Editorial of the Special Issue: “Soft and Hard Tissue Regeneration”
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Iop, L.; Palmosi, T.; Dal Sasso, E.; Gerosa, G. PalmoBioengineered tissue solutions for repair, correction and reconstruction in cardiovascular surgery. J. Thorac. Dis. 2018, 10, S2390–S2411. [Google Scholar] [CrossRef] [PubMed]
- Karamichos, D. Ocular tissue engineering: Current and future directions. J. Funct. Biomater. 2015, 6, 77–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kajbafzadeh, A.M.; Sabetkish, S.; Heidari, R.; Ebadi, M. Tissue-engineered cholecyst-derived extracellular matrix: A biomaterial for in vivo autologous bladder muscular wall regeneration. Pediatr. Surg. Int. 2014, 30, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Mariani, E.; Lisignoli, G.; Borzì, R.M.; Pulsatelli, L. Biomaterials: Foreign bodies or tuners for the immune response? Int. J. Mol. Sci. 2019, 20, 636. [Google Scholar] [CrossRef] [Green Version]
- Přikrylov. Side effects of dental metal implants: Impact on human health (metal as a risk factor of implantologic treatment). BioMed Res. Int. 2019, 2019, 2519205. [Google Scholar] [CrossRef]
- Perić Kačarević, Ž.; Rider, P.; Alkildani, S.; Retnasingh, S.; Pejakić, M.; Schnettler, R.; Gosau, M.; Smeets, R.; Jung, O.; Barbeck, M. An introduction to bone tissue engineering. Int. J. Artif. Organs 2020, 43, 69–86. [Google Scholar] [CrossRef]
- Glowacki, J.; Mizuno, S. Collagen scaffolds for tissue engineering. Biopolymers 2008, 89, 338–344. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L.; Zhou, Z.; Lai, H.; Xu, P.; Liao, L.; Wei, J. Biodegradable polymer membranes applied in guided bone/tissue regeneration: A review. Polymers 2016, 8, 115. [Google Scholar] [CrossRef]
- Elshahawy, W. Biocompatibility. In Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment; IntechOpen: London, UK, 2011. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Ren, Y. Nickel-free austenitic stainless steels for medical applications. Sci. Technol. Adv. Mater. 2010, 11, 014105. [Google Scholar] [CrossRef]
- Pantermehl, S.; Emmert, S.; Foth, A.; Grabow, N.; Alkildani, S.; Bader, R.; Barbeck, M.; Jung, O. 3d printing for soft tissue regeneration and applications in medicine. Biomedicines 2021, 9, 336. [Google Scholar] [CrossRef]
- Bubalo, M.; Lazić, Z.; Tatić, Z.; Milović, R.; Magić, M. The use of collagen membranes in guided tissue regeneration. Vojnosanit. Pregl. 2017, 74, 767–772. [Google Scholar] [CrossRef] [Green Version]
- Radenković, M.; Alkildani, S.; Stoewe, I.; Bielenstein, J.; Sundag, B.; Bellmann, O.; Jung, O.; Najman, S.; Stojanović, S.; Barbec, M. Comparative in vivo analysis of the integration behavior and immune response of collagen-based dental barrier membranes for guided bone regeneration (gbr). Membranes 2021, 11, 712. [Google Scholar] [CrossRef] [PubMed]
- Barbeck, M.; Kühnel, L.; Witte, F.; Pissarek, J.; Precht, C.; Xiong, X.; Krastev, R.; Wegner, N.; Walther, F.; Jung, O. Degradation, bone regeneration and tissue response of an innovative volume stable magnesium-supported gbr/gtr barrier membrane. Int. J. Mol. Sci. 2020, 21, 3098. [Google Scholar] [CrossRef] [PubMed]
