR-222, miR-200a ↓: miR-1305, miR-30a | yes | Sens = 87.0, Spec = 100.0, AUC = 0.982 |
Study | Risk of Bias | Applicability Concerns | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Patient Selection | Index Test | Reference Standard | Flow and Timing | Patient Selection | Index Test | Reference Standard | ||||
Was a Consecutive or Random Sample of Patients Enrolled? | Did the Study Avoid Inappropriate Exclusions? | Were the Index Test Results Interpreted without Knowledge of the Results of the Reference Standard? | If a Threshold was Used, was it Pre-specified? | Is the Reference Standard Likely to Correctly Classify the Target Condition? | Was There an Appropriate Interval between Index Test and Reference Standard? | Did All Patients Receive the Same Reference Standard? | Are There Concerns That the Included Patients and Setting Do Not Match the Review Question? | Are There Concerns That the Index Test, Its Conduct, or Interpretation Differ from the Review Question? | Are There Concerns That the Target Condition as Defined By the Reference Standard Does Not Match the Question? | |
Study 1 | + | + | ? | + | + | ? | + | + | + | + |
Study 2 | + | + | ? | ? | + | ? | + | + | + | + |
Study 5 | + | + | ? | - | ? | ? | + | + | + | + |
Study 7 | + | + | ? | + | + | ? | + | + | + | + |
Study 8 | + | ? | ? | - | ? | ? | ? | + | - | + |
Study 11 | + | + | ? | + | + | ? | + | + | + | + |
Study 14 | + | + | ? | ? | + | + | + | + | + | + |
Study 16 | + | + | ? | - | + | + | + | + | + | + |
Study 19 | ? | + | ? | - | + | ? | + | + | - | - |
Study 20 | + | + | ? | + | ? | ? | - | + | + | + |
Study 22 | + | + | ? | - | + | ? | + | + | + | + |
Study 23 | + | + | ? | + | ? | ? | - | - | + | + |
Study 24 | + | + | ? | + | + | + | + | + | + | + |
Study 25 | + | + | ? | - | + | + | + | + | + | + |
Study 26 | + | + | ? | ? | + | + | + | + | + | + |
Study 28 | + | + | ? | - | + | + | + | + | + | + |
Study 29 | + | + | ? | - | ? | ? | ? | + | - | - |
Study 30 | + | + | ? | - | + | ? | + | + | + | + |
Study 33 | + | + | ? | + | + | + | + | + | + | + |
Study 34 | + | + | ? | + | ? | ? | ? | + | - | - |
Study 36 | + | + | ? | - | ? | ? | ? | + | + | + |
Study 37 | + | ? | ? | ? | + | + | + | + | + | + |
Study 38 | + | + | ? | - | + | ? | + | + | + | + |
Study 39 | + | + | ? | + | + | ? | + | + | + | + |
Study 41 | + | + | ? | + | + | + | + | + | + | + |
Found in One Study (66 miRNAs) | Found in Two Studies (15 miRNAs) | Found in Three Studies (1 miRNA) |
---|---|---|
let-7b, miR-103, miR-135b, miR-136-3p, miR-141, miR-146b-5p, miR-17-5p, miR-19a-3p, miR-204, miR-205, miR-221, miR-29a-3p, miR-30b, miR-93, miR-185-5p, miR-34b, miR-106a-5p, miR-106b*, miR-10b, miR-126-5p, miR-129, miR-1305, miR-135a, miR-139-5p, miR-141, miR-142-5p, miR-143, miR-145, miR-146b-5p, miR-148a, miR-16, miR-17-5p, miR-186, miR-191, miR-199a-3p, miR-19a-3p, miR-19b1-5p, miR-204a, miR-221, miR-222, miR-223, miR-22-3p, miR-224, miR-31-5p, miR-324-5p, miR-339-3p, miR-345, miR-375, miR-423-5p, miR-429, miR-4511, miR-4738-3p, miR-486-5p, miR-491-5p, miR-516a-5p, miR-532-3p, miR-6124, miR-615-3p, miR-652, miR-7-5p, miR-766, miR-935, miR-99a, miR-99b, miR-140-3p, miR-140-5p | Let7-c/let-7c-5p, miR-125b, miR-126, miR-141-3p, miR146a-5p, miR-155/miR-155-5p, miR-200a/miR-200a-3p, miR-205-5p, miR-210-3p, miR-30a/miR-30a-5p, miR-34a/miR-34a-5p, miR-93-5p, miR-200c, miR-21/miR-21-5p, miR-183/miR-183-5p | miR-96/miR-96-5p |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grimaldi, A.M.; Lapucci, C.; Salvatore, M.; Incoronato, M.; Ferrari, M. Urinary miRNAs as a Diagnostic Tool for Bladder Cancer: A Systematic Review. Biomedicines 2022, 10, 2766. https://doi.org/10.3390/biomedicines10112766
Grimaldi AM, Lapucci C, Salvatore M, Incoronato M, Ferrari M. Urinary miRNAs as a Diagnostic Tool for Bladder Cancer: A Systematic Review. Biomedicines. 2022; 10(11):2766. https://doi.org/10.3390/biomedicines10112766
Chicago/Turabian StyleGrimaldi, Anna Maria, Cristina Lapucci, Marco Salvatore, Mariarosaria Incoronato, and Maurizio Ferrari. 2022. "Urinary miRNAs as a Diagnostic Tool for Bladder Cancer: A Systematic Review" Biomedicines 10, no. 11: 2766. https://doi.org/10.3390/biomedicines10112766