Drug-Targeted Genomes: Mutability of Ion Channels and GPCRs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database, Literature, and Open-Access Software
2.2. Approximation of Proximity to a Telomere
2.3. Data Plot and Statistical Methods
3. Results
3.1. Outlines of Two Factors in Genes Encoding 261 Novel Druggable Genomes
3.2. Prioritization of Druggable Ion Channels per the Relative Mutability
3.3. Prioritization of Druggable GPCRs per the Relative Mutability
3.4. Mutability of Ion Channels and GPCRs Targeted by the Commercialized Drugs
3.5. Thirty-One Genes Encoding Ion Channels and GPCRs Targeted by Approved Drugs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alothaid, H.; Aldughaim, M.S.K.; El Bakkouri, K.; Al Mashhadi, S.; Al-Qahtani, A.A. Similarities between the effect of SARS-CoV-2 and HCV on the cellular level, and the possible role of ion channels in COVID-19 progression: A review of potential targets for diagnosis and treatment. Channels 2020, 14, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Bertagna, F.; Lewis, R.; Silva, S.R.P.; McFadden, J.; Jeevaratnam, K. Effects of electromagnetic fields on neuronal ion channels: A systematic review. Ann. N. Y. Acad. Sci. 2021, 1499, 82–103. [Google Scholar] [CrossRef]
- Joukar, S. A comparative review on heart ion channels, action potentials and electrocardiogram in rodents and human: Extrapolation of experimental insights to clinic. Lab. Anim. Res. 2021, 37, 25. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhou, R.; Lei, Y.; Hu, J.; Li, X. The ligand-gated ion channel P2X7 receptor mediates NLRP3/caspase-1-mediated pyroptosis in cerebral cortical neurons of juvenile rats with sepsis. Brain Res. 2020, 1748, 147109. [Google Scholar] [CrossRef] [PubMed]
- Alvarado, D.; Cardoso-Arenas, S.; Corrales-Garcia, L.L.; Clement, H.; Arenas, I.; Montero-Dominguez, P.A.; Olamendi-Portugal, T.; Zamudio, F.; Csoti, A.; Borrego, J.; et al. A Novel Insecticidal Spider Peptide that Affects the Mammalian Voltage-Gated Ion Channel hKv1.5. Front. Pharmacol. 2020, 11, 563858. [Google Scholar] [CrossRef]
- Ackerman, M.J.; Clapham, D.E. Ion channels--basic science and clinical disease. N. Engl. J. Med. 1997, 336, 1575–1586. [Google Scholar] [CrossRef]
- Munemasa, S.; Oda, K.; Watanabe-Sugimoto, M.; Nakamura, Y.; Shimoishi, Y.; Murata, Y. The coronatine-insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. Plant Physiol. 2007, 143, 1398–1407. [Google Scholar] [CrossRef] [Green Version]
- Davis, P.B.; Drumm, M.; Konstan, M.W. Cystic fibrosis. Am. J. Respir. Crit. Care Med. 1996, 154, 1229–1256. [Google Scholar] [CrossRef]
- Konstan, M.W.; Pasta, D.J.; VanDevanter, D.R.; Wagener, J.S.; Morgan, W.J.; Scientific Advisory, G.; Scientific Advisory Group; The Investigators and Coordinators of ESCF. Epidemiologic Study of Cystic Fibrosis: 25 years of observational research. Pediatr. Pulmonol. 2021, 56, 823–836. [Google Scholar] [CrossRef]
- Chen, J.; Song, Y.; Gu, J.; Chen, L. Reprogramming of a human induced pluripotent stem cell line from a long QT syndrome patient harboring a heterozygous mutation of c.1537C>T in SCN5A gene. Stem Cell Res. 2021, 57, 102576. [Google Scholar] [CrossRef]
- Garcia Gozalo, M.; Bermejo Arnedo, I.; de Vera McMullan, P. KCNQ1 gene mutation and epilepsy in patient with long QT syndrome. Med. Clin. 2021, 157, 456–457. [Google Scholar] [CrossRef]
- Gessner, G.; Runge, S.; Koenen, M.; Heinemann, S.H.; Koenen, M.; Haas, J.; Meder, B.; Thomas, D.; Katus, H.A.; Schweizer, P.A. ANK2 functionally interacts with KCNH2 aggravating long QT syndrome in a double mutation carrier. Biochem. Biophys. Res. Commun. 2019, 512, 845–851. [Google Scholar] [CrossRef] [PubMed]
- Mesquita, F.C.P.; Arantes, P.C.; Kasai-Brunswick, T.H.; Araujo, D.S.; Gubert, F.; Monnerat, G.; Silva Dos Santos, D.; Neiman, G.; Leitao, I.C.; Barbosa, R.A.Q.; et al. R534C mutation in hERG causes a trafficking defect in iPSC-derived cardiomyocytes from patients with type 2 long QT syndrome. Sci. Rep. 2019, 9, 19203. [Google Scholar] [CrossRef]
- Zahavich, L.; Tarnopolsky, M.; Yao, R.; Mital, S. Novel Association of a De Novo CALM2 Mutation with Long QT Syndrome and Hypertrophic Cardiomyopathy. Circ. Genom. Precis. Med. 2018, 11, e002255. [Google Scholar] [CrossRef] [Green Version]
- Knight, K.K.; Olson, D.R.; Zhou, R.; Snyder, P.M. Liddle’s syndrome mutations increase Na+ transport through dual effects on epithelial Na+ channel surface expression and proteolytic cleavage. Proc. Natl. Acad. Sci. USA 2006, 103, 2805–2808. [Google Scholar] [CrossRef] [Green Version]
- Rooj, A.K.; Cormet-Boyaka, E.; Clark, E.B.; Qadri, Y.J.; Lee, W.; Boddu, R.; Agarwal, A.; Tambi, R.; Uddin, M.; Parpura, V.; et al. Association of cystic fibrosis transmembrane conductance regulator with epithelial sodium channel subunits carrying Liddle’s syndrome mutations. Am. J. Physiol. Lung Cell. Mol. Physiol. 2021, 321, L308–L320. [Google Scholar] [CrossRef] [PubMed]
- Rossi, E.; Farnetti, E.; Debonneville, A.; Nicoli, D.; Grasselli, C.; Regolisti, G.; Negro, A.; Perazzoli, F.; Casali, B.; Mantero, F.; et al. Liddle’s syndrome caused by a novel missense mutation (P617L) of the epithelial sodium channel beta subunit. J. Hypertens. 2008, 26, 921–927. [Google Scholar] [CrossRef] [Green Version]
- Staub, O.; Dho, S.; Henry, P.; Correa, J.; Ishikawa, T.; McGlade, J.; Rotin, D. WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle’s syndrome. EMBO J. 1996, 15, 2371–2380. [Google Scholar] [CrossRef]
- Ben-Ari, J.; Greenberg, M.; Nemet, D.; Edelstein, E.; Eliakim, A. Octreotide-induced hepatitis in a child with persistent hyperinsulinemia hypoglycemia of infancy. J. Pediatr. Endocrinol. Metab. 2013, 26, 179–182. [Google Scholar] [CrossRef]
- Gloyn, A.L. Glucokinase (GCK) mutations in hyper- and hypoglycemia: Maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemia of infancy. Hum. Mutat. 2003, 22, 353–362. [Google Scholar] [CrossRef]
- Hufnagel, M.; Eichmann, D.; Stieh, J.; Santer, R. Further evidence for a dominant form of familial persistent hyperinsulinemic hypoglycemia of infancy: A family with documented hyperinsulinemia in two generations. J. Clin. Endocrinol. Metab. 1998, 83, 2215–2216. [Google Scholar] [CrossRef] [PubMed]
