Alternative Splicing of Neuropeptide Prohormone and Receptor Genes Associated with Pain Sensitivity Was Detected with Zero-Inflated Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals Experiments, Sample Extraction, and Sequencing
2.2. De Novo Transcript Isoform Identification
2.3. Differential Expression of Spliced Products
2.4. Differential Alternative Splicing
3. Results
3.1. De Novo Sequence Prediction
3.2. Differential Transcript Isoform Expression
3.3. Alternative Splicing
3.3.1. Type of Alternative Splicing Events Detected
3.3.2. Differential between Treatment
3.3.3. Differential between Regions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Landy, S.; Rice, K.; Lobo, B. Central Sensitisation and Cutaneous Allodynia in Migraine. CNS Drugs 2004, 18, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Spekker, E.; Tanaka, M.; Szabo, A.; Vecsei, L. Neurogenic Inflammation: The Participant in Migraine and Recent Advancements in Translational Research. Biomedicines 2021, 10, 76. [Google Scholar] [CrossRef] [PubMed]
- Mathew, N.T.; Kailasam, J.; Seifert, T. Clinical recognition of allodynia in migraine. Neurology 2004, 63, 848–852. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Moye, L.S.; Southey, B.R.; Hernandez, A.G.; Dripps, I.; Romanova, E.V.; Rubakhin, S.S.; Sweedler, J.V.; Pradhan, A.A.; Rodriguez-Zas, S.L. Gene Network Dysregulation in the Trigeminal Ganglia and Nucleus Accumbens of a Model of Chronic Migraine-Associated Hyperalgesia. Front. Syst. Neurosci. 2018, 12, 63. [Google Scholar] [CrossRef] [PubMed]
- Tuka, B.; Helyes, Z.; Markovics, A.; Bagoly, T.; Szolcsanyi, J.; Szabo, N.; Toth, E.; Kincses, Z.T.; Vecsei, L.; Tajti, J. Alterations in PACAP-38-like immunoreactivity in the plasma during ictal and interictal periods of migraine patients. Cephalalgia 2013, 33, 1085–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anapindi, K.D.B.; Yang, N.; Romanova, E.V.; Rubakhin, S.S.; Tipton, A.; Dripps, I.; Sheets, Z.; Sweedler, J.V.; Pradhan, A.A. PACAP and Other Neuropeptide Targets Link Chronic Migraine and Opioid-induced Hyperalgesia in Mouse Models. Mol. Cell. Proteom. 2019, 18, 2447–2458. [Google Scholar] [CrossRef]
- Kuburas, A.; Mason, B.N.; Hing, B.; Wattiez, A.S.; Reis, A.S.; Sowers, L.P.; Moldovan Loomis, C.; Garcia-Martinez, L.F.; Russo, A.F. PACAP Induces Light Aversion in Mice by an Inheritable Mechanism Independent of CGRP. J. Neurosci. 2021, 41, 4697–4715. [Google Scholar] [CrossRef]
- Gabriel, R. Neuropeptides and diabetic retinopathy. Br. J. Clin. Pharmacol. 2013, 75, 1189–1201. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, R.; Postyeni, E.; Denes, V. Neuroprotective Potential of Pituitary Adenylate Cyclase Activating Polypeptide in Retinal Degenerations of Metabolic Origin. Front. Neurosci. 2019, 13, 1031. [Google Scholar] [CrossRef]
- Shioda, S.; Takenoya, F.; Hirabayashi, T.; Wada, N.; Seki, T.; Nonaka, N.; Nakamachi, T. Effects of PACAP on Dry Eye Symptoms, and Possible Use for Therapeutic Application. J. Mol. Neurosci. 2019, 68, 420–426. [Google Scholar] [CrossRef]
