Efficacy of Selected Live Biotherapeutic Candidates to Inhibit the Interaction of an Adhesive-Invasive Escherichia coli Strain with Caco-2, HT29-MTX Cells and Their Co-Culture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions
2.2. Cell Lines and Cell Culture
2.3. Adhesion Assays
2.4. Invasion Assay
2.5. Statistical Analysis
3. Results
3.1. Colonization Experiment
3.2. Invasion of AIEC
3.3. Correlation between Adhesion and Invasion
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ananthakrishnan, A.N. Epidemiology and risk factors for IBD. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 205–217. [Google Scholar] [CrossRef]
- Halfvarson, J.; Brislawn, C.J.; Lamendella, R.; Vázquez-Baeza, Y.; Walters, W.A.; Bramer, L.M.; Amato, M.D.; Bonfiglio, F.; McDonald, D.; Gonzalez, A.; et al. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat. Microbiol. 2017, 2, 17004. [Google Scholar] [CrossRef] [PubMed]
- de Souza, H.S.P.; Fiocchi, C. Immunopathogenesis of IBD: Current state of the art. Nat. Rev. Gastroenterol. Hepatol. 2015, 13, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Vejborg, R.M.; Hancock, V.; Petersen, A.M.; Krogfelt, K.A.; Klemm, P. Comparative genomics of Escherichia coli isolated from patients with inflammatory bowel disease. BMC Genom. 2011, 12, 316. [Google Scholar] [CrossRef]
- Francescone, R.; Hou, V.; Grivennikov, S.I. Cytokines, IBD, and colitis-associated cancer. Inflamm. Bowel Dis. 2015, 21, 409–418. [Google Scholar] [CrossRef]
- Grivennikov, S.; Karin, E.; Terzic, J.; Mucida, D.; Yu, G.-Y.; Vallabhapurapu, S.; Scheller, J.; Rose-John, S.; Cheroutre, H.; Eckmann, L.; et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 2009, 15, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Collins, P.D. Editorial: Evidence is growing for protective effects of 5-aminosalicylates against colitis-associated cancer. Aliment. Pharmacol. Ther. 2017, 45, 1553–1554. [Google Scholar] [CrossRef]
- Zhang, M.; Viennois, E.; Prasad, M.; Zhang, Y.; Wang, L.; Zhang, Z.; Han, M.K.; Xiao, B.; Xu, C.; Srinivasan, S.; et al. Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials 2016, 101, 321–340. [Google Scholar] [CrossRef] [PubMed]
- Cammarota, G.; Ianiro, G.; Cianci, R.; Bibbò, S.; Gasbarrini, A.; Currò, D. The involvement of gut microbiota in inflammatory bowel disease pathogenesis: Potential for therapy. Pharmacol. Ther. 2015, 149, 191–212. [Google Scholar] [CrossRef] [PubMed]
- Man, S.; Kaakoush, N.; Mitchell, H. The role of bacteria and pattern-recognition receptors in Crohn’s disease. Nat. Rev. Gastroenterol. Hepatol. 2011, 8, 152–168. [Google Scholar] [CrossRef]
- Baumgart, M.; Dogan, B.; Rishniw, M.; Weitzman, G.; Bosworth, B.; Yantiss, R.; Orsi, R.H.; Wiedmann, M.; McDonough, P.; Kim, S.G.; et al. Culture independent analysis of ileal mucosa reveals a selective increase in invasive Escherichia coli of novel phylogeny relative to depletion of Clostridiales in Crohn’s disease involving the ileum. ISME J. 2007, 1, 403–418. [Google Scholar] [CrossRef]