- Phulwani, P.; Bergwitz, C.; Jaureguiberry, G.; Rasoulpour, M.; Estrada, E. Hereditary hypophosphatemic rickets with hypercalciuria and nephrolithiasis-identification of a novel SLC34A3/NaPi-IIc mutation. Am. J. Med. Genet. A 2011, 155A, 626–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stapleton, F.B. Making a “dent” in hereditary hypercalciuric nephrolithiasis. J. Pediatr. 1998, 132, 764–765. [Google Scholar] [CrossRef]
- Tanaka, K.; Fisher, S.E.; Craig, I.W. Characterization of novel promoter and enhancer elements of the mouse homologue of the Dent disease gene, CLCN5, implicated in X-linked hereditary nephrolithiasis. Genomics 1999, 58, 281–292. [Google Scholar] [CrossRef] [Green Version]
- Hudson, A.J.; Ebers, G.C.; Bulman, D.E. The skeletal muscle sodium and chloride channel diseases. Brain 1995, 118 (Pt 2), 547–563. [Google Scholar] [CrossRef]
- Chirasani, V.R.; Xu, L.; Addis, H.G.; Pasek, D.A.; Dokholyan, N.V.; Meissner, G.; Yamaguchi, N. A central core disease mutation in the Ca(2+)-binding site of skeletal muscle ryanodine receptor impairs single-channel regulation. Am. J. Physiol. Cell Physiol. 2019, 317, C358–C365. [Google Scholar] [CrossRef] [PubMed]
- Denniss, A.; Dulhunty, A.F.; Beard, N.A. Ryanodine receptor Ca(2+) release channel post-translational modification: Central player in cardiac and skeletal muscle disease. Int. J. Biochem. Cell Biol. 2018, 101, 49–53. [Google Scholar] [CrossRef]
- Jung, H.W.; Kim, K.I.; Park, C.G.; Kang, D.H.; Ahn, Y.; Bae, J.H.; Kim, C.H. A multicenter, non-comparative study to evaluate the efficacy and safety of fixed-dose olmesartan/amlodipine in Korean patients with hypertension who are naive or non-responders to anti-hypertensive monotherapy (ACE-HY study). Clin. Exp. Hypertens. 2015, 37, 482–489. [Google Scholar] [CrossRef]
- Kuga, K.; Xu, D.Z.; Ohtsuka, M.; Aonuma, K.; Lau, A.H.; Watanabe, Y.; Ohtsuka, K. Comparison of daily anti-hypertensive effects of amlodipine and nifedipine coat-core using ambulatory blood pressure monitoring-utility of "hypobaric curve" and "hypobaric area". Clin. Exp. Hypertens. 2011, 33, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Ren, L.; Jiang, M.; Chu, Y. Anti-hypertensive efficacy of amlodipine dosing during morning versus evening: A meta-analysis. Rev. Cardiovasc. Med. 2019, 20, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Takenaka, T.; Uchida, K.; Kojima, E.; Gen, S.; Nodaira, Y.; Hoshi, H.; Kato, N.; Takane, H.; Ohno, Y.; Suzuki, H. Amlodipine and loop diuretics as the second anti-hypertensive medication for the treatment of hypertension with chronic kidney diseases. Clin. Exp. Hypertens. 2011, 33, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Yousefpour, A.; Modarress, H.; Goharpey, F.; Amjad-Iranagh, S. Interaction of PEGylated anti-hypertensive drugs, amlodipine, atenolol and lisinopril with lipid bilayer membrane: A molecular dynamics simulation study. Biochim. Biophys. Acta 2015, 1848, 1687–1698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orubu, E.S.F.; Duncan, J.; Tuleu, C.; Turner, M.A.; Nunn, A. WHO essential medicines for children 2011–2019: Age-appropriateness of enteral formulations. Arch. Dis. Child. 2021. [Google Scholar] [CrossRef]
- Beeton, C.; Pennington, M.W.; Norton, R.S. Analogs of the sea anemone potassium channel blocker ShK for the treatment of autoimmune diseases. Inflamm. Allergy Drug Targets 2011, 10, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Chung, S.H. Engineering a potent and specific blocker of voltage-gated potassium channel Kv1.3, a target for autoimmune diseases. Biochemistry 2012, 51, 1976–1982. [Google Scholar] [CrossRef] [PubMed]
- Buono, R.J.; Lohoff, F.W.; Sander, T.; Sperling, M.R.; O’Connor, M.J.; Dlugos, D.J.; Ryan, S.G.; Golden, G.T.; Zhao, H.; Scattergood, T.M.; et al. Association between variation in the human KCNJ10 potassium ion channel gene and seizure susceptibility. Epilepsy. Res. 2004, 58, 175–183. [Google Scholar] [CrossRef]
- Calder, J.A.; Schachter, M.; Sever, P.S. Ion channel involvement in the acute vascular effects of thiazide diuretics and related compounds. J. Pharmacol. Exp. Ther. 1993, 265, 1175–1180. [Google Scholar]
- Carter, L.A.; Belknap, J.K.; Crabbe, J.C.; Janowsky, A. Allosteric regulation of the N-methyl-D-aspartate receptor-linked ion channel complex and effects of ethanol in ethanol-withdrawal seizure-prone and -resistant mice. J. Neurochem. 1995, 64, 213–219. [Google Scholar] [CrossRef]
- Jones-Muhammad, M.; Shao, Q.; Cain-Shields, L.; Shaffery, J.P.; Warrington, J.P. Acid Sensing Ion Channel 2a Is Reduced in the Reduced Uterine Perfusion Pressure Mouse Model and Increases Seizure Susceptibility in Pregnant Mice. Cells 2021, 10, 1135. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, G.; Zhang, Y.; Sun, Y.; Li, H.; Dong, S.; Ma, W.; Liu, B.; Wang, W.; Wu, H.; et al. Glucose Deficiency Elevates Acid-Sensing Ion Channel 2a Expression and Increases Seizure Susceptibility in Temporal Lobe Epilepsy. Sci. Rep. 2017, 7, 5870. [Google Scholar] [CrossRef] [Green Version]
- Izumi-Nakaseko, H.; Hagiwara-Nagasawa, M.; Naito, A.T.; Goto, A.; Chiba, K.; Sekino, Y.; Kanda, Y.; Sugiyama, A. Application of human induced pluripotent stem cell-derived cardiomyocytes sheets with microelectrode array system to estimate antiarrhythmic properties of multi-ion channel blockers. J. Pharmacol. Sci. 2018, 137, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Pugsley, M.K.; Hayes, E.S.; Saint, D.A.; Walker, M.J.A. The antiarrhythmic actions of bisaramil and penticainide result from mixed cardiac ion channel blockade. Biomed. Pharmacother. 2019, 111, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Sterbuleac, D.; Maniu, C.L. An antiarrhythmic agent as a promising lead compound for targeting the hEAG1 ion channel in cancer therapy: Insights from molecular dynamics simulations. Chem. Biol. Drug Des. 2016, 88, 683–689. [Google Scholar] [CrossRef]
- Sterbuleac, D.; Maniu, C.L. Computer Simulations Reveal a Novel Blocking Mode of the hERG Ion Channel by the Antiarrhythmic Agent Clofilium. Mol. Inform. 2018, 37, e1700142. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Shan, J.; Yang, Q.; Ma, X.; Jin, S.; Guo, X.; You, Q.; Tang, Y. Antiarrhythmic efficacy of CPUY102122, a multiple ion channel blocker, on rabbits with ischemia/reperfusion injury. Pharmacol. Rep. 2014, 66, 1022–1030. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Nguyen, H.X.; Bursac, N. In vitro discovery of novel prokaryotic ion channel candidates for antiarrhythmic gene therapy. Methods Enzymol. 2021, 654, 407–434. [Google Scholar] [CrossRef] [PubMed]
