Independent Effects of Kidney Function and Cholesterol Efflux on Cardiovascular Mortality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Laboratory Procedures
2.3. Cholesterol Efflux Capacity
2.4. Genetic Analyses
2.5. Statistical Analysis
3. Results
3.1. Study Participants
3.2. Cholesterol Efflux Capacity and Kidney Function
3.3. Cholesterol Efflux Capacity, Kidney Function, and Mortality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Speer, T.; Zewinger, S.; Fliser, D. Uraemic dyslipidaemia revisited: Role of high-density lipoprotein. Nephrol. Dial. Transplant. 2013, 28, 2456–2463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Go, A.S.; Chertow, G.M.; Fan, D.; McCulloch, C.E.; Hsu, C.Y. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 2004, 351, 1296–1305. [Google Scholar] [CrossRef] [PubMed]
- Luscher, T.F.; Landmesser, U.; von Eckardstein, A.; Fogelman, A.M. High-density lipoprotein: Vascular protective effects, dysfunction, and potential as therapeutic target. Circ. Res. 2014, 114, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Voight, B.F.; Peloso, G.M.; Orho-Melander, M.; Frikke-Schmidt, R.; Barbalic, M.; Jensen, M.K.; Hindy, G.; Holm, H.; Ding, E.L.; Johnson, T.; et al. Plasma HDL cholesterol and risk of myocardial infarction: A mendelian randomisation study. Lancet 2012, 380, 572–580. [Google Scholar] [CrossRef] [Green Version]
- Pownall, H.J.; Gotto, A.M., Jr. New Insights into the High-Density Lipoprotein Dilemma. Trends Endocrinol. Metab. 2016, 27, 44–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zewinger, S.; Speer, T.; Kleber, M.E.; Scharnagl, H.; Woitas, R.; Lepper, P.M.; Pfahler, K.; Seiler, S.; Heine, G.H.; Marz, W.; et al. HDL cholesterol is not associated with lower mortality in patients with kidney dysfunction. J. Am. Soc. Nephrol. 2014, 25, 1073–1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rader, D.J.; Alexander, E.T.; Weibel, G.L.; Billheimer, J.; Rothblat, G.H. The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J. Lipid Res. 2009, 50, S189–S194. [Google Scholar] [CrossRef] [Green Version]
- Shroff, R.; Speer, T.; Colin, S.; Charakida, M.; Zewinger, S.; Staels, B.; Chinetti-Gbaguidi, G.; Hettrich, I.; Rohrer, L.; O’Neill, F.; et al. HDL in children with CKD promotes endothelial dysfunction and an abnormal vascular phenotype. J. Am. Soc. Nephrol. 2014, 25, 2658–2668. [Google Scholar] [CrossRef] [Green Version]
- Speer, T.; Rohrer, L.; Blyszczuk, P.; Shroff, R.; Kuschnerus, K.; Krankel, N.; Kania, G.; Zewinger, S.; Akhmedov, A.; Shi, Y.; et al. Abnormal high-density lipoprotein induces endothelial dysfunction via activation of Toll-like receptor-2. Immunity 2013, 38, 754–768. [Google Scholar] [CrossRef] [Green Version]
- Delgado, G.E.; Kleber, M.E.; Scharnagl, H.; Kramer, B.K.; Marz, W.; Scherberich, J.E. Serum Uromodulin and Mortality Risk in Patients Undergoing Coronary Angiography. J. Am. Soc. Nephrol. 2017, 28, 2201–2210. [Google Scholar] [CrossRef] [Green Version]
- Winkelmann, B.R.; Marz, W.; Boehm, B.O.; Zotz, R.; Hager, J.; Hellstern, P.; Senges, J.; Group, L.S. Rationale and design of the LURIC study—A resource for functional genomics, pharmacogenomics and long-term prognosis of cardiovascular disease. Pharmacogenomics 2001, 2, S1–S73. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2006, 29 (Suppl. 1), S43–S48. [Google Scholar] [CrossRef]
