Genetic Polymorphisms in the 3′-Untranslated Regions of SMAD5, FN3KRP, and RUNX-1 Are Associated with Recurrent Pregnancy Loss
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Genotype Analysis
2.3. Assessment of Homocysteine, Folate, Total Cholesterol, and Uric Acid Concentrations and Blood Coagulation Status
2.4. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. FN3KRP rs1046875 G>A Polymorphism Has Protective Role against RPL
3.3. Synergistic Effects of SMAD5, FN3KRP, and RUNX-1 Polymorphisms on RPL
3.4. Associations between Participant Characteristics and Genetic Polymorphisms
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arias-Sosa, L.A.; Acosta, I.D.; Lucena-Quevedo, E.; Moreno-Ortiz, H.; Esteban-Pérez, C.; Forero-Castro, M. Genetic and epigenetic variations associated with idiopathic recurrent pregnancy loss. J. Assist. Reprod. Genet. 2018, 35, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Pillarisetty, L.S.; Mahdy, H. Recurrent Pregnancy Loss; StatPearls Publishing LLC: Treasure Island, FL, USA, 2021. [Google Scholar]
- Jung, Y.W.; Jeon, Y.J.; Rah, H.; Kim, J.H.; Shin, J.E.; Choi, D.H.; Cha, S.H.; Kim, N.K. Genetic variants in microRNA machinery genes are associated with idiopathic recurrent pregnancy loss risk. PLoS ONE 2014, 9, e95803. [Google Scholar]
- Zhu, J.-L.; Cai, Y.Q.; Long, S.L.; Chen, Z.; Mo, Z.C. The role of advanced glycation end products in human infertility. Life Sci. 2020, 255, 117830. [Google Scholar] [CrossRef] [PubMed]
- Stepan, H.; Hund, M.; Andraczek, T. Combining biomarkers to predict pregnancy complications and redefine preeclampsia: The angiogenic-placental syndrome. Hypertension 2020, 75, 918–926. [Google Scholar] [CrossRef]
- Zygmunt, M.; Herr, F.; Münstedt, K.; Lang, U.; Liang, O.D. Angiogenesis and vasculogenesis in pregnancy. Eur. J. Obstet. Gynecol. Reprod. Biol. 2003, 110 (Suppl. S1), S10–S18. [Google Scholar] [CrossRef]
- Boeldt, D.S.; Bird, I.M. Vascular adaptation in pregnancy and endothelial dysfunction in preeclampsia. J. Endocrinol. 2017, 232, R27–R44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leguizamón, G.; Trigubo, D.; Pereira, J.; Vera, M.; Fernández, J. Vascular complications in the diabetic pregnancy. Curr. Diab. Rep. 2015, 15, 22. [Google Scholar] [CrossRef]
- Pertynska-Marczewska, M.; Cypryk, K. The possible impact of advanced glycation end products on pregnancy outcome in women with diabetes mellitus type 1. Minerva Endocrinol. 2017, 42, 271–279. [Google Scholar] [CrossRef]
- Li, J.H.; Huang, X.R.; Zhu, H.J.; Johnson, R.; Lan, H.Y. Role of TGF-β signaling in extracellular matrix production under high glucose conditions. Kidney Int. 2003, 63, 2010–2019. [Google Scholar] [CrossRef] [Green Version]
- Li, J.H.; Huang, X.R.; Zhu, H.J.; Oldfield, M.; Cooper, M.; Truong, L.D.; Johnson, R.J.; Lan, H.Y. Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms: Implications for diabetic renal and vascular disease. FASEB J. 2004, 18, 176–178. [Google Scholar] [CrossRef]
- Ito, Y.; Miyazono, K. RUNX transcription factors as key targets of TGF-beta superfamily signaling. Curr. Opin. Genet. Dev. 2003, 13, 43–47. [Google Scholar] [CrossRef]