- Kario, K.; Matsuda, S.; Nagahama, S.; Kurose, Y.; Sugii, H.; Teshima, T.; Suzuki, N. Single-pill combination of cilnidipine, an l-/n-type calcium channel blocker, and valsartan reduces the day-by-day variability of morning home systolic blood pressure in patients with treated hypertension: A sub-analysis of the HOPE-combi survey. J. Clin. Hypertens. 2021, 23, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, T.; Onoue, G.; Ito, H. Effect of Switching to Azilsartan From Fixed-Dose Combination of an Angiotensin II Receptor Blocker and Calcium Channel Blocker or a Thiazide in Patients With Hypertension. J. Clin. Med. Res. 2019, 11, 202–207. [Google Scholar] [CrossRef] [Green Version]
- Garcia, M.L.; Kaczorowski, G.J. Ion channels find a pathway for therapeutic success. Proc. Natl. Acad. Sci. USA 2016, 113, 5472–5474. [Google Scholar] [CrossRef] [Green Version]
- Veit, G.; Avramescu, R.G.; Chiang, A.N.; Houck, S.A.; Cai, Z.; Peters, K.W.; Hong, J.S.; Pollard, H.B.; Guggino, W.B.; Balch, W.E.; et al. From CFTR biology toward combinatorial pharmacotherapy: Expanded classification of cystic fibrosis mutations. Mol. Biol. Cell 2016, 27, 424–433. [Google Scholar] [CrossRef] [Green Version]
- Latham, J.L.; Martin, S.N. Infiltrative anesthesia in office practice. Am. Fam. Physician 2014, 89, 956–962. [Google Scholar] [PubMed]
- Zhou, D.; Wang, L.; Cui, Q.; Iftikhar, R.; Xia, Y.; Xu, P. Repositioning Lidocaine as an Anticancer Drug: The Role beyond Anesthesia. Front. Cell Dev. Biol. 2020, 8, 565. [Google Scholar] [CrossRef] [PubMed]
- Sloop, K.W.; Emmerson, P.J.; Statnick, M.A.; Willard, F.S. The current state of GPCR-based drug discovery to treat metabolic disease. Br. J. Pharmacol. 2018, 175, 4060–4071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauser, A.S.; Kooistra, A.J.; Munk, C.; Heydenreich, F.M.; Veprintsev, D.B.; Bouvier, M.; Babu, M.M.; Gloriam, D.E. GPCR activation mechanisms across classes and macro/microscales. Nat. Struct. Mol. Biol. 2021, 28, 879–888. [Google Scholar] [CrossRef] [PubMed]
- Dascal, N. Ion-channel regulation by G proteins. Trends Endocrinol. Metab. 2001, 12, 391–398. [Google Scholar] [CrossRef]
- Kottgen, M.; Benzing, T.; Simmen, T.; Tauber, R.; Buchholz, B.; Feliciangeli, S.; Huber, T.B.; Schermer, B.; Kramer-Zucker, A.; Hopker, K.; et al. Trafficking of TRPP2 by PACS proteins represents a novel mechanism of ion channel regulation. EMBO J. 2005, 24, 705–716. [Google Scholar] [CrossRef] [Green Version]
- Wickman, K.; Clapham, D.E. Ion channel regulation by G proteins. Physiol. Rev. 1995, 75, 865–885. [Google Scholar] [CrossRef]
- Zhang, W. Roles of heterotrimeric G proteins in guard cell ion channel regulation. Plant Signal. Behav. 2011, 6, 986–990. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Duc, N.M.; Rasmussen, S.G.F.; Hilger, D.; Kubiak, X.; Wang, L.; Bohon, J.; Kim, H.R.; Wegrecki, M.; Asuru, A.; et al. Assembly of a GPCR-G Protein Complex. Cell 2019, 177, 1232–1242.e11. [Google Scholar] [CrossRef]
- Hauser, A.S.; Attwood, M.M.; Rask-Andersen, M.; Schioth, H.B.; Gloriam, D.E. Trends in GPCR drug discovery: New agents, targets and indications. Nat. Rev. Drug Discov. 2017, 16, 829–842. [Google Scholar] [CrossRef]
- Hauser, A.S.; Chavali, S.; Masuho, I.; Jahn, L.J.; Martemyanov, K.A.; Gloriam, D.E.; Babu, M.M. Pharmacogenomics of GPCR Drug Targets. Cell 2018, 172, 41–54.e19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierce, K.L.; Premont, R.T.; Lefkowitz, R.J. Seven-transmembrane receptors. Nat. Rev. Mol. Cell. Biol. 2002, 3, 639–650. [Google Scholar] [CrossRef] [PubMed]
- Genomes Project, C.; Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.; McVean, G.A.; et al. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Lakhan, R.; Kumari, R.; Misra, U.K.; Kalita, J.; Pradhan, S.; Mittal, B. Differential role of sodium channels SCN1A and SCN2A gene polymorphisms with epilepsy and multiple drug resistance in the north Indian population. Br. J. Clin. Pharmacol. 2009, 68, 214–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen-Seaman, M.I.; Furey, T.S.; Payseur, B.A.; Lu, Y.; Roskin, K.M.; Chen, C.F.; Thomas, M.A.; Haussler, D.; Jacob, H.J. Comparative recombination rates in the rat, mouse, and human genomes. Genome Res. 2004, 14, 528–538. [Google Scholar] [CrossRef] [Green Version]
- Chimpanzee, S.; Analysis, C. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 2005, 437, 69–87. [Google Scholar] [CrossRef]
- Nusbaum, C.; Mikkelsen, T.S.; Zody, M.C.; Asakawa, S.; Taudien, S.; Garber, M.; Kodira, C.D.; Schueler, M.G.; Shimizu, A.; Whittaker, C.A.; et al. DNA sequence and analysis of human chromosome 8. Nature 2006, 439, 331–335. [Google Scholar] [CrossRef]
- Hellmann, I.; Prufer, K.; Ji, H.; Zody, M.C.; Paabo, S.; Ptak, S.E. Why do human diversity levels vary at a megabase scale? Genome Res. 2005, 15, 1222–1231. [Google Scholar] [CrossRef] [Green Version]
- Lucas, H.B.; McKnight, I.; Raines, R.; Hijazi, A.; Hart, C.; Lee, C.; Kim, D.G.; Li, W.; Lee, P.H.U.; Shim, J.W. Factors Associated with Mutations: Their Matching Rates to Cardiovascular and Neurological Diseases. Int. J. Mol. Sci. 2021, 22, 5057. [Google Scholar] [CrossRef]
- McKnight, I.; Hart, C.; Park, I.H.; Shim, J.W. Genes causing congenital hydrocephalus: Their chromosomal characteristics of telomere proximity and DNA compositions. Exp. Neurol. 2020, 335, 113523. [Google Scholar] [CrossRef]
- Mallapaty, S. Kids and COVID: Why young immune systems are still on top. Nature 2021, 597, 166–168. [Google Scholar] [CrossRef] [PubMed]
- Lopez Bernal, J.; Andrews, N.; Gower, C.; Gallagher, E.; Simmons, R.; Thelwall, S.; Stowe, J.; Tessier, E.; Groves, N.; Dabrera, G.; et al. Effectiveness of COVID-19 Vaccines against the B.1.617.2 (Delta) Variant. N. Engl. J. Med. 2021, 385, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Cohen, P.; Cross, D.; Janne, P.A. Kinase drug discovery 20 years after imatinib: Progress and future directions. Nat. Rev. Drug Discov. 2021, 20, 551–569. [Google Scholar] [CrossRef] [PubMed]
- Hochstetler, A.E.; Smith, H.M.; Preston, D.C.; Reed, M.M.; Territo, P.R.; Shim, J.W.; Fulkerson, D.; Blazer-Yost, B.L. TRPV4 antagonists ameliorate ventriculomegaly in a rat model of hydrocephalus. JCI Insight 2020, 5, e137646. [Google Scholar] [CrossRef] [PubMed]
- Gruber, C.N.; Patel, R.S.; Trachtman, R.; Lepow, L.; Amanat, F.; Krammer, F.; Wilson, K.M.; Onel, K.; Geanon, D.; Tuballes, K.; et al. Mapping Systemic Inflammation and Antibody Responses in Multisystem Inflammatory Syndrome in Children (MIS-C). Cell 2020, 183, 982–995.e14. [Google Scholar] [CrossRef]