- Shioda, S.; Takenoya, F.; Wada, N.; Hirabayashi, T.; Seki, T.; Nakamachi, T. Pleiotropic and retinoprotective functions of PACAP. Anat. Sci. Int. 2016, 91, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Adams, P.J.; Garcia, E.; David, L.S.; Mulatz, K.J.; Spacey, S.D.; Snutch, T.P. CaV2.1 P/Q-type calcium channel alternative splicing affects the functional impact of familial hemiplegic migraine mutations: Implications for calcium channelopathies. Channels 2009, 3, 110–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domitrz, I.; Kosiorek, M.; Żekanowski, C.; Kamińska, A. Genetic studies of Polish migraine patients: Screening for causative mutations in four migraine-associated genes. Hum. Genom. 2016, 10, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walter, S.; Bigal, M.E. CGRP Inhibitors for the Treatment of Migraine. In Successful Drug Discovery; Fischer, J., Klein, C., Childers, W., Eds.; John Wiley & Sons, Ltd.: Weinheim, Germany, 2021; pp. 199–219. [Google Scholar]
- Edvinsson, L. CGRP and migraine: From bench to bedside. Rev. Neurol. 2021, 177, 785–790. [Google Scholar] [CrossRef]
- Dey, A.; Xhu, X.; Carroll, R.; Turck, C.W.; Stein, J.; Steiner, D.F. Biological processing of the cocaine and amphetamine-regulated transcript precursors by prohormone convertases, PC2 and PC1/3. J. Biol. Chem. 2003, 278, 15007–15014. [Google Scholar] [CrossRef] [Green Version]
- Yosten, G.L.C.; Haddock, C.J.; Harada, C.M.; Almeida-Pereira, G.; Kolar, G.R.; Stein, L.M.; Hayes, M.R.; Salvemini, D.; Samson, W.K. Past, present and future of cocaine- and amphetamine-regulated transcript peptide. Physiol. Behav. 2021, 235, 113380. [Google Scholar] [CrossRef]
- Southey, B.R.; Zhang, P.; Keever, M.R.; Rymut, H.E.; Johnson, R.W.; Sweedler, J.V.; Rodriguez-Zas, S.L. Effects of maternal immune activation in porcine transcript isoforms of neuropeptide and receptor genes. J. Integr. Neurosci. 2021, 20, 21–31. [Google Scholar] [CrossRef]
- Vetri, L. Autism and Migraine: An Unexplored Association? Brain Sci. 2020, 10, 615. [Google Scholar] [CrossRef]
- Hodyl, N.A.; Walker, F.R.; Krivanek, K.M.; Clifton, V.L.; Hodgson, D.M. Prenatal endotoxin exposure alters behavioural pain responses to lipopolysaccharide in adult offspring. Physiol. Behav. 2010, 100, 143–147. [Google Scholar] [CrossRef]
- Green, J.A. Too many zeros and/or highly skewed? A tutorial on modelling health behaviour as count data with Poisson and negative binomial regression. Health Psychol. Behav. Med. 2021, 9, 436–455. [Google Scholar] [CrossRef]
- Feng, C.X. A comparison of zero-inflated and hurdle models for modeling zero-inflated count data. J. Stat. Distrib. Appl. 2021, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, A.A.; Smith, M.L.; McGuire, B.; Tarash, I.; Evans, C.J.; Charles, A. Characterization of a novel model of chronic migraine. Pain 2014, 155, 269–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olesen, J. Nitric oxide-related drug targets in headache. Neurotherapeutics 2010, 7, 183–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinberg, A.; Nilsson Remahl, A.I. Role of nitric oxide in cluster headache. Curr. Pain Headache Rep. 2012, 16, 185–190. [Google Scholar] [CrossRef]
- Sufka, K.J.; Staszko, S.M.; Johnson, A.P.; Davis, M.E.; Davis, R.E.; Smitherman, T.A. Clinically relevant behavioral endpoints in a recurrent nitroglycerin migraine model in rats. J. Headache Pain 2016, 17, 40. [Google Scholar] [CrossRef] [Green Version]