- Miyazawa, K.; Miyazono, K. Regulation of TGF-β family signaling by inhibitory Smads. Cold Spring Harb. Perspect. Biol. 2017, 9, a022095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monsivais, D.; Nagashima, T.; Prunskaite-Hyyryläinen, R.; Nozawa, K.; Shimada, K.; Tang, S.; Hamor, C.; Agno, J.E.; Chen, F.; Masand, R.P.; et al. Endometrial receptivity and implantation require uterine BMP signaling through an ACVR2A-SMAD1/SMAD5 axis. Nat. Commun. 2021, 12, 3386. [Google Scholar] [CrossRef] [PubMed]
- Iwatsuki, K.; Tanaka, K.; Kaneko, T.; Kazama, R.; Okamoto, S.; Nakayama, Y.; Ito, Y.; Satake, M.; Takahashi, S.; Miyajima, A.; et al. Runx1 promotes angiogenesis by downregulation of insulin-like growth factor-binding protein-3. Oncogene 2005, 24, 1129–1137. [Google Scholar] [CrossRef] [Green Version]
- Takakura, N.; Watanabe, T.; Suenobu, S.; Yamada, Y.; Noda, T.; Ito, Y.; Satake, M.; Suda, T. A role for hematopoietic stem cells in promoting angiogenesis. Cell 2000, 102, 199–209. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.J.; Gao, P.; Chen, C.; Tan, K.; Speck, N.A. RUNX1 and the endothelial origin of blood. Exp. Hematol. 2018, 68, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Lam, J.D.; Oh, D.J.; Wong, L.L.; Amarnani, D.; Park-Windhol, C.; Sanchez, A.V.; Cardona-Velez, J.; McGuone, D.; Stemmer-Rachamimov, A.O.; Eliott, D.; et al. Identification of RUNX1 as a mediator of aberrant retinal angiogenesis. Diabetes 2017, 66, 1950–1956. [Google Scholar] [CrossRef] [Green Version]
- Whitmore, H.; Amarnani, D.; Delgado-Tirado, S.; Arboleda-Velasquez, J.; Kim, L.A. In vitro analysis of RUNX1 and VEGF pathway interactions. Investig. Ophthalmol. Vis. Sci. 2019, 60, 2687. [Google Scholar]
- Xing, X.; Wang, H.; Niu, T.; Jiang, Y.; Shi, X.; Liu, K. RUNX1 can mediate the glucose and O-GlcNAc-driven proliferation and migration of human retinal microvascular endothelial cells. BMJ Open Diabetes Res. Care 2021, 9, e001898. [Google Scholar] [CrossRef]
- Deng, Y.; Bai, H.; Hu, H. rs11671784 G/A variation in miR-27a decreases chemo-sensitivity of bladder cancer by decreasing miR-27a and increasing the target RUNX-1 expression. Biochem. Biophys. Res. Commun. 2015, 458, 321–327. [Google Scholar] [CrossRef]
- Nie, M.; Yu, S.; Peng, S.; Fang, Y.; Wang, H.; Yang, X. miR-23a and miR-27a promote human granulosa cell apoptosis by targeting SMAD5. Biol. Reprod. 2015, 93, 98. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, M.; Ding, L.; Tang, J. MiR-27a: A novel biomarker and potential therapeutic target in tumors. J. Cancer 2019, 10, 2836–2848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, J.H.; Han, M.Y.; Cha, S.H.; Jung, J.H.; Yoon, K.L. Genetic polymorphism of SMAD5 is associated with Kawasaki disease. Pediatric Cardiol. 2014, 35, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; Merguerian, M.; Deuitch, N.; Bresciani, E.; Davis, J.; Craft, K.; Cunningham, L.C.; Liu, P.P. Genomic landscape of RUNX1-familial platelet disorder with myeloid malignancies reveals rising clonal hematopoiesis. Blood 2021, 138 (Suppl. S1), 1090. [Google Scholar] [CrossRef]