- Attwood, M.M.; Jonsson, J.; Rask-Andersen, M.; Schioth, H.B. Soluble ligands as drug targets. Nat. Rev. Drug Discov. 2020, 19, 695–710. [Google Scholar] [CrossRef]
- Shim, J.W.; Territo, P.R.; Simpson, S.; Watson, J.C.; Jiang, L.; Riley, A.A.; McCarthy, B.; Persohn, S.; Fulkerson, D.; Blazer-Yost, B.L. Hydrocephalus in a rat model of Meckel Gruber syndrome with a TMEM67 mutation. Sci. Rep. 2019, 9, 1069. [Google Scholar] [CrossRef] [Green Version]
- Olkhovskiy, I.A.; Gorbenko, A.S.; Stolyar, M.A.; Grischenko, D.A.; Tkachenko, O.A.; Martsinkevich, T.L. Somatic mutation of the V617F JAK2 gene in patients of the cardiovascular diseases. Ter. Arkh. 2019, 91, 25–28. [Google Scholar] [CrossRef]
- Garrett-Bakelman, F.E.; Darshi, M.; Green, S.J.; Gur, R.C.; Lin, L.; Macias, B.R.; McKenna, M.J.; Meydan, C.; Mishra, T.; Nasrini, J.; et al. The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. Science 2019, 364, eaau8650. [Google Scholar] [CrossRef]
- Fuster, J.J.; Walsh, K. Somatic Mutations and Clonal Hematopoiesis: Unexpected Potential New Drivers of Age-Related Cardiovascular Disease. Circ. Res. 2018, 122, 523–532. [Google Scholar] [CrossRef]
- Sadhu, B.; Sundararajan, M.; Bandyopadhyay, T. Divalent ions are potential permeating blockers of the non-selective NaK ion channel: Combined QM and MD based investigations. Phys. Chem. Chem. Phys. 2017, 19, 27611–27622. [Google Scholar] [CrossRef] [PubMed]
- Norager, N.G.; Poulsen, M.H.; Stromgaard, K. Controlling Ca(2+) Permeable alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors with Photochromic Ion Channel Blockers. J. Med. Chem. 2018, 61, 8048–8053. [Google Scholar] [CrossRef] [PubMed]
- Rotov, A.Y.; Astakhova, L.A.; Sitnikova, V.S.; Evdokimov, A.A.; Boitsov, V.M.; Dubina, M.V.; Ryazantsev, M.N.; Firsov, M.L. New Experimental Models of Retinal Degeneration for Screening Molecular Photochromic Ion Channel Blockers. Acta Nat. 2018, 10, 75–84. [Google Scholar] [CrossRef]
- Turman, D.L.; Cheloff, A.Z.; Corrado, A.D.; Nathanson, J.T.; Miller, C. Molecular Interactions between a Fluoride Ion Channel and Synthetic Protein Blockers. Biochemistry 2018, 57, 1212–1218. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Xiao, Y.; Liu, Y.; Wang, B.; Li, X.; Huo, C.; Jia, X.; Hou, L.; Wang, X. Fluorescence-Based High Throughput Screening Technologies for Natural Chloride Ion Channel Blockers. Chem. Res. Toxicol. 2018, 31, 1332–1338. [Google Scholar] [CrossRef]
- Liao, Q.; Feng, Y.; Yang, B.; Lee, S.M. Cnidarian peptide neurotoxins: A new source of various ion channel modulators or blockers against central nervous systems disease. Drug Discov. Today 2019, 24, 189–197. [Google Scholar] [CrossRef]
- Khalifa, N.; Kumar Konda, L.S.; Kristam, R. Machine learning-based QSAR models to predict sodium ion channel (Nav 1.5) blockers. Future Med. Chem. 2020, 12, 1829–1843. [Google Scholar] [CrossRef]
- Kim, T.; Cho, S.; Oh, H.; Hur, J.; Kim, H.; Choi, Y.H.; Jeon, S.; Yang, Y.D.; Kim, S.H. Design of Anticancer 2,4-Diaminopyrimidines as Novel Anoctamin 1 (ANO1) Ion Channel Blockers. Molecules 2020, 25, 5180. [Google Scholar] [CrossRef]
- Wei, F.; Pourrier, M.; Strauss, D.G.; Stockbridge, N.; Pang, L. Effects of Electrical Stimulation on hiPSC-CM Responses to Classic Ion Channel Blockers. Toxicol. Sci. 2020, 174, 254–265. [Google Scholar] [CrossRef]
- Cholasseri, R.; De, S. Dual-Site Binding of Quaternary Ammonium Ions as Internal K(+)-Ion Channel Blockers: Nonclassical (C-H…O) H Bonding vs. Dispersive (C-H…H-C) Interaction. J. Phys. Chem. B 2021, 125, 86–100. [Google Scholar] [CrossRef]
- Jaeschke, H. Comments on “DNA-binding activities of compounds acting as enzyme inhibitors, ion channel blockers and receptor binders”. Chem. Biol. Interact. 2021, 351, 109761. [Google Scholar] [CrossRef] [PubMed]
- Mitini-Nkhoma, S.C.; Chimbayo, E.T.; Mzinza, D.T.; Mhango, D.V.; Chirambo, A.P.; Mandalasi, C.; Lakudzala, A.E.; Tembo, D.L.; Jambo, K.C.; Mwandumba, H.C. Something Old, Something New: Ion Channel Blockers as Potential Anti-Tuberculosis Agents. Front. Immunol. 2021, 12, 665785. [Google Scholar] [CrossRef] [PubMed]
- Mosa, F.E.; Suryanarayanan, C.; Feng, T.; Barakat, K. Effects of selective calcium channel blockers on ions’ permeation through the human Cav1.2 ion channel: A computational study. J. Mol. Graph. Model. 2021, 102, 107776. [Google Scholar] [CrossRef] [PubMed]
- Muhamedejevs, R.; Zivkovic, L.; Dzintare, M.; Sjakste, N. DNA-binding activities of compounds acting as enzyme inhibitors, ion channel blockers and receptor binders. Chem. Biol. Interact. 2021, 348, 109638. [Google Scholar] [CrossRef]
- Sharonov, G.V.; Nekrasova, O.V.; Kudryashova, K.S.; Kirpichnikov, M.P.; Feofanov, A.V. Bioengineered System for High Throughput Screening of Kv1 Ion Channel Blockers. Bioengineering 2021, 8, 187. [Google Scholar] [CrossRef]
- Zhang, X.; Johnson, R.M.; Drulyte, I.; Yu, L.; Kotecha, A.; Danev, R.; Wootten, D.; Sexton, P.M.; Belousoff, M.J. Evolving cryo-EM structural approaches for GPCR drug discovery. Structure 2021, 29, 963–974.e966. [Google Scholar] [CrossRef]
- Yanagawa, M.; Sako, Y. Workflows of the Single-Molecule Imaging Analysis in Living Cells: Tutorial Guidance to the Measurement of the Drug Effects on a GPCR. Methods Mol. Biol. 2021, 2274, 391–441. [Google Scholar] [CrossRef]
- Woszczek, G.; Fuerst, E.; Maguire, T.J.A. FLIPR Calcium Mobilization Assays in GPCR Drug Discovery. Methods Mol. Biol. 2021, 2268, 193–205. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, Z.; Xiao, W.; Lu, S.; Zhang, J. Allosteric binding sites at the receptor-lipid bilayer interface: Novel targets for GPCR drug discovery. Drug Discov. Today 2021, 26, 690–703. [Google Scholar] [CrossRef]
- Wang, X.; McFarland, A.; Madsen, J.J.; Aalo, E.; Ye, L. The Potential of (19)F NMR Application in GPCR Biased Drug Discovery. Trends Pharmacol. Sci. 2021, 42, 19–30. [Google Scholar] [CrossRef]