- Harris, H.M.; Carpenter, J.M.; Black, J.R.; Smitherman, T.A.; Sufka, K.J. The effects of repeated nitroglycerin administrations in rats; modeling migraine-related endpoints and chronification. J. Neurosci. Methods 2017, 284, 63–70. [Google Scholar] [CrossRef]
- Bista, P.; Imlach, W.L. Pathological Mechanisms and Therapeutic Targets for Trigeminal Neuropathic Pain. Medicines 2019, 6, 91. [Google Scholar] [CrossRef] [Green Version]
- Harris, H.N.; Peng, Y.B. Evidence and explanation for the involvement of the nucleus accumbens in pain processing. Neural Regen. Res. 2020, 15, 597–605. [Google Scholar] [CrossRef]
- Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; et al. NCBI GEO: Archive for functional genomics data sets—pdate. Nucleic Acids Res. 2013, 41, D991–D995. [Google Scholar] [CrossRef] [Green Version]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Haas, B.J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.; Blood, P.D.; Bowden, J.; Couger, M.B.; Eccles, D.; Li, B.; Lieber, M.; et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013, 8, 1494–1512. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei, D.; et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016, 44, D733–D745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tegge, A.N.; Southey, B.R.; Sweedler, J.V.; Rodriguez-Zas, S.L. Comparative analysis of neuropeptide cleavage sites in human, mouse, rat, and cattle. Mamm. Genome 2008, 19, 106–120. [Google Scholar] [CrossRef]
- Zhang, X.; Che, F.Y.; Berezniuk, I.; Sonmez, K.; Toll, L.; Fricker, L.D. Peptidomics of Cpe(fat/fat) mouse brain regions: Implications for neuropeptide processing. J. Neurochem. 2008, 107, 1596–1613. [Google Scholar] [CrossRef] [Green Version]
- Yang, N.; Anapindi, K.D.B.; Rubakhin, S.S.; Wei, P.; Yu, Q.; Li, L.; Kenny, P.J.; Sweedler, J.V. Neuropeptidomics of the Rat Habenular Nuclei. J. Proteome Res. 2018, 17, 1463–1473. [Google Scholar] [CrossRef]
- Ye, H.; Wang, J.; Tian, Z.; Ma, F.; Dowell, J.; Bremer, Q.; Lu, G.; Baldo, B.; Li, L. Quantitative Mass Spectrometry Reveals Food Intake-Induced Neuropeptide Level Changes in Rat Brain: Functional Assessment of Selected Neuropeptides as Feeding Regulators. Mol. Cell. Proteom. 2017, 16, 1922–1937. [Google Scholar] [CrossRef] [Green Version]
- Yang, N.; Anapindi, K.D.B.; Romanova, E.V.; Rubakhin, S.S.; Sweedler, J.V. Improved identification and quantitation of mature endogenous peptides in the rodent hypothalamus using a rapid conductive sample heating system. Analyst 2017, 142, 4476–4485. [Google Scholar] [CrossRef]
- Lee, J.E.; Atkins, N.; Hatcher, N.G.; Zamdborg, L.; Gillette, M.U.; Sweedler, J.V.; Kelleher, N.L. Endogenous peptide discovery of the rat circadian clock: A focused study of the suprachiasmatic nucleus by ultrahigh performance tandem mass spectrometry. Mol. Cell. Proteom. 2010, 9, 285–297. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.E.; Zamdborg, L.; Southey, B.R.; Atkins, N., Jr.; Mitchell, J.W.; Li, M.; Gillette, M.U.; Kelleher, N.L.; Sweedler, J.V. Quantitative peptidomics for discovery of circadian-related peptides from the rat suprachiasmatic nucleus. J. Proteome Res. 2013, 12, 585–593. [Google Scholar] [CrossRef]