- Alderawi, A.; Caramori, G.; Baker, E.H.; Hitchings, A.W.; Rahman, I.; Rossios, C.; Adcock, I.; Cassolari, P.; Papi, A.; Ortega, V.E.; et al. FN3K expression in COPD: A potential comorbidity factor for cardiovascular disease. BMJ Open Respir. Res. 2020, 7, e000714. [Google Scholar] [CrossRef]
- Van Schaftingen, E.; Collard, F.; Wiame, E.; Veiga-da-Cunha, M. Enzymatic repair of Amadori products. Amino Acids 2012, 42, 1143–1150. [Google Scholar] [CrossRef]
- Szwergold, B. A Hypothesis: Fructosamine-3-Kinase-Related-Protein (FN3KRP) catalyzes deglycation of maillard intermediates directly downstream from fructosamines. Rejuvenation Res. 2021, 24, 310–318. [Google Scholar] [CrossRef]
- Szwergold, B.S.; Bunker, R.D.; Loomes, K.M. The physiological substrates of fructosamine-3-kinase-related-protein (FN3KRP) are intermediates of nonenzymatic reactions between biological amines and ketose sugars (fructation products). Med. Hypotheses 2011, 77, 739–744. [Google Scholar] [CrossRef]
- Sajuthi, S.P.; Sharma, N.K.; Chou, J.W.; Palmer, N.D.; McWilliams, D.R.; Beal, J.; Comeau, M.E.; Ma, L.; Calles-Escandon, J.; Demons, J.; et al. Mapping adipose and muscle tissue expression quantitative trait loci in African Americans to identify genes for type 2 diabetes and obesity. Hum. Genet. 2016, 135, 869–880. [Google Scholar] [CrossRef] [Green Version]
- Ghanbari, M.; Franco, O.H.; de Looper, H.W.; Hofman, A.; Erkeland, S.J.; Dehghan, A. Genetic variations in microRNA-binding sites affect microRNA-mediated regulation of several genes associated with cardio-metabolic phenotypes. Circ. Cardiovasc. Genet. 2015, 8, 473–486. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.R.; Roe, J.S.; Lee, J.E.; Cho, E.J.; Youn, H.D. p53 regulates glucose metabolism by miR-34a. Biochem. Biophys. Res. Commun. 2013, 437, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Yao, W.; Xiao, W.; Li, H.; Xu, H.; Lang, B. MicroRNA-34a functions as an anti-metastatic microRNA and suppresses angiogenesis in bladder cancer by directly targeting CD44. J. Exp. Clin. Cancer Res. 2014, 33, 779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeung, A.; Lun, S.; Luo, S.; Schooling, C.M. The Impact of Glycated Hemoglobin (HbA1c) on Cardiovascular Disease Risk: A Mendelian Randomization Study Using UK Biobank. Diabetes Care 2018, 41, 1991–1997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, X.; Liu, X.; Sun, L.; He, Y.; Zheng, S.; Zhang, Y.; Huang, Y. Prediabetes and the risk of heart failure: A meta-analysis. Diabetes Obes. Metab. 2021, 23, 1746–1753. [Google Scholar] [CrossRef] [PubMed]
- Walinjkar, R.S.; Khadse, S.; Kumar, S.; Bawankule, S.; Acharya, S. Platelet indices as a predictor of microvascular complications in type 2 diabetes. Indian J. Endocrinol. Metab. 2019, 23, 206–210. [Google Scholar]
- Hughes, R.C.; Rowan, J.; Florkowski, C.M. Is there a role for HbA1c in pregnancy? Curr. Diab. Rep. 2016, 16, 5. [Google Scholar] [CrossRef]