- Tian, J.Y.; Chi, C.L.; Bian, G.; Guo, F.J.; Wang, X.Q.; Yu, B. A novel GPCR target in correlation with androgen deprivation therapy for prostate cancer drug discovery. Basic Clin. Pharmacol. Toxicol. 2021, 128, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Slosky, L.M.; Caron, M.G.; Barak, L.S. Biased Allosteric Modulators: New Frontiers in GPCR Drug Discovery. Trends Pharmacol. Sci. 2021, 42, 283–299. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, L.E.; McCoy, C.J.; Crooks, B.A.; McKay, F.M.; McVeigh, P.; McKenzie, D.; Irvine, A.; Harrington, J.; Rosa, B.A.; Mitreva, M.; et al. Phylum-Spanning Neuropeptide GPCR Identification and Prioritization: Shaping Drug Target Discovery Pipelines for Nematode Parasite Control. Front. Endocrinol. 2021, 12, 718363. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Huang, X.; Qiu, W.; Xiao, X. Identifying GPCR-drug interaction based on wordbook learning from sequences. BMC Bioinform. 2020, 21, 150. [Google Scholar] [CrossRef]
- Salmaso, V.; Jacobson, K.A. Purinergic Signaling: Impact of GPCR Structures on Rational Drug Design. ChemMedChem 2020, 15, 1958–1973. [Google Scholar] [CrossRef]
- Qiu, W.; Lv, Z.; Hong, Y.; Jia, J.; Xiao, X. BOW-GBDT: A GBDT Classifier Combining With Artificial Neural Network for Identifying GPCR-Drug Interaction Based on Wordbook Learning From Sequences. Front. Cell Dev. Biol. 2020, 8, 623858. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Langmead, C.J.; Riddy, D.M. New Advances in Targeting the Resolution of Inflammation: Implications for Specialized Pro-Resolving Mediator GPCR Drug Discovery. ACS Pharmacol. Transl. Sci. 2020, 3, 88–106. [Google Scholar] [CrossRef]
- Mohammad Nezhady, M.A.; Rivera, J.C.; Chemtob, S. Location Bias as Emerging Paradigm in GPCR Biology and Drug Discovery. iScience 2020, 23, 101643. [Google Scholar] [CrossRef]
- Marti-Solano, M.; Crilly, S.E.; Malinverni, D.; Munk, C.; Harris, M.; Pearce, A.; Quon, T.; Mackenzie, A.E.; Wang, X.; Peng, J.; et al. Combinatorial expression of GPCR isoforms affects signalling and drug responses. Nature 2020, 587, 650–656. [Google Scholar] [CrossRef]
- Marti-Solano, M.; Crilly, S.E.; Malinverni, D.; Munk, C.; Harris, M.; Pearce, A.; Quon, T.; Mackenzie, A.E.; Wang, X.; Peng, J.; et al. Author Correction: Combinatorial expression of GPCR isoforms affects signalling and drug responses. Nature 2020, 588, E24. [Google Scholar] [CrossRef]
- Liu, L.; Jockers, R. Structure-Based Virtual Screening Accelerates GPCR Drug Discovery. Trends Pharmacol. Sci. 2020, 41, 382–384. [Google Scholar] [CrossRef] [PubMed]
- Hothersall, J.D.; Jones, A.Y.; Dafforn, T.R.; Perrior, T.; Chapman, K.L. Releasing the technical ‘shackles’ on GPCR drug discovery: Opportunities enabled by detergent-free polymer lipid particle (PoLiPa) purification. Drug Discov. Today 2020. [Google Scholar] [CrossRef] [PubMed]
- Hatzipantelis, C.J.; Langiu, M.; Vandekolk, T.H.; Pierce, T.L.; Nithianantharajah, J.; Stewart, G.D.; Langmead, C.J. Translation-Focused Approaches to GPCR Drug Discovery for Cognitive Impairments Associated with Schizophrenia. ACS Pharmacol. Transl. Sci. 2020, 3, 1042–1062. [Google Scholar] [CrossRef] [PubMed]
- Congreve, M.; de Graaf, C.; Swain, N.A.; Tate, C.G. Impact of GPCR Structures on Drug Discovery. Cell 2020, 181, 81–91. [Google Scholar] [CrossRef]
- Bondarev, A.D.; Attwood, M.M.; Jonsson, J.; Chubarev, V.N.; Tarasov, V.V.; Schioth, H.B. Opportunities and challenges for drug discovery in modulating Adhesion G protein-coupled receptor (GPCR) functions. Expert Opin. Drug Discov. 2020, 15, 1291–1307. [Google Scholar] [CrossRef]
- Zhou, J.; Wild, C. GPCR Drug Discovery: Emerging Targets, Novel Approaches and Future Trends. Curr. Top Med. Chem. 2019, 19, 1363–1364. [Google Scholar] [CrossRef]
- Zhao, S.; Wu, B.; Stevens, R.C. Advancing Chemokine GPCR Structure Based Drug Discovery. Structure 2019, 27, 405–408. [Google Scholar] [CrossRef] [Green Version]
- Shimada, I.; Ueda, T.; Kofuku, Y.; Eddy, M.T.; Wuthrich, K. GPCR drug discovery: Integrating solution NMR data with crystal and cryo-EM structures. Nat. Rev. Drug Discov. 2019, 18, 59–82. [Google Scholar] [CrossRef]
- Reyes-Alcaraz, A.; Lee, Y.N.; Yun, S.; Hwang, J.I.; Seong, J.Y. Monitoring GPCR-beta-arrestin1/2 Interactions in Real Time Living Systems to Accelerate Drug Discovery. J. Vis. Exp. 2019, 148, e59994. [Google Scholar] [CrossRef]
- Munk, C.; Mutt, E.; Isberg, V.; Nikolajsen, L.F.; Bibbe, J.M.; Flock, T.; Hanson, M.A.; Stevens, R.C.; Deupi, X.; Gloriam, D.E. An online resource for GPCR structure determination and analysis. Nat. Methods 2019, 16, 151–162. [Google Scholar] [CrossRef]
- Insel, P.A.; Sriram, K.; Gorr, M.W.; Wiley, S.Z.; Michkov, A.; Salmeron, C.; Chinn, A.M. GPCRomics: An Approach to Discover GPCR Drug Targets. Trends Pharmacol. Sci. 2019, 40, 378–387. [Google Scholar] [CrossRef]
- Felder, C.C. GPCR drug discovery-moving beyond the orthosteric to the allosteric domain. Adv. Pharmacol. 2019, 86, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Doijen, J.; Van Loy, T.; Landuyt, B.; Luyten, W.; Schols, D.; Schoofs, L. Advantages and shortcomings of cell-based electrical impedance measurements as a GPCR drug discovery tool. Biosens. Bioelectron. 2019, 137, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.C.S.; Li, Y.; Dahoun, T.; Vogel, H.; Yuan, S. New Binding Sites, New Opportunities for GPCR Drug Discovery. Trends Biochem. Sci. 2019, 44, 312–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Topiol, S. Current and Future Challenges in GPCR Drug Discovery. Methods Mol. Biol. 2018, 1705, 1–21. [Google Scholar] [CrossRef] [PubMed]
- James, T. Cheminformatics in the Service of GPCR Drug Discovery. Methods Mol. Biol. 2018, 1705, 395–411. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, P.C.D.; Stahl, G. Ligand-Based Methods in GPCR Computer-Aided Drug Design. Methods Mol. Biol. 2018, 1705, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Ciancetta, A.; Jacobson, K.A. Breakthrough in GPCR Crystallography and Its Impact on Computer-Aided Drug Design. Methods Mol. Biol. 2018, 1705, 45–72. [Google Scholar] [CrossRef]
- Vasudevan, N.T. cAMP assays in GPCR drug discovery. Methods Cell Biol. 2017, 142, 51–57. [Google Scholar] [CrossRef]
- Ma, Q.; Ye, L.; Liu, H.; Shi, Y.; Zhou, N. An overview of Ca(2+) mobilization assays in GPCR drug discovery. Expert Opin. Drug Discov. 2017, 12, 511–523. [Google Scholar] [CrossRef]
- Lutjens, R.; Rocher, J.P. Recent advances in drug discovery of GPCR allosteric modulators for neurodegenerative disorders. Curr. Opin. Pharmacol. 2017, 32, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Irannejad, R.; Pessino, V.; Mika, D.; Huang, B.; Wedegaertner, P.B.; Conti, M.; von Zastrow, M. Functional selectivity of GPCR-directed drug action through location bias. Nat. Chem. Biol. 2017, 13, 799–806. [Google Scholar] [CrossRef]