- Southey, B.R.; Lee, J.E.; Zamdborg, L.; Atkins, N., Jr.; Mitchell, J.W.; Li, M.; Gillette, M.U.; Kelleher, N.L.; Sweedler, J.V. Comparing label-free quantitative peptidomics approaches to characterize diurnal variation of peptides in the rat suprachiasmatic nucleus. Anal. Chem. 2014, 86, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Bora, A.; Annangudi, S.P.; Millet, L.J.; Rubakhin, S.S.; Forbes, A.J.; Kelleher, N.L.; Gillette, M.U.; Sweedler, J.V. Neuropeptidomics of the supraoptic rat nucleus. J. Proteome Res. 2008, 7, 4992–5003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 2017, 14, 417–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fagerberg, L.; Hallstrom, B.M.; Oksvold, P.; Kampf, C.; Djureinovic, D.; Odeberg, J.; Habuka, M.; Tahmasebpoor, S.; Danielsson, A.; Edlund, K.; et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteom. 2014, 13, 397–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Statist. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Shen, S.; Park, J.W.; Lu, Z.X.; Lin, L.; Henry, M.D.; Wu, Y.N.; Zhou, Q.; Xing, Y. rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data. Proc. Natl. Acad. Sci. USA 2014, 111, E5593–E5601. [Google Scholar] [CrossRef] [Green Version]
- Mockenhaupt, S.; Makeyev, E.V. Non-coding functions of alternative pre-mRNA splicing in development. Semin. Cell Dev. Biol. 2015, 47–48, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Maratou, K.; Wallace, V.C.J.; Hasnie, F.S.; Okuse, K.; Hosseini, R.; Jina, N.; Blackbeard, J.; Pheby, T.; Orengo, C.; Dickenson, A.H.; et al. Comparison of dorsal root ganglion gene expression in rat models of traumatic and HIV-associated neuropathic pain. Eur. J. Pain 2009, 13, 387–398. [Google Scholar] [CrossRef] [Green Version]
- Moon, S.-M.; Kim, J.-S.; Park, B.R.; Kim, D.K.; Kim, S.-G.; Kim, H.-J.; Chun, H.S.; Lee, B.-K.; Kim, C.S. Transcriptional regulation of the neuropeptide VGF by the neuron-restrictive silencer factor/neuron-restrictive silencer element. NeuroReport 2015, 26, 144–151. [Google Scholar] [CrossRef]
- Steinhoff, M.S.; von Mentzer, B.; Geppetti, P.; Pothoulakis, C.; Bunnett, N.W. Tachykinins and their receptors: Contributions to physiological control and the mechanisms of disease. Physiol. Rev. 2014, 94, 265–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samsam, M.; Covenas, R.; Ahangari, R.; Yajeya, J.; Narvaez, J.A.; Tramu, G. Simultaneous depletion of neurokinin A, substance P and calcitonin gene-related peptide from the caudal trigeminal nucleus of the rat during electrical stimulation of the trigeminal ganglion. Pain 2000, 84, 389–395. [Google Scholar] [CrossRef]
- Moreno-Mayordomo, R.; Ruiz, M.; Pascual, J.; Gallego de la Sacristana, M.; Vidriales, I.; Sobrado, M.; Cernuda-Morollon, E.; Gago-Veiga, A.B.; Garcia-Azorin, D.; Telleria, J.J.; et al. CALCA and TRPV1 genes polymorphisms are related to a good outcome in female chronic migraine patients treated with OnabotulinumtoxinA. J. Headache Pain 2019, 20, 39. [Google Scholar] [CrossRef] [PubMed]