- Amin, I.; Pandith, A.A.; Manzoor, U.; Mir, S.H.; Afroze, D.; Koul, A.M.; Wani, S.; Ahmad, A.; Qasim, I.; Rashid, M.; et al. Implications of VEGF gene sequence variations and its expression in recurrent pregnancy loss. Reprod. Biomed. Online 2021, 43, 1035–1044. [Google Scholar] [CrossRef]
- An, H.J.; Kim, J.H.; Ahn, E.H.; Kim, Y.R.; Kim, J.O.; Park, H.S.; Ryu, C.S.; Kim, E.G.; Cho, S.H.; Lee, W.S.; et al. 3′-UTR polymorphisms in the vascular endothelial growth factor gene (VEGF) contribute to susceptibility to recurrent pregnancy loss (RPL). Int. J. Mol. Sci. 2019, 20, 3319. [Google Scholar] [CrossRef] [Green Version]
- Bahia, W.; Soltani, I.; Haddad, A.; Radhouani, A.; Mahdhi, A.; Ferchichi, S.; Almawi, W.Y. Contribution of ADIPOQ variants to the genetic susceptibility of recurrent pregnancy loss. Reprod. Sci. 2021, 28, 263–270. [Google Scholar] [CrossRef]
- Cho, H.Y.; Park, H.S.; Ahn, E.H.; Ko, E.J.; Park, H.W.; Kim, Y.R.; Kim, J.H.; Lee, W.S.; Kim, N.K. Association of polymorphisms in plasminogen activator inhibitor-1 (PAI-1), tissue plasminogen activator (tPA), and renin (REN) with recurrent pregnancy loss in korean women. J. Pers. Med. 2021, 11, 1378. [Google Scholar] [CrossRef]
- Kim, J.O.; Ahn, E.H.; Sakong, J.H.; An, H.J.; Park, H.S.; Kim, Y.R.; Lee, J.R.; Lee, W.S.; Kim, N.K. Association of miR-27aA>G, miR-423C>a, miR-449bA>G, and miR-604A>G polymorphisms with risk of recurrent implantation failure. Reprod. Sci. 2020, 27, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Mayr, C. Regulation by 3′-untranslated regions. Annu. Rev. Genet. 2017, 51, 171–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syeda, Z.A.; Langden, S.; Munkhzul, C.; Lee, M.; Song, S.J. Regulatory mechanism of microRNA expression in cancer. Int. J. Mol. Sci. 2020, 21, 1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdi, A.; Zafarpiran, M.; Farsani, Z.S. The computational analysis conducted on miRNA target sites in association with SNPs at 3′UTR of ADHD-implicated Genes. Cent. Nerv. Syst. Agents Med. Chem. 2020, 20, 58–75. [Google Scholar] [CrossRef] [PubMed]
- Carp, H.; Toder, V.; Aviram, A.; Daniely, M.; Mashiach, S.; Barkai, G. Karyotype of the abortus in recurrent miscarriage. Fertil. Steril. 2001, 75, 678–682. [Google Scholar] [CrossRef]
- Ritchie, M.D.; Hahn, L.W.; Roodi, N.; Bailey, L.R.; Dupont, W.D.; Parl, F.F.; Moore, J.H. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am. J. Hum. Genet. 2001, 69, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y.; Chung, Y.; Elston, R.C.; Kim, Y.; Park, T. Log-linear model-based multifactor dimensionality reduction method to detect gene gene interactions. Bioinformatics 2007, 23, 2589–2595. [Google Scholar]
- Hahn, L.W.; Ritchie, M.D.; Moore, J.H. Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 2003, 19, 376–382. [Google Scholar] [CrossRef] [Green Version]
- Hochberg, Y.; Benjamini, Y. More powerful procedures for multiple significance testing. Stat. Med. 1990, 9, 811–818. [Google Scholar] [CrossRef]
- Vistoli, G.; De Maddis, D.; Cipak, A.; Zarkovic, N.; Carini, M.; Aldini, G. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): An overview of their mechanisms of formation. Free. Radic. Res. 2013, 47 (Suppl. S1), 3–27. [Google Scholar] [CrossRef] [Green Version]