- Chatenet, D.; Hebert, T.E. Understanding GPCR signaling in the brain- the path to CNS drug discovery. Curr. Opin. Pharmacol. 2017, 32, v–vii. [Google Scholar] [CrossRef] [PubMed]
- Vieira-Rocha, M.S.; Sousa, J.B.; Rodriguez-Rodriguez, P.; Morato, M.; Arribas, S.M.; Diniz, C. Insights into sympathetic nervous system and GPCR interplay in fetal programming of hypertension: A bridge for new pharmacological strategies. Drug Discov. Today 2020, 25, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Iyinikkel, J.; Murray, F. GPCRs in pulmonary arterial hypertension: Tipping the balance. Br. J. Pharmacol. 2018, 175, 3063–3079. [Google Scholar] [CrossRef] [PubMed]
- Tutunea-Fatan, E.; Caetano, F.A.; Gros, R.; Ferguson, S.S. GRK2 targeted knock-down results in spontaneous hypertension, and altered vascular GPCR signaling. J. Biol. Chem. 2016, 291, 20822. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.C.; Ho, W.Y.; Chen, B.R.; Cheng, P.W.; Cheng, W.H.; Hsu, M.C.; Yeh, T.C.; Hsiao, M.; Lu, P.J.; Tseng, C.J. GPCR dimerization in brainstem nuclei contributes to the development of hypertension. Br. J. Pharmacol. 2015, 172, 2507–2518. [Google Scholar] [CrossRef] [Green Version]
- Wright, D.B.; Tripathi, S.; Sikarwar, A.; Santosh, K.T.; Perez-Zoghbi, J.; Ojo, O.O.; Irechukwu, N.; Ward, J.P.; Schaafsma, D. Regulation of GPCR-mediated smooth muscle contraction: Implications for asthma and pulmonary hypertension. Pulm. Pharmacol. Ther. 2013, 26, 121–131. [Google Scholar] [CrossRef]
- Wang, X.; Bosonea, A.M.; Odenbach, J.; Fernandez-Patron, C. Molecular Signals Elicited by GPCR Agonists in Hypertension, Cardiovascular Remodeling: Are MMPs and ADAMs Elusive Therapeutic Targets? Curr. Hypertens. Rev. 2012, 8, 159–180. [Google Scholar] [CrossRef] [Green Version]
- Nagareddy, P.R.; MacLeod, K.M.; McNeill, J.H. GPCR agonist-induced transactivation of the EGFR upregulates MLC II expression and promotes hypertension in insulin-resistant rats. Cardiovasc. Res. 2010, 87, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Brinks, H.L.; Eckhart, A.D. Regulation of GPCR signaling in hypertension. Biochim. Biophys. Acta 2010, 1802, 1268–1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, D.M.; Cohn, H.I.; Pesant, S.; Eckhart, A.D. GPCR signalling in hypertension: Role of GRKs. Clin. Sci. 2008, 115, 79–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Efendiev, R.; Krmar, R.T.; Ogimoto, G.; Zwiller, J.; Tripodi, G.; Katz, A.I.; Bianchi, G.; Pedemonte, C.H.; Bertorello, A.M. Hypertension-linked mutation in the adducin alpha-subunit leads to higher AP2-mu2 phosphorylation and impaired Na+, K+-ATPase trafficking in response to GPCR signals and intracellular sodium. Circ. Res. 2004, 95, 1100–1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sushma; Mondal, A.C. Role of GPCR signaling and calcium dysregulation in Alzheimer’s disease. Mol. Cell. Neurosci. 2019, 101, 103414. [Google Scholar] [CrossRef] [PubMed]
- Farfan-Garcia, E.D.; Marquez-Gomez, R.; Barron-Gonzalez, M.; Perez-Capistran, T.; Rosales-Hernandez, M.C.; Pinto-Almazan, R.; Soriano-Ursua, M.A. Monoamines and their Derivatives on GPCRs: Potential Therapy for Alzheimer’s Disease. Curr. Alzheimer. Res. 2019, 16, 871–894. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.E.; Kim, I.S.; Jakaria, M.; Akther, M.; Choi, D.K. Importance of GPCR-Mediated Microglial Activation in Alzheimer’s Disease. Front. Cell. Neurosci. 2018, 12, 258. [Google Scholar] [CrossRef]
- Franco, R.; Martinez-Pinilla, E.; Navarro, G.; Zamarbide, M. Potential of GPCRs to modulate MAPK and mTOR pathways in Alzheimer’s disease. Prog. Neurobiol. 2017, 149, 21–38. [Google Scholar] [CrossRef]
- Zhao, J.; Deng, Y.; Jiang, Z.; Qing, H. G Protein-Coupled Receptors (GPCRs) in Alzheimer’s Disease: A Focus on BACE1 Related GPCRs. Front. Aging Neurosci. 2016, 8, 58. [Google Scholar] [CrossRef] [Green Version]
- Wentworth, A.B.; Hand, J.L.; Davis, D.M.; Tollefson, M.M. Skin concerns in patients with trisomy 21 (Down syndrome): A Mayo Clinic 22-year retrospective review. Pediatr. Dermatol. 2021, 38 (Suppl. S2), 73–78. [Google Scholar] [CrossRef]
- Vazquez-Hernandez, P.I.; Cardenas-Conejo, A.; Catalan-Ruiz, M.A.; Navar-Gallegos, K.; Zenteno-Salazar, E.; Rafael-Parra-Bravo, J.; Aragon-Nogales, R.; Ibarra-Sarlat, M.; Nunez-Enriquez, J.C. Multiple Organ Failure Associated with SARS-CoV-2 Infection in a Child with Down Syndrome: Is Trisomy 21 Associated with an Unfavourable Clinical Course? Case Rep. Pediatr. 2021, 2021, 5893242. [Google Scholar] [CrossRef]
- Rafferty, K.; Archer, K.J.; Turner, K.; Brown, R.; Jackson-Cook, C. Trisomy 21-associated increases in chromosomal instability are unmasked by comparing isogenic trisomic/disomic leukocytes from people with mosaic Down syndrome. PLoS ONE 2021, 16, e0254806. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.; Litra, F.; Kamil, A.; Ergun-Longmire, B. Intractable Vomiting in an 11-Month-Old Boy With Trisomy 21: A Case Report on Abnormal Calcium/Calcinosis/Creatinine in Down Syndrome. Cureus 2021, 13, e16827. [Google Scholar] [CrossRef] [PubMed]
- Minter, R.; Gardiner, K.J. Trisomy of Human Chromosome 21 Orthologs Mapping to Mouse Chromosome 10 Cause Age and Sex-Specific Learning Differences: Relevance to Down Syndrome. Genes 2021, 12, 1697. [Google Scholar] [CrossRef]
- Huls, A.; Costa, A.C.S.; Dierssen, M.; Baksh, R.A.; Bargagna, S.; Baumer, N.T.; Brandao, A.C.; Carfi, A.; Carmona-Iragui, M.; Chicoine, B.A.; et al. Medical vulnerability of individuals with Down syndrome to severe COVID-19-data from the Trisomy 21 Research Society and the UK ISARIC4C survey. EClinicalMedicine 2021, 33, 100769. [Google Scholar] [CrossRef]
- Hasle, H.; Kline, R.M.; Kjeldsen, E.; Nik-Abdul-Rashid, N.F.; Bhojwani, D.; Verboon, J.M.; DiTroia, S.P.; Chao, K.R.; Raaschou-Jensen, K.; Palle, J.; et al. Germline GATA1s generating mutations predispose to leukemia with acquired trisomy 21 and Down syndrome-like phenotype. Blood 2021. [Google Scholar] [CrossRef]
- Emes, D.; Huls, A.; Baumer, N.; Dierssen, M.; Puri, S.; Russell, L.; Sherman, S.L.; Strydom, A.; Bargagna, S.; Brandao, A.C.; et al. COVID-19 in Children with Down Syndrome: Data from the Trisomy 21 Research Society Survey. J. Clin. Med. 2021, 10, 5125. [Google Scholar] [CrossRef] [PubMed]
- Cejas, R.B.; Tamano-Blanco, M.; Blanco, J.G. Analysis of the intracellular traffic of IgG in the context of Down syndrome (trisomy 21). Sci. Rep. 2021, 11, 10981. [Google Scholar] [CrossRef] [PubMed]