- Dobrowsky, R.T.; Rouen, S.; Yu, C. Altered Neurotrophism in Diabetic Neuropathy: Spelunking the Caves of Peripheral Nerve. J. Pharmacol. Exp. Ther. 2005, 313, 485–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spengler, D.; Waeber, C.; Pantaloni, C.; Holsboer, F.; Bockaert, J.; Seeburg, P.H.; Journot, L. Differential signal transduction by five splice variants of the PACAP receptor. Nature 1993, 365, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Blechman, J.; Levkowitz, G. Alternative Splicing of the Pituitary Adenylate Cyclase-Activating Polypeptide Receptor PAC1: Mechanisms of Fine Tuning of Brain Activity. Front. Endocrinol. 2013, 4, 55. [Google Scholar] [CrossRef] [Green Version]
- Mabuchi, T.; Shintani, N.; Matsumura, S.; Okuda-Ashitaka, E.; Hashimoto, H.; Muratani, T.; Minami, T.; Baba, A.; Ito, S. Pituitary Adenylate Cyclase-Activating Polypeptide Is Required for the Development of Spinal Sensitization and Induction of Neuropathic Pain. J. Neurosci. 2004, 24, 7283–7291. [Google Scholar] [CrossRef]
- Lee, C.A.; Romanova, E.V.; Southey, B.R.; Gillette, R.; Sweedler, J.V. Comparative Analysis of Neuropeptides in Homologous Interneurons and Prohormone Annotation in Nudipleuran Sea Slugs. Front. Physiol. 2021, 12, 809529. [Google Scholar] [CrossRef]
- Catalano, R.D.; Kyriakou, T.; Chen, J.; Easton, A.; Hillhouse, E.W. Regulation of corticotropin-releasing hormone type 2 receptors by multiple promoters and alternative splicing: Identification of multiple splice variants. Mol. Endocrinol. 2003, 17, 395–410. [Google Scholar] [CrossRef] [Green Version]
- Grammatopoulos, D.K.; Chrousos, G.P. Functional characteristics of CRH receptors and potential clinical applications of CRH-receptor antagonists. Trends Endocrinol. Metab. 2002, 13, 436–444. [Google Scholar] [CrossRef]
- Miura, M.; Sasaki, M.; Mizukoshi, K.; Shibasaki, M.; Izumi, Y.; Shimosato, G.; Amaya, F. Peripheral sensitization caused by insulin-like growth factor 1 contributes to pain hypersensitivity after tissue injury. PAIN® 2011, 152, 888–895. [Google Scholar] [CrossRef] [PubMed]
- Mika, J.; Obara, I.; Przewlocka, B. The role of nociceptin and dynorphin in chronic pain: Implications of neuro–glial interaction. Neuropeptides 2011, 45, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Egleton, R.D.; Witt, K.A.; Davis, T.P. Chapter 232—Opioid Peptides. In Handbook of Biologically Active Peptides, 2nd ed.; Kastin, A.J., Ed.; Academic Press: Boston, MA, USA, 2013; pp. 1696–1701. [Google Scholar]
- Lin, Y.T.; Yu, Z.; Tsai, S.C.; Hsu, P.H.; Chen, J.C. Neuropeptide FF receptor 2 inhibits capsaicin-induced CGRP Upregulation in mouse trigeminal ganglion. J. Headache Pain 2020, 21, 87. [Google Scholar] [CrossRef] [PubMed]
- Peake, N.J.; Hobbs, A.J.; Pingguan-Murphy, B.; Salter, D.M.; Berenbaum, F.; Chowdhury, T.T. Role of C-type natriuretic peptide signalling in maintaining cartilage and bone function. Osteoarthr. Cartil. 2014, 22, 1800–1807. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.X.; Shuai, N.N.; Wang, B.; Jin, X.; Kuang, X.; Tian, S.W. Neuroprotective gain of Apelin/APJ system. Neuropeptides 2021, 87, 102131. [Google Scholar] [CrossRef]
- Lv, S.Y.; Chen, W.D.; Wang, Y.D. The Apelin/APJ System in Psychosis and Neuropathy. Front. Pharmacol. 2020, 11, 320. [Google Scholar] [CrossRef] [Green Version]
- Morell, M.; Camprubi-Robles, M.; Culler, M.D.; de Lecea, L.; Delgado, M. Cortistatin attenuates inflammatory pain via spinal and peripheral actions. Neurobiol. Dis. 2014, 63, 141–154. [Google Scholar] [CrossRef]