- Merhi, Z. Advanced glycation end products and their relevance in female reproduction. Hum. Reprod. 2014, 29, 135–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stensen, M.H.; Tanbo, T.; Storeng, R.; Fedorcsak, P. Advanced glycation end products and their receptor contribute to ovarian ageing. Hum. Reprod. 2014, 29, 125–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conner, J.R.; Beisswenger, P.J.; Szwergold, B.S. Some clues as to the regulation, expression, function, and distribution of fructosamine-3-kinase and fructosamine-3-kinase-related protein. Ann. N. Y. Acad. Sci. 2005, 1043, 824–836. [Google Scholar] [CrossRef]
- Zhang, H.F.; Wang, Y.C.; Han, Y.D. MicroRNA-34a inhibits liver cancer cell growth by reprogramming glucose metabolism. Mol. Med. Rep. 2018, 17, 4483–4489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, B.A.T.; Johnson, A.D. Platelet measurements and Type 2 Diabetes: Investigations in two population-based cohorts. Front. Cardiovasc. Med. 2020, 7, 118. [Google Scholar] [CrossRef]
- Sudic, D.; Razmara, M.; Forslund, M.; Ji, Q.; Hjemdahl, P.; Li, N. High glucose levels enhance platelet activation: Involvement of multiple mechanisms. Br. J. Haematol. 2006, 133, 315–322. [Google Scholar] [CrossRef]
- Tang, X.; Sun, L.; Wang, G.; Chen, B.; Luo, F. RUNX1: A regulator of NF-kB Signaling in pulmonary diseases. Curr. Protein Pept. Sci. 2018, 19, 172–178. [Google Scholar]
Characteristic | Control (n = 280) | RPL (n = 388) | p * |
---|---|---|---|
Age (year, mean ± SD) | 33.02 ± 5.74 | 33.21 ± 4.55 | 0.339 * |
BMI (kg/m2, mean ± SD) | 21.58 ± 3.18 | 21.49 ± 3.84 | 0.730 * |
Previous pregnancy losses (n) | N/A | 3.28 ± 1.84 | |
Live births (n) | 1.72 ± 0.72 | N/A | |
Mean gestational age (weeks) | 39.28 ± 1.67 | 7.36 ± 1.93 | <0.0001 * |
Homocysteine (µmol/L) | 7.28 ± 1.58 | 6.98 ± 2.10 | 0.402 * |
Folate (mg/mL) | 13.71 ± 8.37 | 14.21 ± 11.94 | 0.887 * |
Total cholesterol (mg/dL) | 239.00 ± 85.19 | 187.73 ± 49.42 | 0.0004 |
Uric acid (mg/dL) | 4.19 ± 1.44 | 3.80 ± 0.84 | 0.360 * |
BUN (mg/dL) | 8.03 ± 2.01 | 9.99 ± 2.77 | <0.0001 * |
Creatinine (mg/dL) | 0.69 ± 0.08 | 0.72 ± 0.12 | 0.050 * |
PLT (103/μL) | 235.18 ± 63.60 | 255.43 ± 59.22 | 0.0007 |
PT (s) | 11.53 ± 3.10 | 11.58 ± 0.86 | <0.0001 * |
aPTT (s) | 30.78 ± 4.61 | 32.24 ± 4.33 | 0.006 |
Hct (%) | 35.35 ± 4.26 | 37.31 ± 3.37 | <0.0001 * |
TSH (uIU/mL) | N/A | 2.18 ± 1.55 | |
FSH (mIU/mL) | 8.12 ± 2.85 | 7.52 ± 10.52 | <0.0001 * |
LH (mIU/mL) | 3.32 ± 1.74 | 6.30 ± 12.09 | <0.0001 * |
E2 (Basal) | 26.00 ± 14.75 | 35.71 ± 29.46 | 0.002 * |
Prolactin (ng/mL) | N/A | 15.68 ± 12.98 | |
FBS | N/A | 95.24 ± 16.97 |
Genotype | Controls (n = 280) | PL ≥ 2 (n = 388) | AOR (95% CI)c | p | FDR-p | PL ≥ 3 (n = 206) | AOR (95% CI) | p | FDR-p | PL ≥ 4 (n = 82) | AOR (95% CI) | p | FDR-p |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SMAD5 rs10515478 C>G | |||||||||||||
CC | 92 (32.9) | 137 (35.3) | 69 (33.5) | 1.000 (reference) | 29 (35.4) | 1.000 (reference) | |||||||
CG | 138 (49.3) | 194 (50.0) | 0.949 (0.949–1.339) | 0.766 | 0.766 | 100 (48.5) | 0.965 (0.641–1.451) | 0.863 | 0.954 | 35 (42.7) | 0.808 (0.462–1.414) | 0.456 | 0.920 |