- Schuster, J.; Hoeber, J.; Sobol, M.; Fatima, A.; Anneren, G.; Dahl, N. Generation of two human iPSC lines (UUIGPi013-A and UUIPGi014-A) from cases with Down syndrome and full trisomy for chromosome 21 (T21). Stem Cell Res. 2020, 49, 102081. [Google Scholar] [CrossRef]
- McGregor-Schuerman, M.; Lo Fo Sang, A.; Bihari, S.; Ramdajal, N.; Suijkerbuijk, R.F.; van Ravenswaaij-Arts, C.M. A child with complementary mosaic trisomy 8 and mosaic trisomy 21; clinical description of Warkany-Down syndrome and mechanism of origin. Eur. J. Med. Genet. 2020, 63, 103922. [Google Scholar] [CrossRef]
- Laurent, A.P.; Siret, A.; Ignacimouttou, C.; Panchal, K.; Diop, M.; Jenni, S.; Tsai, Y.C.; Roos-Weil, D.; Aid, Z.; Prade, N.; et al. Constitutive Activation of RAS/MAPK Pathway Cooperates with Trisomy 21 and Is Therapeutically Exploitable in Down Syndrome B-cell Leukemia. Clin. Cancer Res. 2020, 26, 3307–3318. [Google Scholar] [CrossRef] [Green Version]
- Czechowicz, P.; Malodobra-Mazur, M.; Lebioda, A.; Jonkisz, A.; Dobosz, T.; Smigiel, R. Polymorphisms of the MTHFR gene in mothers of children with trisomy 21 (Down syndrome) in a Polish population. Adv. Clin. Exp. Med. 2020, 29, 251–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, A.D.; Guedj, F.; Bianchi, D.W. Placental development and function in trisomy 21 and mouse models of Down syndrome: Clues for studying mechanisms underlying atypical development. Placenta 2020, 89, 58–66. [Google Scholar] [CrossRef]
- Pelleri, M.C.; Cicchini, E.; Petersen, M.B.; Tranebjaerg, L.; Mattina, T.; Magini, P.; Antonaros, F.; Caracausi, M.; Vitale, L.; Locatelli, C.; et al. Partial trisomy 21 map: Ten cases further supporting the highly restricted Down syndrome critical region (HR-DSCR) on human chromosome 21. Mol. Genet. Genomic. Med. 2019, 7, e797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, M.S.; Holland, A.J. The impact of mitotic errors on cell proliferation and tumorigenesis. Genes. Dev. 2018, 32, 620–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelleri, M.C.; Gennari, E.; Locatelli, C.; Piovesan, A.; Caracausi, M.; Antonaros, F.; Rocca, A.; Donati, C.M.; Conti, L.; Strippoli, P.; et al. Genotype-phenotype correlation for congenital heart disease in Down syndrome through analysis of partial trisomy 21 cases. Genomics 2017, 109, 391–400. [Google Scholar] [CrossRef]
- Doran, E.; Keator, D.; Head, E.; Phelan, M.J.; Kim, R.; Totoiu, M.; Barrio, J.R.; Small, G.W.; Potkin, S.G.; Lott, I.T. Down Syndrome, Partial Trisomy 21, and Absence of Alzheimer’s Disease: The Role of APP. J. Alzheimer’s Dis. 2017, 56, 459–470. [Google Scholar] [CrossRef] [Green Version]
- Cardenas, A.M.; Fernandez-Olivares, P.; Diaz-Franulic, I.; Gonzalez-Jamett, A.M.; Shimahara, T.; Segura-Aguilar, J.; Caviedes, R.; Caviedes, P. Knockdown of Myo-Inositol Transporter SMIT1 Normalizes Cholinergic and Glutamatergic Function in an Immortalized Cell Line Established from the Cerebral Cortex of a Trisomy 16 Fetal Mouse, an Animal Model of Human Trisomy 21 (Down Syndrome). Neurotox. Res. 2017, 32, 614–623. [Google Scholar] [CrossRef]
- Aivazidis, S.; Coughlan, C.M.; Rauniyar, A.K.; Jiang, H.; Liggett, L.A.; Maclean, K.N.; Roede, J.R. The burden of trisomy 21 disrupts the proteostasis network in Down syndrome. PLoS ONE 2017, 12, e0176307. [Google Scholar] [CrossRef]
- Su, M.T.; Kuan, L.C.; Chou, Y.Y.; Tan, S.Y.; Kuo, T.C.; Kuo, P.L. Partial trisomy of chromosome 21 without the Down syndrome phenotype. Prenat. Diagn. 2016, 36, 492–495. [Google Scholar] [CrossRef]
- Potter, H. Beyond Trisomy 21: Phenotypic Variability in People with Down Syndrome Explained by Further Chromosome Mis-segregation and Mosaic Aneuploidy. J. Down Syndr. Chromosom. Abnorm. 2016, 2, 109. [Google Scholar] [CrossRef] [Green Version]
- Pelleri, M.C.; Cicchini, E.; Locatelli, C.; Vitale, L.; Caracausi, M.; Piovesan, A.; Rocca, A.; Poletti, G.; Seri, M.; Strippoli, P.; et al. Systematic reanalysis of partial trisomy 21 cases with or without Down syndrome suggests a small region on 21q22.13 as critical to the phenotype. Hum. Mol. Genet. 2016, 25, 2525–2538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Has, R.; Akel, E.G.; Kalelioglu, I.H.; Dural, O.; Yasa, C.; Esmer, A.C.; Yuksel, A.; Yildirim, A.; Ibrahimoglu, L.; Ermis, H. Fetal nasal bone hypoplasia in the second trimester: Comparison of diagnostic methods for predicting trisomy 21 (Down syndrome). J. Clin. Ultrasound 2016, 44, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Delabar, J.M.; Allinquant, B.; Bianchi, D.; Blumenthal, T.; Dekker, A.; Edgin, J.; O’Bryan, J.; Dierssen, M.; Potier, M.C.; Wiseman, F.; et al. Changing Paradigms in Down Syndrome: The First International Conference of the Trisomy 21 Research Society. Mol. Syndromol. 2016, 7, 251–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caglayan, E.S. Generation of improved human cerebral organoids from single copy DYRK1A knockout induced pluripotent stem cells in trisomy 21: Hypothetical solutions for neurodevelopmental models and therapeutic alternatives in down syndrome. Cell Biol. Int. 2016, 40, 1256–1270. [Google Scholar] [CrossRef] [PubMed]
- Weitzdoerfer, R.; Toran, N.; Subramaniyan, S.; Pollak, A.; Dierssen, M.; Lubec, G. A cluster of protein kinases and phosphatases modulated in fetal Down syndrome (trisomy 21) brain. Amino Acids 2015, 47, 1127–1134. [Google Scholar] [CrossRef]
- Iwarsson, E.; Kvist, U.; Hulten, M.A. Disomy 21 in spermatozoa and the paternal origin of trisomy 21 Down syndrome. Mol. Cytogenet. 2015, 8, 67. [Google Scholar] [CrossRef] [Green Version]
- Fausch, C.; Roosli, C. The incudomalleolar articulation in Down syndrome (trisomy 21): A temporal bone study. Otol. Neurotol. 2015, 36, 348–353. [Google Scholar] [CrossRef]
- Papoulidis, I.; Papageorgiou, E.; Siomou, E.; Oikonomidou, E.; Thomaidis, L.; Vetro, A.; Zuffardi, O.; Liehr, T.; Manolakos, E.; Vassilis, P. A patient with partial trisomy 21 and 7q deletion expresses mild Down syndrome phenotype. Gene 2014, 536, 441–443. [Google Scholar] [CrossRef]
- Kamhieh-Milz, J.; Moftah, R.F.; Bal, G.; Futschik, M.; Sterzer, V.; Khorramshahi, O.; Burow, M.; Thiel, G.; Stuke-Sontheimer, A.; Chaoui, R.; et al. Differentially expressed microRNAs in maternal plasma for the noninvasive prenatal diagnosis of Down syndrome (trisomy 21). Biomed. Res. Int. 2014, 2014, 402475. [Google Scholar] [CrossRef]