- Yeh, C.-C.; Sun, H.-L.; Huang, C.-J.; Wong, C.-S.; Cherng, C.-H.; Huh, B.K.; Wang, J.-S.; Chien, C.-C. Long-Term Anti-Allodynic Effect of Immediate Pulsed Radiofrequency Modulation through Down-Regulation of Insulin-Like Growth Factor 2 in a Neuropathic Pain Model. Int. J. Mol. Sci. 2015, 16, 27156–27170. [Google Scholar] [CrossRef] [Green Version]
- Chan, W.H.; Huang, N.C.; Lin, Y.W.; Lin, F.Y.; Tsai, C.S.; Yeh, C.C. Intrathecal IGF2 siRNA injection provides long-lasting anti-allodynic effect in a spared nerve injury rat model of neuropathic pain. PLoS ONE 2021, 16, e0260887. [Google Scholar] [CrossRef]
- Mishra, S.K.; Holzman, S.; Hoon, M.A. A nociceptive signaling role for neuromedin B. J. Neurosci. 2012, 32, 8686–8695. [Google Scholar] [CrossRef]
- Nakamura, S.; Nonaka, T.; Yoshida, K.; Yamada, T.; Yamamoto, T. Neuropeptide W, an endogenous NPBW1 and NPBW2 ligand, produced an analgesic effect via activation of the descending pain modulatory system during a rat formalin test. Mol. Pain 2021, 17, 1744806921992187. [Google Scholar] [CrossRef] [PubMed]
- Cecerska-Heryc, E.; Goszka, M.; Serwin, N.; Roszak, M.; Grygorcewicz, B.; Heryc, R.; Dolegowska, B. Applications of the regenerative capacity of platelets in modern medicine. Cytokine Growth Factor Rev. 2021, 64, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Borbely, E.; Helyes, Z. Role of hemokinin-1 in health and disease. Neuropeptides 2017, 64, 9–17. [Google Scholar] [CrossRef] [PubMed]
- McDougall, J.J.; Watkins, L.; Li, Z. Vasoactive intestinal peptide (VIP) is a modulator of joint pain in a rat model of osteoarthritis. Pain 2006, 123, 98–105. [Google Scholar] [CrossRef]
- Noseda, R.; Borsook, D.; Burstein, R. Neuropeptides and Neurotransmitters That Modulate Thalamo-Cortical Pathways Relevant to Migraine Headache. Headache 2017, 57, 97–111. [Google Scholar] [CrossRef] [Green Version]
- Takei, Y. Chapter 97—BNP/CNP. In Handbook of Biologically Active Peptides, 2nd ed.; Kastin, A.J., Ed.; Academic Press: Boston, MA, USA, 2013; pp. 724–731. [Google Scholar]
- Ji, L.; Tian, H.; Webster, K.A.; Li, W. Neurovascular regulation in diabetic retinopathy and emerging therapies. Cell. Mol. Life Sci. 2021, 78, 5977–5985. [Google Scholar] [CrossRef]
- Smith, T.P.; Haymond, T.; Smith, S.N.; Sweitzer, S.M. Evidence for the endothelin system as an emerging therapeutic target for the treatment of chronic pain. J. Pain Res. 2014, 7, 531–545. [Google Scholar] [CrossRef] [Green Version]
- Guo, R.; Sun, Y.; Li, H.; Ma, D.; Wang, Y. Upregulation of spinal glucose-dependent insulinotropic polypeptide receptor induces membrane translocation of PKCgamma and synaptic target of AMPA receptor GluR1 subunits in dorsal horns in a rat model of incisional pain. Neurochem. Int. 2020, 134, 104651. [Google Scholar] [CrossRef]
- Kowalska, M.; Prendecki, M.; Kozubski, W.; Lianeri, M.; Dorszewska, J. Molecular factors in migraine. Oncotarget 2016, 7, 50708–50718. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, N. Subchapter 36A—Parathyroid hormone. In Handbook of Hormones, 2nd ed.; Ando, H., Ukena, K., Nagata, S., Eds.; Academic Press: San Diego, CA, USA, 2021; pp. 389–392. [Google Scholar]