- Inker, L.A.; Schmid, C.H.; Tighiouart, H.; Eckfeldt, J.H.; Feldman, H.I.; Greene, T.; Kusek, J.W.; Manzi, J.; Van Lente, F.; Zhang, Y.L.; et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N. Engl. J. Med. 2012, 367, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Steubl, D.; Block, M.; Herbst, V.; Nockher, W.A.; Schlumberger, W.; Satanovskij, R.; Angermann, S.; Hasenau, A.L.; Stecher, L.; Heemann, U.; et al. Plasma Uromodulin Correlates With Kidney Function and Identifies Early Stages in Chronic Kidney Disease Patients. Medicine 2016, 95, e3011. [Google Scholar] [CrossRef] [PubMed]
- Scharnagl, H.; Heuschneider, C.; Sailer, S.; Kleber, M.E.; Marz, W.; Ritsch, A. Decreased cholesterol efflux capacity in patients with low cholesteryl ester transfer protein plasma levels. Eur. J. Clin. Investig. 2014, 44, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Pattaro, C.; Teumer, A.; Gorski, M.; Chu, A.Y.; Li, M.; Mijatovic, V.; Garnaas, M.; Tin, A.; Sorice, R.; Li, Y.; et al. Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nat. Commun. 2016, 7, 10023. [Google Scholar] [CrossRef] [PubMed]
- Mack, S.; Coassin, S.; Rueedi, R.; Yousri, N.A.; Seppala, I.; Gieger, C.; Schonherr, S.; Forer, L.; Erhart, G.; Marques-Vidal, P.; et al. A genome-wide association meta-analysis on lipoprotein (a) concentrations adjusted for apolipoprotein (a) isoforms. J. Lipid Res. 2017, 58, 1834–1844. [Google Scholar] [CrossRef] [Green Version]
- Holzer, M.; Birner-Gruenberger, R.; Stojakovic, T.; El-Gamal, D.; Binder, V.; Wadsack, C.; Heinemann, A.; Marsche, G. Uremia alters HDL composition and function. J. Am. Soc. Nephrol. 2011, 22, 1631–1641. [Google Scholar] [CrossRef] [Green Version]
- Holzer, M.; Schilcher, G.; Curcic, S.; Trieb, M.; Ljubojevic, S.; Stojakovic, T.; Scharnagl, H.; Kopecky, C.M.; Rosenkranz, A.R.; Heinemann, A.; et al. Dialysis Modalities and HDL Composition and Function. J. Am. Soc. Nephrol. 2015, 26, 2267–2276. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, S.; Yancey, P.G.; Ikizler, T.A.; Jerome, W.G.; Kaseda, R.; Cox, B.; Bian, A.; Shintani, A.; Fogo, A.B.; Linton, M.F.; et al. Dysfunctional high-density lipoprotein in patients on chronic hemodialysis. J. Am. Coll. Cardiol. 2012, 60, 2372–2379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritsch, A.; Scharnagl, H.; Marz, W. HDL cholesterol efflux capacity and cardiovascular events. N. Engl. J. Med. 2015, 372, 1870–1871. [Google Scholar] [CrossRef] [PubMed]
- Rohatgi, A.; Khera, A.; Berry, J.D.; Givens, E.G.; Ayers, C.R.; Wedin, K.E.; Neeland, I.J.; Yuhanna, I.S.; Rader, D.R.; de Lemos, J.A.; et al. HDL cholesterol efflux capacity and incident cardiovascular events. N. Engl. J. Med. 2014, 371, 2383–2393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
All | eGFR (mL/min per 1.73 m2) | ||||
---|---|---|---|---|---|
(n = 2468) | >90 (n = 883) | 60–90 (n = 1249) | ≤60 (n = 331) | p * | |
Age (years, mean ± SD) | 62.8 ± 10.4 | 56.0 ± 9.9 | 65.5 ± 8.3 | 71.1 ± 8.1 | <0.001 |
Male sex (%) | 68.1 | 78.0 | 64.8 | 54.1 | <0.001 |
Body mass index (kg/m², mean ± SD) | 27.5 ± 4.1 | 27.3 ± 4.0 | 27.7 ± 4.1 | 27.5 ± 4.4 | 0.002 |
Waist hip ratio (mean ± SD) | 0.96 ± 0.08 | 0.96 ± 0.08 | 0.96 ± 0.08 | 0.96 ± 0.08 | 0.463 |
Systolic blood pressure (mmHg, mean ± SD) | 141 ± 24 | 136 ± 22 | 143 ± 24 | 145 ± 24 | 0.081 |
Diastolic blood pressure (mmHg, mean ± SD) | 81 ± 11 | 82 ± 11 | 82 ± 11 | 79 ± 12 | 0.001 |
Total cholesterol (mg/dL, mean ± SD) | 208 ± 44 | 209 ± 46 | 209 ± 43 | 204 ± 48 | 0.175 ‡ |
LDL cholesterol (mg/dL, mean ± SD) | 116 ± 35 | 116 ± 36 | 117 ± 34 | 110 ± 36 | 0.001 ‡ |