- Drouet, M.; Vignal, C.; Singer, E.; Djouina, M.; Dubreuil, L.; Cortot, A.; Desreumaux, P.; Neut, C. AIEC colonization and pathogenicity: Influence of previous antibiotic treatment and preexisting inflammation. Inflamm. Bowel Dis. 2012, 18, 1923–1931. [Google Scholar] [CrossRef]
- Liévin-Le Moal, V.; Servin, A.L. Anti-infective activities of lactobacillus strains in the human intestinal microbiota: From probiotics to gastrointestinal anti-infectious biotherapeutic agents. Clin. Microbiol. Rev. 2014, 27, 167–199. [Google Scholar] [CrossRef]
- Yan, F.; Polk, D.B. Probiotics and immune health. Curr. Opin. Gastroenterol. 2011, 27, 496–501. [Google Scholar] [CrossRef]
- O’Toole, P.W.; Marchesi, J.R.; Hill, C. Next-generation probiotics: The spectrum from probiotics to live biotherapeutics. Nat. Microbiol. 2017, 2, 17057. [Google Scholar] [CrossRef]
- O’Shea, E.F.; Cotter, P.D.; Stanton, C.; Ross, R.P.; Hill, C. Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: Bacteriocins and conjugated linoleic acid. Int. J. Food Microbiol. 2012, 152, 189–205. [Google Scholar] [CrossRef]
- Saulnier, D.M.; Santos, F.; Roos, S.; Mistretta, T.-A.; Spinler, J.K.; Molenaar, D.; Teusink, B.; Versalovic, J. Exploring metabolic pathway reconstruction and genome-wide expression profiling in Lactobacillus reuteri to define functional probiotic features. PLoS ONE 2011, 6, e18783. [Google Scholar] [CrossRef]
- Hummel, S.; Veltman, K.; Cichon, C.; Sonnenborn, U.; Schmidt, M.A. Differential targeting of the E-Cadherin/β-Catenin complex by gram-positive probiotic lactobacilli improves epithelial barrier function. Appl. Environ. Microbiol. 2012, 78, 1140–1147. [Google Scholar] [CrossRef]
- Nishiyama, K.; Sugiyama, M.; Mukai, T. Adhesion properties of lactic acid bacteria on intestinal mucin. Microorganisms 2016, 4, 34. [Google Scholar] [CrossRef]
- Pagnini, C.; Corleto, V.D.; Martorelli, M.; Lanini, C.; D’Ambra, G.; Di Giulio, E.; Delle Fave, G. Mucosal adhesion and anti-inflammatory effects of Lactobacillus rhamnosus GG in the human colonic mucosa: A proof-of-concept study. World J. Gastroenterol. 2018, 24, 4652–4662. [Google Scholar] [CrossRef]
- Wang, L.; Cao, H.; Liu, L.; Wang, B.; Walker, W.A.; Acra, S.A.; Yan, F. Activation of epidermal growth factor receptor mediates mucin production stimulated by p40, a lactobacillus rhamnosus GG-derived protein. J. Biol. Chem. 2014, 289, 20234–20244. [Google Scholar] [CrossRef] [PubMed]
- Irving, P.M.; Gibson, P.R. Infections and IBD. Nat. Clin. Pract. Gastroenterol. Hepatol. 2008, 5, 18–27. [Google Scholar] [CrossRef]
- Spigaglia, P.; Barbanti, F.; Mastrantonio, P. Multidrug resistance in European Clostridium difficile clinical isolates. J. Antimicrob. Chemother. 2011, 66, 2227–2234. [Google Scholar] [CrossRef]
- Sholeh, M.; Krutova, M.; Forouzesh, M.; Mironov, S.; Sadeghifard, N.; Molaeipour, L.; Maleki, A.; Kouhsari, E. Antimicrobial resistance in Clostridioides (Clostridium) difficile derived from humans: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 2020, 9, 158. [Google Scholar] [CrossRef] [PubMed]