- Martins-Oliveira, M.; Tavares, I.; Goadsby, P.J. Was it something I ate? Understanding the bidirectional interaction of migraine and appetite neural circuits. Brain Res. 2021, 1770, 147629. [Google Scholar] [CrossRef]
- Guo, Y.; Cheng, Y.; An, J.; Qi, Y.; Luo, G. Neuropeptide changes in an improved migraine model with repeat stimulations. Transl. Neurosci. 2021, 12, 523–532. [Google Scholar] [CrossRef] [PubMed]
Symbol | Accession | FDR_PV 1 | Treatment | Region | ||
---|---|---|---|---|---|---|
FDR_PV | Dif 2 | FDR_PV | Dif | |||
Prohormone | ||||||
APLN | NM_013912.4 | 6.67 × 10−2 | 3.77 × 10−2 | NTG | 1.79 × 10−12 | NA |
NPPC | NM_010933.5 | 2.48 × 10−2 | 2.59 × 10−2 | NTG | 4.78 × 10−7 | NA |
PDGFA | XM_036164870.1 | 7.49 × 10−2 | 5.48 × 10−1 | ns | 5.93 × 10−7 | NA |
PDGFD | NM_001357398.1 | 8.50 × 10−2 | 6.15 × 10−1 | ns | 8.91 × 10−10 | TG |
PENK | NM_001348209.1 | 4.59 × 10−2 | 6.85 × 10−2 | NTG | 1.78 × 10−22 | NA |
TAC4 | NM_053093.2 | 8.18 × 10−5 | 6.98 × 10−3 | NTG | 4.30 × 10−4 | TG |
Receptor | ||||||
ADCYAP1R1 | NM_001025372.2 | 1.08 × 10−3 | 4.32 × 10−3 | NTG | 1.03 × 10−19 | NA |
AVPR1B | NM_011924.2 | 7.57 × 10−2 | 9.56 × 10−1 | ns | 3.69 × 10−3 | TG |
NPFFR2 | XM_017320589.3 | 9.61 × 10−2 | 7.87 × 10−1 | ns | 3.22 × 10−3 | NA |
NPR3 | XM_030248376.1 | 9.71 × 10−2 | 9.06 × 10−1 | ns | 2.92 × 10−3 | TG |
OPRD1 | NM_013622.3 | 7.03 × 10−4 | 6.78 × 10−1 | ns | 7.39 × 10−4 | NA |
TACR1 | XM_006505865.4 | 6.10 × 10−2 | 2.83 × 10−1 | ns | 1.49 × 10−18 | NA |
Symbol | Accession | Treatment | Region | ||
---|---|---|---|---|---|
FC 1 | PV 2 | FC | PV | ||
Prohormone | |||||
APLN | NM_013912.4 | 1.43 | 3.77 × 10−2 | 7.38 | 1.79 × 10−12 |
CALCA | NM_007587.2 | 0.42 | 4.23 × 10−2 | 0.04 | 2.92 × 10−49 |
IGF1 | NM_010512.5 | 2.51 | 1.90 × 10−2 | 0.13 | 1.32 × 10−4 |
IGF2 | NM_010514.3 | 2.37 | 2.93 × 10−2 | 0.41 | 1.34 × 10−2 |
NMB | NM_001291280.1 | 0.76 | 1.90 × 10−2 | 0.04 | 1.95 × 10−18 |
NPFF | NM_018787.1 | 0.76 | 3.95 × 10−2 | 0.52 | 3.89 × 10−6 |
NPW | NM_001099664.2 | 0.11 | 1.84 × 10−2 | 0.05 | 1.52 × 10−3 |
PNOC | XM_006518684.4 | 5.33 | 2.93 × 10−2 | 7.44 | 3.63 × 10−3 |
SCG3 | NM_009130.3 | 0.89 | 2.88 × 10−2 | 0.46 | 4.04 × 10−14 |
Receptor | |||||
EDNRB | NM_007904.4 | 0.87 | 1.86 × 10−2 | 0.50 | 1.61 × 10−12 |
HCRTR1 | NM_001357258.1 | 0.29 | 2.18 × 10−3 | 0.28 | 1.44 × 10−3 |
Symbol | Accession | FC 1 | FDR PV 2 |
---|---|---|---|
Prohormone | |||
CALCA | NM_001289444.1 | 0.56 | 2.06 × 10−2 |
CALCA | XM_011241660.4 | 0.66 | 2.42 × 10−2 |
CORT | NM_007745.4 | 1.44 | 2.26 × 10−6 |
IGF2 | NM_010514.3 | 2.37 | 2.93 × 10−2 |
NPPB | NM_008726.6 | 0.84 | 4.08 × 10−3 |
PDGFA | XM_011240971.4 | 2.10 | 2.41 × 10−2 |
PDGFA | XM_030254199.2 | 0.56 | 2.17 × 10−5 |
PMCH | NM_029971.2 | 1.39 | 1.93 × 10−3 |
VIP | NM_011702.3 | 0.33 | 5.81 × 10−3 |
Receptor | |||
CALCR | NM_007588.2 | 0.88 | 3.81 × 10−2 |
GIPR | NM_001080815.1 | 0.19 | 3.15 × 10−3 |
GIPR | XR_004934120.1 | 0.68 | 1.43 × 10−4 |
NPY5R | NM_016708.3 | 1.72 | 3.62 × 10−2 |
PTH1R | NM_001083936.1 | 0.61 | 4.19 × 10−2 |
PTH2R | XM_006495843.4 | 0.16 | 4.12 × 10−2 |
PTH2R | XM_017319687.1 | 1.44 | 2.45 × 10−4 |
Symbol | Number of Transcripts 1 | FC 2 | ||||
---|---|---|---|---|---|---|