HDL cholesterol (mg/dL, mean ± SD) | 39.1 ± 10.7 | 39.4 ± 10.5 | 39.6 ± 10.8 | 36.8 ± 10.9 | <0.001 ‡ |
Effective HDL (mg/dL, mean ± SD) | 35.1 ± 17.8 | 38.5 ± 18.1 | 34.9 ± 17.7 | 26.3 ± 13.9 | <0.001 ‡ |
Apolipoprotein AI (mg/dL, mean ± SD) | 130 ± 25 | 131 ± 25 | 131 ± 25 | 125 ± 26 | <0.001 ‡ |
Apolipoprotein AII (mg/dL, mean ± SD) | 41.8 ± 9.5 | 44.1 ± 9.3 | 41.3± 9.3 | 37.4 ± 9.3 | <0.001 ‡ |
Apolipoprotein B (mg/dL, mean ± SD) | 104 ± 25 | 104 ± 26 | 104 ± 24 | 103 ± 27 | 0.491 ‡ |
Triglycerides (mg/dL, median, Q1 to Q3) | 146 (108–201) | 144 (106–199) | 143 (107–197) | 156 (119–214) | <0.001 ‡,§ |
CETP (μg/mL, median, Q1 to Q3) | 1.12 (0.86–1.49) | 1.10 (0.84–1.45) | 1.13 (0.87–1.52) | 1.16 (0.86–1.57) | 0.048 § |
CRP (mg/dL, mean ± SD) | 1.72 ± 0.77 | 1.56 ± 0.72 | 1.74 ± 0.78 | 2.06 ± 0.78 | <0.001 |
SAA (mg/L, mean ± SD) | 29.8 ± 114.7 | 22.6 ± 90.8 | 28.8 ± 106.8 | 52.8 ± 179.7 | 0.002 |
Urea (mg/dL, mean ± SD) | 39.3 ± 15.2 | 32.4 ± 8.2 | 38.5 ± 9.8 | 60.2 ± 23.5 | <0.001 |
Diabetes mellitus (%) | 28.9 | 20.8 | 30.7 | 43.5 | <0.001 |
Lipid lowering therapy (%) | 49.7 | 49.9 | 49.6 | 49.8 | 0.990 |
CAD (%) | 77.0 | 73.0 | 78.4 | 82.5 | 0.001 |
Smoking | |||||
Never (%) | 37.5 | 29.4 | 40.8 | 46.5 | |
Past (%) | 43.2 | 43.4 | 42.9 | 44.1 | |
Current (%) | 19.3 | 27.2 | 16.3 | 9.4 | <0.001 |
eGFR (ml/min per 1.73 m2) | 81.6 ± 19.9 | 101.4 ± 7.9 | 77.0 ± 8.4 | 46.2 ± 11.2 | <0.001 |
Cardiovascular Mortality | ||||||
---|---|---|---|---|---|---|
Model 1 HR | Model 2 HR | Model 3 HR | ||||
(95% CI) | p | (95% CI) | p | (95% CI) | p | |
Efflux | ||||||
Quartile | ||||||
1st | 1.0ref | 1.0ref | 1.0ref | |||
2nd | 0.756 (0.590–0.968) | 0.026 | 0.800 (0.625–1.025) | 0.077 | 0.814 (0.634–1.044) | 0.105 |
3rd | 0.658 (0.509–0.852) | 0.001 | 0.711 (0.549–0.920) | 0.010 | 0.723 (0.557–0.939) | 0.015 |
4th | 0.632 (0.488–0.818) | 0.001 | 0.701 (0.540–0.910) | 0.008 | 0.758 (0.582–0.988) | 0.040 |
Model 4 HR | Model 5 HR | |||||
(95% CI) | p | (95% CI) | p | |||
Efflux | ||||||
Quartile | ||||||
1st | 1.0ref | 1.0ref | ||||
2nd | 0.820 (0.639–1.052) | 0.118 | 0.813 (0.623–1.061) | 0.127 | ||
3rd | 0.722 (0.556–0.938) | 0.015 | 0.725 (0.548–0.959) | 0.024 | ||
4th | 0.793 (0.608–1.035) | 0.087 | 0.765 (0.577–1.013) | 0.062 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ritsch, A.; Hunjadi, M.; Stojakovic, T.; Scherberich, J.E.; Silbernagel, G.; Scharnagl, H.; Delgado, G.E.; Kleber, M.E.; März, W. Independent Effects of Kidney Function and Cholesterol Efflux on Cardiovascular Mortality. Biomedicines 2022, 10, 1832. https://doi.org/10.3390/biomedicines10081832
Ritsch A, Hunjadi M, Stojakovic T, Scherberich JE, Silbernagel G, Scharnagl H, Delgado GE, Kleber ME, März W. Independent Effects of Kidney Function and Cholesterol Efflux on Cardiovascular Mortality. Biomedicines. 2022; 10(8):1832. https://doi.org/10.3390/biomedicines10081832
Chicago/Turabian StyleRitsch, Andreas, Monika Hunjadi, Tatjana Stojakovic, Jürgen E. Scherberich, Günther Silbernagel, Hubert Scharnagl, Graciela E. Delgado, Marcus E. Kleber, and Winfried März. 2022. "Independent Effects of Kidney Function and Cholesterol Efflux on Cardiovascular Mortality" Biomedicines 10, no. 8: 1832. https://doi.org/10.3390/biomedicines10081832
APA StyleRitsch, A., Hunjadi, M., Stojakovic, T., Scherberich, J. E., Silbernagel, G., Scharnagl, H., Delgado, G. E., Kleber, M. E., & März, W. (2022). Independent Effects of Kidney Function and Cholesterol Efflux on Cardiovascular Mortality. Biomedicines, 10(8), 1832. https://doi.org/10.3390/biomedicines10081832