GG | 50 (17.9) | 57 (14.7) | 0.771 (0.771–1.225) | 0.271 | 0.407 | 37 (18.0) | 0.996 (0.587–1.691) | 0.989 | 0.989 | 18 (22.0) | 1.174 (0.589–2.340) | 0.650 | 0.650 |
Dominant (CC vs. CG + GG) | 0.894 (0.894–1.237) | 0.499 | 0.499 | 0.965 (0.658–1.415) | 0.854 | 0.903 | 0.890 (0.530–1.493) | 0.658 | 0.954 | ||||
Recessive (CC + CG vs. GG) | 0.789 (0.789–1.197) | 0.265 | 0.398 | 0.981 (0.612–1.572) | 0.935 | 0.935 | 1.270 (0.687–2.348) | 0.446 | 0.590 | ||||
HWE-p | 0.888 | 0.382 | |||||||||||
FN3KRP rs1046875 G>A | |||||||||||||
GG | 70 (25.0) | 122 (31.4) | 65 (31.6) | 1.000 (reference) | 25 (30.5) | 1.000 (reference) | |||||||
GA | 141 (50.4) | 200 (51.5) | 0.820 (0.820–1.182) | 0.288 | 0.687 | 108 (52.4) | 0.819 (0.538–1.249) | 0.354 | 0.954 | 49 (59.8) | 0.972 (0.555–1.702) | 0.920 | 0.920 |
AA | 69 (24.6) | 66 (17.0) | 0.553 (0.553–0.866) | 0.010 | 0.030 | 33 (16.0) | 0.516 (0.302–0.882) | 0.016 | 0.048 | 8 (9.8) | 0.311 (0.130–0.742) | 0.009 | 0.027 |
Dominant (GG vs. AG + AA) | 0.733 (0.733–1.035) | 0.078 | 0.234 | 0.723 (0.484–1.078) | 0.111 | 0.333 | 0.761 (0.442–1.310) | 0.324 | 0.954 | ||||
Recessive (GG + AG vs. AA) | 0.631 (0.631–0.922) | 0.020 | 0.051 | 0.594 (0.374–0.943) | 0.027 | 0.081 | 0.333 (0.153–0.725) | 0.006 | 0.018 | ||||
HWE-p | 0.905 | 0.298 | |||||||||||
RUNX-1 rs15285 G>A | |||||||||||||
GG | 218 (77.9) | 292 (75.3) | 159 (77.2) | 1.000 (reference) | 64 (78.0) | 1.000 (reference) | |||||||
GA | 55 (19.6) | 85 (21.9) | 1.156 (1.156–1.694) | 0.458 | 0.687 | 41 (19.9) | 1.013 (0.643–1.596) | 0.954 | 0.954 | 15 (18.3) | 0.927 (0.491–1.751) | 0.815 | 0.920 |
AA | 7 (2.5) | 11 (2.8) | 1.167 (1.167–3.062) | 0.753 | 0.753 | 6 (2.9) | 1.136 (0.373–3.459) | 0.823 | 0.989 | 3 (3.7) | 1.423 (0.357–5.677) | 0.618 | 0.650 |
Dominant (GG vs. AG + AA) | 1.157 (1.157–1.666) | 0.434 | 0.499 | 1.027 (0.667–1.582) | 0.903 | 0.903 | 0.983 (0.542–1.782) | 0.954 | 0.954 | ||||
Recessive (GG + AG vs. AA) | 1.135 (1.135–2.968) | 0.796 | 0.796 | 1.140 (0.376–3.455) | 0.816 | 0.935 | 1.460 (0.369–5.788) | 0.590 | 0.590 | ||||
HWE-p | 0.128 | 0.122 |
Allele Combination | Controls (2n = 560) | RPL (2n = 776) | OR (95% CI) | p | FDR-p |
---|---|---|---|---|---|
SMAD5 rs10515478 C>G/FN3KRP rs1046875 G>A/RUNX-1 rs15285 G>A | |||||
C-G-G | 138 (24.6) | 212 (27.4) | 1.000 (reference) | ||
C-G-A | 20 (3.6) | 42 (5.4) | 1.367 (0.770–2.427) | 0.285 | 0.55 |
C-A-G | 146 (26.0) | 192 (24.7) | 0.856 (0.632–1.160) | 0.316 | 0.553 |
C-A-A | 18 (3.3) | 22 (2.9) | 0.796 (0.412–1.538) | 0.496 | 0.578 |
G-G-G | 112 (20.0) | 167 (21.5) | 0.971 (0.704–1.339) | 0.856 | 0.856 |
G-G-A | 11 (2.0) | 23 (3.0) | 1.361 (0.643–2.881) | 0.419 | 0.578 |
G-A-G | 96 (17.1) | 98 (12.7) | 0.665 (0.467–0.947) | 0.023 | 0.163 |
G-A-A | 19 (3.5) | 20 (2.5) | 0.685 (0.353–1.331) | 0.262 | 0.553 |
SMAD5 rs10515478 C>G/FN3KRP rs1046875 G>A | |||||
C-G | 159 (28.3) | 253 (32.7) | 1.000 (reference) | ||
C-A | 163 (29.2) | 215 (27.7) | 0.829 (0.624–1.102) | 0.196 | 0.293 |
G-G | 122 (21.9) | 191 (24.6) | 0.984 (0.728–1.330) | 0.916 | 0.916 |