- Ciurea, C.N.; Kosovski, I.B.; Mare, A.D.; Toma, F.; Pintea-Simon, I.A.; Man, A. Candida and candidiasis-opportunism versus pathogenicity: A review of the virulence traits. Microorganisms 2020, 8, 857. [Google Scholar] [CrossRef] [PubMed]
- Angelis, I.D.; Turco, L. Caco-2 cells as a model for intestinal absorption. Curr. Protoc. Toxicol. 2011, 47, 20.6.1–20.6.15. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, I.J.; Raub, T.J.; Borchardt, R.T. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 1989, 96, 736–749. [Google Scholar] [CrossRef]
- Gagnon, M.; Zihler Berner, A.; Chervet, N.; Chassard, C.; Lacroix, C. Comparison of the Caco-2, HT-29 and the mucus-secreting HT29-MTX intestinal cell models to investigate Salmonella adhesion and invasion. J. Microbiol. Methods 2013, 94, 274–279. [Google Scholar] [CrossRef]
- Lesuffleur, T.; Barbat, A.; Dussaulx, E.; Zweibaum, A. Growth adaptation to methotrexate of HT-29 human colon carcinoma cells is associated with their ability to differentiate into columnar absorptive and mucus-secreting cells. Cancer Res. 1990, 50, 6334–6343. [Google Scholar]
- Béduneau, A.; Tempesta, C.; Fimbel, S.; Pellequer, Y.; Jannin, V.; Demarne, F.; Lamprecht, A. A tunable Caco-2/HT29-MTX co-culture model mimicking variable permeabilities of the human intestine obtained by an original seeding procedure. Eur. J. Pharm. Biopharm. 2014, 87, 290–298. [Google Scholar] [CrossRef]
- Astley, D.J.; Masters, N.; Kuballa, A.; Katouli, M. Commonality of adherent-invasive Escherichia coli isolated from patients with extraintestinal infections, healthy individuals and the environment. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2021, 40, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Katouli, M.; Nettebladt, C.G.; Muratov, V.; Ljungqvist, O.; Bark, T.; Svenberg, T.; Möllby, R. Selective translocation of coliform bacteria adhering to caecal epithelium of rats during catabolic stress. J. Med. Microbiol. 1997, 46, 571–578. [Google Scholar] [CrossRef] [PubMed]
- UK Health Security Agency (UKHSA) Culture Collections. Available online: https://www.culturecollections.org.uk/products/celllines/generalcell/detail.jsp?refId=12040401&collection=ecacc_gc (accessed on 20 July 2022).
- Chen, X.M.; Elisia, I.; Kitts, D.D. Defining conditions for the co-culture of Caco-2 and HT29-MTX cells using Taguchi design. J. Pharmacol. Toxicol. Methods 2010, 61, 334–342. [Google Scholar] [CrossRef]
- Hatje, E.; Neuman, C.; Katouli, M. Interaction of Aeromonas strains with lactic acid bacteria via Caco-2 cells. Appl. Environ. Microbiol. 2014, 80, 681–686. [Google Scholar] [CrossRef]
- Owrangi, B.; Masters, N.; Kuballa, A.; O’Dea, C.; Vollmerhausen, T.L.; Katouli, M. Invasion and translocation of uropathogenic Escherichia coli isolated from urosepsis and patients with community-acquired urinary tract infection. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2018, 37, 833–839. [Google Scholar] [CrossRef]