- Hulten, M.A.; Oijerstedt, L.; Iwarsson, E.; Jonasson, J. Maternal Germinal Trisomy 21 in Down Syndrome. J. Clin. Med. 2014, 3, 167–175. [Google Scholar] [CrossRef] [Green Version]
- Hibaoui, Y.; Grad, I.; Letourneau, A.; Sailani, M.R.; Dahoun, S.; Santoni, F.A.; Gimelli, S.; Guipponi, M.; Pelte, M.F.; Bena, F.; et al. Modelling and rescuing neurodevelopmental defect of Down syndrome using induced pluripotent stem cells from monozygotic twins discordant for trisomy 21. EMBO Mol. Med. 2014, 6, 259–277. [Google Scholar] [CrossRef] [PubMed]
- Enea-Drapeau, C.; Huguet, P.; Carlier, M. Misleading face-based judgment of cognitive level in intellectual disability: The case of trisomy 21 (Down syndrome). Res. Dev. Disabil. 2014, 35, 3598–3605. [Google Scholar] [CrossRef] [PubMed]
- Capkova, P.; Misovicova, N.; Vrbicka, D. Partial trisomy and tetrasomy of chromosome 21 without Down Syndrome phenotype and short overview of genotype-phenotype correlation. A case report. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech Repub 2014, 158, 321–325. [Google Scholar] [CrossRef] [Green Version]
- Hastbacka, J.; de la Chapelle, A.; Kaitila, I.; Sistonen, P.; Weaver, A.; Lander, E. Linkage disequilibrium mapping in isolated founder populations: Diastrophic dysplasia in Finland. Nat. Genet. 1992, 2, 204–211. [Google Scholar] [CrossRef]
- Bagal, S.K.; Brown, A.D.; Cox, P.J.; Omoto, K.; Owen, R.M.; Pryde, D.C.; Sidders, B.; Skerratt, S.E.; Stevens, E.B.; Storer, R.I.; et al. Ion channels as therapeutic targets: A drug discovery perspective. J. Med. Chem. 2013, 56, 593–624. [Google Scholar] [CrossRef]
- Jeremic, D.; Sanchez-Rodriguez, I.; Jimenez-Diaz, L.; Navarro-Lopez, J.D. Therapeutic potential of targeting G protein-gated inwardly rectifying potassium (GIRK) channels in the central nervous system. Pharmacol. Ther. 2021, 223, 107808. [Google Scholar] [CrossRef] [PubMed]
- Blednov, Y.A.; Stoffel, M.; Alva, H.; Harris, R.A. A pervasive mechanism for analgesia: Activation of GIRK2 channels. Proc. Natl. Acad. Sci. USA 2003, 100, 277–282. [Google Scholar] [CrossRef] [Green Version]
- Duprat, F.; Lesage, F.; Patel, A.J.; Fink, M.; Romey, G.; Lazdunski, M. The neuroprotective agent riluzole activates the two P domain K(+) channels TREK-1 and TRAAK. Mol. Pharmacol. 2000, 57, 906–912. [Google Scholar]
- Yang, D.; Zhou, Q.; Labroska, V.; Qin, S.; Darbalaei, S.; Wu, Y.; Yuliantie, E.; Xie, L.; Tao, H.; Cheng, J.; et al. G protein-coupled receptors: Structure- and function-based drug discovery. Signal. Transduct. Target Ther. 2021, 6, 7. [Google Scholar] [CrossRef]
- Imbrici, P.; Liantonio, A.; Camerino, G.M.; De Bellis, M.; Camerino, C.; Mele, A.; Giustino, A.; Pierno, S.; De Luca, A.; Tricarico, D.; et al. Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery. Front. Pharmacol. 2016, 7, 121. [Google Scholar] [CrossRef] [Green Version]
Drug | Target Gene | Chr | Gene Loci | Telomere Loci | Proximity (Mb) | A,T (%) | A+T (%) | FL Size (bp) | References |
---|---|---|---|---|---|---|---|---|---|
Amlodipine | CACNA1C | 12 | 1.9 | 0 | 1.9 | 23,25 | 48 | 13,744 | [185] |
Pregabalin | CACNA2D1 | 7 | 82 | 158 | 76 | 31,33 | 64 | 7542 | [185] |
Sotalol | HERG (KCNH2) | 7 | 150 | 158 | 8 | 16,19 | 35 | 4292 | [185] |
Flecainide | SCN5A | 3 | 38 | 0 | 38 | 21,22 | 43 | 8516 | [185] |
Ziconotide | CACNA1B | 9 | 138 | 138.1 | 0.1 | 21,22 | 43 | 9792 | [185] |
Lacosamide | SCN1A | 2 | 166 | 241 | 75 | 30,32 | 62 | 13,079 | [185] |
Varenicline | CHRNA4 | 20 | 63 | 64 | 1 | 17,21 | 38 | 5583 | [185] |
Retigabine | KCNQ2 | 20 | 63 | 64 | 1 | 17,20 | 37 | 9163 | [185] |
Diazepam | GABRB3 | 15 | 26 | 101 | 75 | 28,31 | 59 | 5767 | [185] |
VU0456810 | KCNJ6 | 21 | 37 | 46 | 9 | 29,31 | 60 | 19,659 | [185,186,187] |
Riluzole | KCNK4 | 11 | 64 | 135 | 71 | 14,20 | 34 | 1829 | [188] |
Drug | Target Gene | Chr | Gene Loci | Telomere Loci | Proximity (Mb) | A,T (%) | A+T (%) | FL Size (bp) | References |
---|---|---|---|---|---|---|---|---|---|
Siponimod | S1PR11 | 11 | 101 | 0 | 101 | 24,29 | 53 | 2778 | [189] |
Latanoprostene bunod | PTGFR | 1 | 78 | 0 | 78 | 30,33 | 63 | 5429 | [189] |
Hycodan | OPRD or OPRD1 | 1 | 28 | 0 | 28 | 21,25 | 46 | 9317 | [60] |
Rexulti | 5HT2A or HTR2A | 13 | 46 | 113 | 67 | 31,32 | 63 | 5415 | [60] |
Trulicity | GLP1R | 6 | 39 | 0 | 39 | 24,27 | 51 | 6682 | [60] |
Varubi | NK1R or TACR1 | 2 | 75 | 0 | 75 | 25,27 | 52 | 4779 | [60] |
Uptravi | PI2R or PTGIR | 19 | 46 | 58 | 12 | 17,20 | 37 | 2078 | [60] |
Odomzo | SMO | 7 | 129 | 159 | 30 | 17,22 | 39 | 3977 | [60] |
Tymlos | PTHR1 or PTH1R | 3 | 46 | 0 | 46 | 20,21 | 41 | 2153 | [60] |
Kengreal | P2Y12 or P2RY12 | 3 | 151 | 197 | 46 | 34,33 | 67 | 2244 | [60] |
Zontivity | PAR1 or NR1I2 | 3 | 197 | 197 | 0.1 | 33,25 | 58 | 2232 | [60] |
Striverdi Respimat | ADRB2 | 5 | 148 | 181 | 33 | 23,28 | 51 | 2013 | [60] |
Adlyxin | GLP1R | 6 | 39 | 0 | 39 | 24,27 | 51 | 6682 | [60] |
Belsomra | OX2R or HCRTR2 | 6 | 55 | 0 | 55 | 24,29 | 53 | 1952 | [60] |
Hetlioz | MTR1A or MTNR1A | 4 | 186 | 189 | 3 | 19,23 | 42 | 1289 | [60] |
Symproic | OPRM or OPRM1 | 6 | 154 | 170 | 16 | 30,32 | 62 | 15,143 | [60] |
Northera | ADRB1-3 or ADRB1 | 10 | 114 | 133 | 19 | 18,24 | 42 | 3039 | [60] |
Parsabiv | CASR | 3 | 122 | 197 | 75 | 26,27 | 53 | 10,062 | [60] |
Aristada | 5HT1A or HTR1A | 5 | 197 | 197 | 0.1 | 33,25 | 58 | 2232 | [60] |
Vraylar | DRD3 | 3 | 114 | 198 | 84 | 25,28 | 53 | 2770 | [60] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raines, R.; McKnight, I.; White, H.; Legg, K.; Lee, C.; Li, W.; Lee, P.H.U.; Shim, J.W. Drug-Targeted Genomes: Mutability of Ion Channels and GPCRs. Biomedicines 2022, 10, 594. https://doi.org/10.3390/biomedicines10030594
Raines R, McKnight I, White H, Legg K, Lee C, Li W, Lee PHU, Shim JW. Drug-Targeted Genomes: Mutability of Ion Channels and GPCRs. Biomedicines. 2022; 10(3):594. https://doi.org/10.3390/biomedicines10030594
Chicago/Turabian StyleRaines, Regan, Ian McKnight, Hunter White, Kaitlyn Legg, Chan Lee, Wei Li, Peter H. U. Lee, and Joon W. Shim. 2022. "Drug-Targeted Genomes: Mutability of Ion Channels and GPCRs" Biomedicines 10, no. 3: 594. https://doi.org/10.3390/biomedicines10030594
APA StyleRaines, R., McKnight, I., White, H., Legg, K., Lee, C., Li, W., Lee, P. H. U., & Shim, J. W. (2022). Drug-Targeted Genomes: Mutability of Ion Channels and GPCRs. Biomedicines, 10(3), 594. https://doi.org/10.3390/biomedicines10030594