Tot | M | NS | O | U | ||
Prohormone | ||||||
ADCYAP1 | 8 | 0 | 4 | 0 | 4 | 0.1 |
CALCA | 7 | 1 | 3 | 0 | 3 | 0.0 |
CCK | 3 | 0 | 0 | 3 | 0 | 35.3 |
IGF1 | 20 | 9 | 8 | 1 | 2 | 0.4 |
IGF2 | 8 | 2 | 3 | 0 | 3 | 0.4 |
NUCB2 | 4 | 0 | 1 | 3 | 0 | 2.8 |
PDGFA | 8 | 1 | 4 | 1 | 2 | 1.0 |
PNOC | 4 | 0 | 1 | 3 | 0 | 9.8 |
SCG3 | 4 | 1 | 0 | 0 | 3 | 0.5 |
TOR2A | 8 | 1 | 4 | 3 | 0 | 2.5 |
VGF | 12 | 0 | 9 | 3 | 0 | 9.0 |
Receptor | ||||||
ADCYAP1R1 | 12 | 3 | 4 | 5 | 0 | 8.8 |
CRHR1 | 9 | 2 | 4 | 3 | 0 | 3.4 |
GIPR | 7 | 0 | 4 | 3 | 0 | 5.2 |
NPR2 | 4 | 0 | 0 | 1 | 3 | 0.5 |
NPR3 | 8 | 0 | 5 | 0 | 3 | 0.3 |
NTSR2 | 4 | 0 | 1 | 3 | 0 | 8.4 |
OPRL1 | 20 | 5 | 12 | 2 | 1 | 2.3 |
PDGFRB | 4 | 0 | 0 | 0 | 4 | 0.5 |
SCTR | 15 | 7 | 5 | 2 | 1 | 2.4 |
SSTR3 | 4 | 0 | 1 | 3 | 0 | 7.4 |
Symbol | AS 1 | Accession 2 | Effect 3 | ||||
---|---|---|---|---|---|---|---|
T | L | Short | Long | C | FDR | D | |
Prohormone | |||||||
CALCA | A5 | 5′ | NM_001033954.3 | NM_001289444.1 | NAc | 0.099 | 0.08 |
VGF | MX | 5′ | XM_030254622.1 | XM_006504434.3 | TG | 0.044 | 0.41 |
Receptor | |||||||
ADCYAP1R1 | SE | E | XM_030255114.1 | NM_007407.4 | TG | 0.003 | 0.29 |
E | XM_030255114.1 | XM_011241150.1 | TG | 0.033 | 0.22 | ||
CRHR2 | A3 | E | NM_009953.4 | NM_001288618.1 | Joint | 0.001 | 0.10 |
TG | 0.019 | 0.12 | |||||
IGF1R | A3 | E | NM_010513.2 | XM_006540641.5 | NAc | 0.028 | −0.08 |
Symbol | Alternative Splice Event 1 | Location and Effect 2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
A3SS | A5SS | MutX | RetIntron | SkipExon | |||||||
N | D | N | D | N | D | N | D | N | D | ||
Prohormone | |||||||||||
NUCB2 | 1 | −0.04 | Coding Un | ||||||||
SCG2 | 1 | 0.06 | Coding Un | ||||||||
SCG3 | 2 | −0.04 | Coding Un | ||||||||
TAC1 | 1 | −0.07 | 1 | 0.06 | Coding Kn | ||||||
VGF | 1 | 0.08 | 5′ UTR | ||||||||
Receptor | |||||||||||
ADCYAP1R1 | 1 | −0.06 | 1 | 0.01 | Coding Kn | ||||||
CRHR1 | 2 | 0.06 | Coding | ||||||||
EDNRB | 1 | −0.05 | 3′ UTR | ||||||||
INSR | 1 | −0.07 | Coding Un | ||||||||
NPR2 | 1 | 0.24 | 1 | −0.46 | Coding Kn | ||||||
NPY1R | 1 | 0.26 | 5′ UTR | ||||||||
OPRL1 | 1 | 0.17 | 2 | 0.34 | 5 | 0.09 | N-terminal |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Southey, B.R.; Rodriguez-Zas, S.L. Alternative Splicing of Neuropeptide Prohormone and Receptor Genes Associated with Pain Sensitivity Was Detected with Zero-Inflated Models. Biomedicines 2022, 10, 877. https://doi.org/10.3390/biomedicines10040877
Southey BR, Rodriguez-Zas SL. Alternative Splicing of Neuropeptide Prohormone and Receptor Genes Associated with Pain Sensitivity Was Detected with Zero-Inflated Models. Biomedicines. 2022; 10(4):877. https://doi.org/10.3390/biomedicines10040877
Chicago/Turabian StyleSouthey, Bruce R., and Sandra L. Rodriguez-Zas. 2022. "Alternative Splicing of Neuropeptide Prohormone and Receptor Genes Associated with Pain Sensitivity Was Detected with Zero-Inflated Models" Biomedicines 10, no. 4: 877. https://doi.org/10.3390/biomedicines10040877
APA StyleSouthey, B. R., & Rodriguez-Zas, S. L. (2022). Alternative Splicing of Neuropeptide Prohormone and Receptor Genes Associated with Pain Sensitivity Was Detected with Zero-Inflated Models. Biomedicines, 10(4), 877. https://doi.org/10.3390/biomedicines10040877