- Vollmerhausen, T.L.; Woods, J.L.; Faoagali, J.; Katouli, M. Interactions of uroseptic Escherichia coli with renal (A-498) and gastrointestinal (HT-29) cell lines. J. Med. Microbiol. 2014, 63, 1575–1583. [Google Scholar] [CrossRef]
- Elmi, A.; Nasher, F.; Jagatia, H.; Gundogdu, O.; Bajaj-Elliott, M.; Wren, B.; Dorrell, N. Campylobacter jejuni outer membrane vesicle-associated proteolytic activity promotes bacterial invasion by mediating cleavage of intestinal epithelial cell E-cadherin and occludin. Cell. Microbiol. 2016, 18, 561–572. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Z.; Li, Y.Y. Inflammatory bowel disease: Pathogenesis. World J. Gastroenterol. 2014, 20, 91–99. [Google Scholar] [CrossRef]
- Sartor, R.B. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: Antibiotics, probiotics, and prebiotics. Gastroenterology 2004, 126, 1620–1633. [Google Scholar] [CrossRef]
- Joossens, M.; Huys, G.; Cnockaert, M.; de Preter, V.; Verbeke, K.; Rutgeerts, P.; Vandamme, P.; Vermeire, S. Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut 2011, 60, 631–637. [Google Scholar] [CrossRef]
- Martinez-Medina, M.; Aldeguer, X.; Lopez-Siles, M.; González-Huix, F.; López-Oliu, C.; Dahbi, G.; Blanco, J.E.; Blanco, J.; Garcia-Gil, J.L.; Darfeuille-Michaud, A. Molecular diversity of Escherichia coli in the human gut: New ecological evidence supporting the role of adherent-invasive E. coli (AIEC) in Crohn’s disease. Inflamm. Bowel Dis. 2009, 15, 872–882. [Google Scholar] [CrossRef]
- Bretin, A.; Dalmasso, G.; Barnich, N.; Bonnet, R.; Nguyen, H.T. Alteration in microbiota composition contributes to chronic inflammatory response triggered by Crohn’s disease-associated AIEC infection in GCN2 deficient mice. Gastroenterology 2017, 152, S988. [Google Scholar] [CrossRef]
- Darfeuille-Michaud, A.; Boudeau, J.; Bulois, P.; Neut, C.; Glasser, A.-L.; Barnich, N.; Bringer, M.-A.; Swidsinski, A.; Beaugerie, L.; Colombel, J.-F. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology 2004, 127, 412–421. [Google Scholar] [CrossRef]
- Bernet, M.F.; Brassart, D.; Neeser, J.R.; Servin, A.L. Lactobacillus acidophilus LA 1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria. Gut 1994, 35, 483–489. [Google Scholar] [CrossRef] [PubMed]
- Todoriki, K.; Mukai, T.; Sato, S.; Toba, T. Inhibition of adhesion of food-borne pathogens to Caco-2 cells by Lactobacillus strains. J. Appl. Microbiol. 2001, 91, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Tuomola, E.M.; Salminen, S.J. Adhesion of some probiotic and dairy Lactobacillus strains to Caco-2 cell cultures. Int. J. Food Microbiol. 1998, 41, 45–51. [Google Scholar] [CrossRef]
- Hilgendorf, C.; Spahn-Langguth, H.; Regårdh, C.G.; Lipka, E.; Amidon, G.L.; Langguth, P. Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: Permeabilities via diffusion, inside- and outside-directed carrier-mediated transport. J. Pharm. Sci. 2000, 89, 63–75. [Google Scholar] [CrossRef]