G-A | 116 (20.6) | 117 (15.1) | 0.634 (0.458–0.877) | 0.006 | 0.017 |
SMAD5 rs10515478 C>G/RUNX-1 rs15285 G>A | |||||
C-G | 284 (50.8) | 404 (52.0) | 1.000 (reference) | ||
C-A | 38 (6.7) | 64 (8.3) | 1.184 (0.771–1.819) | 0.440 | 0.660 |
G-G | 207 (36.9) | 265 (34.2) | 0.900 (0.710–1.140) | 0.383 | 0.660 |
G-A | 31 (5.6) | 43 (5.5) | 0.975 (0.600–1.586) | 0.919 | 0.919 |
FN3KRP rs1046875 G>A/RUNX-1 rs15285 G>A | |||||
G-G | 250 (44.7) | 379 (48.8) | 1.000 (reference) | ||
G-A | 31 (5.5) | 65 (8.4) | 1.383 (0.876–2.184) | 0.163 | 0.184 |
A-G | 241 (43.0) | 290 (37.4) | 0.794 (0.628–1.003) | 0.053 | 0.158 |
A-A | 38 (6.8) | 42 (5.4) | 0.729 (0.457–1.163) | 0.184 | 0.184 |
Genotype Combination | Controls (n = 280) | RPL (n = 388) | AOR (95% CI) | p | FDR-p |
---|---|---|---|---|---|
SMAD5 rs10515478 C>G/FN3KRP rs1046875 G>A | |||||
CC/GG | 23 (8.2) | 42 (10.8) | 1.000 (reference) | ||
CC/GA | 46 (16.4) | 68 (17.5) | 0.810 (0.431–1.523) | 0.514 | 0.821 |
CC/AA | 23 (8.2) | 27 (7.0) | 0.640 (0.300–1.365) | 0.248 | 0.497 |
CG/GG | 35 (12.5) | 58 (14.9) | 0.886 (0.457–1.716) | 0.719 | 0.821 |
CG/GA | 66 (23.6) | 103 (26.5) | 0.865 (0.476–1.572) | 0.635 | 0.821 |
CG/AA | 37 (13.2) | 33 (8.5) | 0.482 (0.241–0.967) | 0.040 | 0.306 |
GG/GG | 12 (4.3) | 22 (5.7) | 0.934 (0.387–2.255) | 0.879 | 0.879 |
GG/GA | 29 (10.4) | 29 (7.5) | 0.572 (0.275–1.190) | 0.135 | 0.361 |
GG/AA | 9 (3.2) | 6 (1.5) | 0.345 (0.106–1.120) | 0.077 | 0.306 |
SMAD5 rs10515478 C>G/RUNX-1 rs15285 G>A | |||||
CC/GG | 71 (25.4) | 103 (26.5) | 1.000 (reference) | ||
CC/GA | 20 (7.1) | 30 (7.7) | 0.999 (0.522–1.912) | 0.999 | 0.999 |
CC/AA | 1 (0.4) | 4 (1.0) | 3.196 (0.344–29.734) | 0.307 | 0.859 |
CG/GG | 109 (38.9) | 147 (37.9) | 0.923 (0.624–1.366) | 0.688 | 0.999 |
CG/GA | 25 (8.9) | 41 (10.6) | 1.162 (0.647–2.087) | 0.616 | 0.999 |
CG/AA | 4 (1.4) | 6 (1.5) | 0.960 (0.259–3.560) | 0.951 | 0.999 |
GG/GG | 38 (13.6) | 42 (10.8) | 0.763 (0.447–1.302) | 0.322 | 0.859 |
GG/GA | 10 (3.6) | 14 (3.6) | 0.963 (0.405–2.291) | 0.932 | 0.999 |
GG/AA | 2 (0.7) | 1 (0.3) | 0.291 (0.025–3.352) | 0.322 | 0.859 |
FN3KRP rs1046875 G>A/RUNX-1 rs15285 G>A | |||||
GG/GG | 54 (19.3) | 95 (24.5) | 1.000 (reference) | ||
GG/GA | 16 (5.7) | 24 (6.2) | 0.875 (0.427–1.795) | 0.716 | 0.832 |
GG/AA | 0 (0.0) | 3 (0.8) | NA | 0.994 | 0.994 |
GA/GG | 111 (39.6) | 141 (36.3) | 0.729 (0.480–1.107) | 0.138 | 0.275 |
GA/GA | 27 (9.6) | 52 (13.4) | 1.107 (0.624–1.964) | 0.728 | 0.832 |
GA/AA | 3 (1.1) | 7 (1.8) | 1.343 (0.333–5.414) | 0.678 | 0.832 |
AA/GG | 53 (18.9) | 56 (14.4) | 0.609 (0.368–1.008) | 0.054 | 0.241 |
AA/GA | 12 (4.3) | 9 (2.3) | 0.434 (0.171–1.098) | 0.078 | 0.241 |
AA/AA | 4 (1.4) | 1 (0.3) | 0.147 (0.016–1.352) | 0.090 | 0.241 |
Genotype | BMI (kg/m2) | Previous Pregnancy Losses (n) | Mean Gestational Age (Weeks) | Hcy (umol/L) | Folate (ng/mL) | T.chol (mg/dL) | BUN (mg/dL) | Creatin (mg/dL) | PLT (103/uL) | PT (s) | aPTT (s) |
---|---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
SMAD5 rs10515478 C>G | |||||||||||