- Rider, P.; Kačarević, Ž.P.; Alkildani, S.; Retnasingh, S.; Schnettler, R.; Barbeck, M. Additive manufacturing for guided bone regeneration: A perspective for alveolar ridge augmentation. Int. J. Mol. Sci. 2018, 19, 3308. [Google Scholar] [CrossRef] [Green Version]
- Giuseppe Angellotti, D.M.; Campisi, G.; De Caro, V. Quercetin-based nanocomposites as a tool to improve dental disease management. Biomedicines 2020, 8, 504. [Google Scholar] [CrossRef]
- Mallis, P.; Sokolis, D.P.; Makridakis, M.; Zoidakis, J.; Velentzas, A.D.; Katsimpoulas, M.; Vlahou, A.; Kostakis, A.; Stavropoulos-Giokas, C.; Michalopoulos, E. Insights into biomechanical and proteomic characteristics of small diameter vascular grafts utilizing the human umbilical artery. Biomedicines 2020, 8, 280. [Google Scholar] [CrossRef]
- Murgia, D.; Angellotti, G.; Conigliaro, A.; Carfi Pavia, F.; D’Agostino, F.; Contardi, M.; Mauceri, R.; Alessandro, R.; Campisi, G.; De Caro, V. Development of a multifunctional bioerodible nanocomposite containing metronidazole and curcumin to apply on l-prf clot to promote tissue regeneration in dentistry. Biomedicines 2020, 8, 425. [Google Scholar] [CrossRef]
- Kammerer, P.W.; Engel, V.; Plocksties, F.; Jonitz-Heincke, A.; Timmermann, D.; Engel, N.; Frerich, B.; Bader, R.; Thiem, D.G.E.; Skorska, A.; et al. Continuous electrical stimulation affects initial growth and proliferation of adipose-derived stem cells. Biomedicines 2020, 8, 482. [Google Scholar] [CrossRef]
- Katagiri, H.; El Tawil, Y.; Lang, N.P.; Imber, J.C.; Sculean, A.; Fujioka-Kobayashi, M.; Saulacic, N. Collagen-based matrices for osteoconduction: A preclinical in vivo study. Biomedicines 2021, 9, 143. [Google Scholar] [CrossRef]
- Sanabria-de la Torre, R.; Fernández-González, A.; Quiñones-Vico, M.I.; Montero-Vilchez, T.; Arias-Santiago, S. Bioengineered skin intended as in vitro model for pharmacosmetics, skin disease study and environmental skin impact analysis. Biomedicines 2020, 8, 464. [Google Scholar] [CrossRef]
- Steigmann, L.; Jung, O.; Kieferle, W.; Stojanovic, S.; Proehl, A.; Gorke, O.; Emmert, S.; Najman, S.; Barbeck, M.; Rothamel, D. Biocompatibility and immune response of a newly developed volume-stable magnesium-based barrier membrane in combination with a pvd coating for guided bone regeneration (gbr). Biomedicines 2020, 8, 636. [Google Scholar] [CrossRef] [PubMed]
- On, S.W.; Cho, S.W.; Byun, S.H.; Yang, B.E. Bioabsorbable osteofixation materials for maxillofacial bone surgery: A review on polymers and magnesium-based materials. Biomedicines 2020, 8, 300. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbeck, M.; Alkildani, S.; Jung, O. Editorial of the Special Issue: “Soft and Hard Tissue Regeneration”. Biomedicines 2022, 10, 356. https://doi.org/10.3390/biomedicines10020356
Barbeck M, Alkildani S, Jung O. Editorial of the Special Issue: “Soft and Hard Tissue Regeneration”. Biomedicines. 2022; 10(2):356. https://doi.org/10.3390/biomedicines10020356
Chicago/Turabian StyleBarbeck, Mike, Said Alkildani, and Ole Jung. 2022. "Editorial of the Special Issue: “Soft and Hard Tissue Regeneration”" Biomedicines 10, no. 2: 356. https://doi.org/10.3390/biomedicines10020356
APA StyleBarbeck, M., Alkildani, S., & Jung, O. (2022). Editorial of the Special Issue: “Soft and Hard Tissue Regeneration”. Biomedicines, 10(2), 356. https://doi.org/10.3390/biomedicines10020356