- Guerin, J.; Soligot, C.; Burgain, J.; Huguet, M.; Francius, G.; El-Kirat-Chatel, S.; Gomand, F.; Lebeer, S.; Roux, Y.; Borges, F.; et al. Adhesive interactions between milk fat globule membrane and Lactobacillus rhamnosus GG inhibit bacterial attachment to Caco-2 TC7 intestinal cell. Coll. Surf. B Biointerfaces 2018, 167, 44–53. [Google Scholar] [CrossRef]
- Ingrassia, I.; Leplingard, A.; Darfeuille-Michaud, A. Lactobacillus casei DN-114 001 inhibits the ability of adherent-invasive Escherichia coli isolated from Crohn’s disease patients to adhere to and to invade intestinal epithelial cells. Appl. Environ. Microbiol. 2005, 71, 2880–2887. [Google Scholar] [CrossRef]
- Cornick, S.; Tawiah, A.; Chadee, K. Roles and regulation of the mucus barrier in the gut. Tissue Barriers 2015, 3, e982426. [Google Scholar] [CrossRef]
- Darling, N.J.; Mobbs, C.L.; González-Hau, A.L.; Freer, M.; Przyborski, S. Bioengineering novel in vitro co-culture models that represent the human intestinal mucosa with improved Caco-2 structure and barrier function. Front. Bioeng. Biotechnol. 2020, 8, 992. [Google Scholar] [CrossRef] [PubMed]
LBP Strains | HT29-MTX | Caco-2 | Caco-2:HT29-MTX | ||||||
---|---|---|---|---|---|---|---|---|---|
Co-Inoculation (No. of Bacteria) | Pre-Inoculation (No. of Bacteria) | p-Value Co- vs. Pre-Inoculation | Co-Inoculation (No. of Bacteria) | Pre-Inoculation (No. of Bacteria) | p-Value Co- vs. Pre-Inoculation | Co-Inoculation (No. of Bacteria) | Pre-Inoculation (No. of Bacteria) | p-Value Co- vs. Pre-Inoculation | |
SVT 01D1 | 46% (5 ± 0.4) <0.0001 * | 57% (4 ± 0.2) <0.0001 * | 0.02 ** | 47% (4 ± 0.3) <0.0001 * | 62% (3 ± 0.2) <0.0001 * | 0.002 ** | 20% (3 ± 0.2) | 15% (4 ± 0.3) | |
SVT 04P1 | 62% (3 ± 0.2) <0.0001 * | 65% (3 ± 0.2) <0.0001 * | 51% (3 ± 0.3) <0.0001 * | 68% (2 ± 0.1) <0.0001 * | 0.0001 ** | 29% (3 ± 0.2) 0.001 * | 26% (3 ± 0.2) 0.007 * | ||
SVT 05P2 | 73% (2 ± 0.2) <0.0001 * | 70% (3 ± 0.2) <0.0001 * | 46% (4 ± 0.3) <0.0001 * | 67% (2 ± 0.2) <0.0001 * | 0.0001 ** | 16% (4 ± 0.3) | 33% (3 ± 0.2) <0.0001 * | 0.03 ** | |
SVT 06B1 | 54% (4 ± 0.4) <0.0001 * | 58% (4 ± 0.4) <0.0001 * | 38% (4 ± 0.3) <0.0001 * | 59% (3 ± 0.2) <0.0001 * | 0.001 ** | 55% (2 ± 0.1) <0.0001 * | 51% (2 ± 0.2) <0.0001 * | ||
SVT 07R1 | 70% (3 ± 0.2) <0.0001 * | 72% (3 ± 0.2) <0.0001 * | 54% (3 ± 0.3) <0.0001 * | 65% (2 ± 0.2) <0.0001 * | 0.02 ** | 46% (2 ± 0.1) <0.0001 * | 46% (2 ± 0.1) <0.0001 * | ||
SVT 08Z1 | 30% (6 ± 0.4) 0.001 * | 63% (3 ± 0.3) <0.0001 * | <0.0001 ** | 57% (3 ± 0.3) <0.0001 * | 65% (2 ± 0.2) <0.0001 * | 29% (3 ± 0.2) 0.001 * | 37% (3 ± 0.2) <0.0001 * |
LBP Strains | HT-29-MTX | Caco-2 | Caco-2:HT-29-MTX | ||||||
---|---|---|---|---|---|---|---|---|---|
Co-Inoculation (No. of Bacteria) | Pre-Inoculation (No. of Bacteria) | p-Value Co- vs. Pre-Inoculation | Co-Inoculation (No. of Bacteria) | Pre-Inoculation (No. of Bacteria) | p-Value Co- vs. Pre-Inoculation | Co-Inoculation (No. of Bacteria) | Pre-Inoculation (No. of Bacteria) | p-Value Co- vs. Pre-Inoculation | |