CC | 21.45 ± 3.08 | 2.99 ± 1.58 | 18.45 ± 15.62 | 7.12 ± 2.07 | 13.77 ± 11.13 | 194.84 ± 59.44 | 9.34 ± 2.78 | 0.71 ± 0.11 | 240.17 ± 60.58 | 11.70 ± 2.08 | 31.12 ± 4.64 |
CG | 21.71 ± 4.27 | 2.94 ± 1.47 | 20.29 ± 15.64 | 6.92 ± 2.06 | 14.23 ± 12.51 | 187.54 ± 52.18 | 9.83 ± 2.83 | 0.72 ± 0.12 | 246.52 ± 59.86 | 11.39 ± 1.02 | 32.10 ± 4.44 |
GG | 21.06 ± 2.57 | 3.33 ± 1.49 | 25.82 ± 16.18 | 6.90 ± 2.17 | 14.98 ± 9.76 | 198.36 ± 49.86 | 9.89 ± 2.37 | 0.73 ± 0.12 | 250.13 ± 73.55 | 11.90 ± 2.41 | 32.02 ± 4.07 |
Pa | 0.374 | 0.222 | 0.023 | 0.722 | 0.885 | 0.546 | 0.382 | 0.512 | 0.480 | 0.155 | 0.184 |
FN3KRP rs1046875 G>A | |||||||||||
GG | 21.76 ± 4.75 | 2.95 ± 1.28 | 19.56 ± 15.74 | 7.08 ± 2.13 | 14.22 ± 11.25 | 198.73 ± 59.39 | 9.69 ± 2.29 | 0.71 ± 0.11 | 256.76 ± 69.35 | 11.82 ± 2.42 | 32.13 ± 4.39 |
GA | 21.33 ± 3.12 | 3.17 ± 1.78 | 20.86 ± 15.97 | 6.85 ± 1.81 | 13.51 ± 8.02 | 183.88 ± 42.74 | 9.45 ± 2.87 | 0.72 ± 0.12 | 239.37 ± 61.55 | 11.54 ± 1.33 | 31.80 ± 4.44 |
AA | 21.67 ± 2.98 | 2.68 ± 0.86 | 21.94 ± 15.96 | 7.22 ± 2.63 | 16.29 ± 20.17 | 201.78 ± 71.12 | 10.11 ± 3.06 | 0.71 ± 0.13 | 242.67 ± 52.12 | 11.24 ± 0.96 | 30.96 ± 4.64 |
Pa | 0.465 | b 0.376 | 0.675 | 0.462 | b 0.977 | b 0.470 | 0.373 | 0.905 | 0.046 | 0.155 | 0.274 |
RUNX-1 rs15285 G>A | |||||||||||
GG | 21.57 ± 3.86 | 3.05 ± 1.51 | 20.12 ± 15.78 | 6.87 ± 1.98 | 14.22 ± 12.16 | 189.80 ± 54.17 | 9.68 ± 2.72 | 0.72 ± 0.12 | 246.53 ± 61.83 | 11.59 ± 1.82 | 31.60 ± 4.51 |
GA | 21.35 ± 3.03 | 2.87 ± 1.50 | 22.73 ± 16.25 | 7.30 ± 1.96 | 13.91 ± 10.32 | 202.42 ± 57.42 | 9.32 ± 2.67 | 0.70 ± 0.10 | 233.34 ± 60.17 | 11.54 ± 1.04 | 32.29 ± 4.26 |
AA | 21.47 ± 2.65 | 3.27 ± 1.85 | 21.46 ± 16.19 | 8.07 ± 3.99 | 14.27 ± 7.36 | 167.75 ± 16.68 | 10.72 ± 4.58 | 0.70 ± 0.10 | 281.60 ± 80.81 | 11.30 ± 1.81 | 32.16 ± 5.20 |
Pa | 0.853 | 0.541 | 0.507 | b 0.166 | 0.988 | 0.309 | 0.509 | 0.592 | 0.038 | 0.909 | 0.540 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, M.-J.; Kim, J.-H.; Lee, J.-Y.; Ko, E.-J.; Park, H.-W.; Shin, J.-E.; Ahn, E.-H.; Kim, N.-K. Genetic Polymorphisms in the 3′-Untranslated Regions of SMAD5, FN3KRP, and RUNX-1 Are Associated with Recurrent Pregnancy Loss. Biomedicines 2022, 10, 1481. https://doi.org/10.3390/biomedicines10071481
Kwon M-J, Kim J-H, Lee J-Y, Ko E-J, Park H-W, Shin J-E, Ahn E-H, Kim N-K. Genetic Polymorphisms in the 3′-Untranslated Regions of SMAD5, FN3KRP, and RUNX-1 Are Associated with Recurrent Pregnancy Loss. Biomedicines. 2022; 10(7):1481. https://doi.org/10.3390/biomedicines10071481
Chicago/Turabian StyleKwon, Min-Jung, Ji-Hyang Kim, Jeong-Yong Lee, Eun-Ju Ko, Hyeon-Woo Park, Ji-Eun Shin, Eun-Hee Ahn, and Nam-Keun Kim. 2022. "Genetic Polymorphisms in the 3′-Untranslated Regions of SMAD5, FN3KRP, and RUNX-1 Are Associated with Recurrent Pregnancy Loss" Biomedicines 10, no. 7: 1481. https://doi.org/10.3390/biomedicines10071481
APA StyleKwon, M. -J., Kim, J. -H., Lee, J. -Y., Ko, E. -J., Park, H. -W., Shin, J. -E., Ahn, E. -H., & Kim, N. -K. (2022). Genetic Polymorphisms in the 3′-Untranslated Regions of SMAD5, FN3KRP, and RUNX-1 Are Associated with Recurrent Pregnancy Loss. Biomedicines, 10(7), 1481. https://doi.org/10.3390/biomedicines10071481