SVT 01D1 | 89% (103 ± 42) 0.001 * | 92% (80 ± 46) 0.0008 * | −43% (23667 ± 7881) | 38% (10333 ± 4667) | 89% (10506 ± 500) | 97% (2814 ± 500) 0.02 * | 0.02 ** | ||
SVT 04P1 | 58% (413 ± 52) | 91% (90 ± 30) 0.001 * | 0.006 ** | −61% (26667 ± 3757) | −33% (22000 ± 4509) | 29% (66786 ± 2000) | 84% (14914 ± 500) | 0.03 ** | |
SVT 05P2 | 83% (170 ± 25) 0.004 * | 84% (153 ± 13) 0.003 * | −108% (34333 ± 9262) | 85% (2533 ± 371) | 0.03 ** | 72% (26733 ± 1900) | 87% (12194 ± 400) | ||
SVT 06B1 | 63% (360 ± 81) | 40% (587 ± 52) | 7% (15333 ± 3528) | 73% (4467 ± 1369) | 0.045 ** | 5% (89110 ± 600) | 60% (37520 ± 200) | ||
SVT 07R1 | 79% (203 ± 58) 0.006 * | 63% (365 ± 15) | 15% (14000 ± 1155) | 89% (1833 ± 518) | 0.0007 ** | 63% (34894 ± 400) | 97% (2626 ± 300) 0.04 * | 0.01 ** | |
SVT 08Z1 | 52% (463 ± 110) | 89% (110 ± 31) 0.001 * | 0.04 ** | 11% (14667 ± 2848) | 41% (9767 ± 3930) | 22% (72789 ± 700) | 87% (11819 ± 500) | 0.003 ** |
Correlation | HT-29-MTX | Caco-2 | Caco-2/HT-29-MTX | |||
---|---|---|---|---|---|---|
Co-Inoculation | Pre-Inoculation | Co-Inoculation | Pre-Inoculation | Co-Inoculation | Pre-Inoculation | |
Between adhesion and invasion of AIEC | 0.46 | 0.07 | 0.18 | −0.42 | −0.61 | −0.67 |
Between adhesion of LBPs and reduction in AIEC adhesion | 0.26 | 0.50 | 0.33 | 0.27 | −0.01 | −0.13 |
Between adhesion of LBPs and reduction in AIEC invasion | −0.29 | 0.34 | −0.01 | −0.86 (0.015 *) | −0.04 | 0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smit, B.; Chinaka, C.C.; Scott, A.A.; Gaiduschek, K.; Hatje, E.; Kuballa, A.; Coulson, S.; Finlayson, W.; Katouli, M. Efficacy of Selected Live Biotherapeutic Candidates to Inhibit the Interaction of an Adhesive-Invasive Escherichia coli Strain with Caco-2, HT29-MTX Cells and Their Co-Culture. Biomedicines 2022, 10, 2245. https://doi.org/10.3390/biomedicines10092245
Smit B, Chinaka CC, Scott AA, Gaiduschek K, Hatje E, Kuballa A, Coulson S, Finlayson W, Katouli M. Efficacy of Selected Live Biotherapeutic Candidates to Inhibit the Interaction of an Adhesive-Invasive Escherichia coli Strain with Caco-2, HT29-MTX Cells and Their Co-Culture. Biomedicines. 2022; 10(9):2245. https://doi.org/10.3390/biomedicines10092245
Chicago/Turabian StyleSmit, Bronwyn, Chiemeka C. Chinaka, Albert A. Scott, Kirsten Gaiduschek, Eva Hatje, Anna Kuballa, Samantha Coulson, Wayne Finlayson, and Mohammad Katouli. 2022. "Efficacy of Selected Live Biotherapeutic Candidates to Inhibit the Interaction of an Adhesive-Invasive Escherichia coli Strain with Caco-2, HT29-MTX Cells and Their Co-Culture" Biomedicines 10, no. 9: 2245. https://doi.org/10.3390/biomedicines10092245
APA StyleSmit, B., Chinaka, C. C., Scott, A. A., Gaiduschek, K., Hatje, E., Kuballa, A., Coulson, S., Finlayson, W., & Katouli, M. (2022). Efficacy of Selected Live Biotherapeutic Candidates to Inhibit the Interaction of an Adhesive-Invasive Escherichia coli Strain with Caco-2, HT29-MTX Cells and Their Co-Culture. Biomedicines, 10(9), 2245. https://doi.org/10.3390/biomedicines10092245