Irisin Is Related to Non-Alcoholic Fatty Liver Disease (NAFLD)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of the Patients
e0.953*loge (TG) + 0.139*BMI + 0.718*loge (GGTP) + 0.053*WC − 15.745) × 100
2.2. Determination of Irisin Concentration—ELISA Assay
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsochatzis, E.A.; Newsome, P.N. Non-alcoholic fatty liver disease and the interface between primary and secondary care. Lancet Super Gastroenterol. Hepatol. 2018, 3, 509–517. [Google Scholar] [CrossRef]
- Maurice, J.; Manousou, P. Non-alcoholic fatty liver disease. Clin. Med. 2018, 18, 245–250. [Google Scholar] [CrossRef]
- Nassi, F. NAFLD: Mechanisms, treatments, and biomarkers. Biomolecules 2022, 12, 824. [Google Scholar] [CrossRef]
- Pappachan, J.M.; Babu, S.; Krishnan, B.; Ravindran, N.C. Non-alcoholic Fatty Liver Disease: A Clinical Update. J. Clin. Transl. Hepatol. 2017, 5, 384–393. [Google Scholar] [CrossRef] [PubMed]
- Kasper, P.; Martin, A.; Lang, S.; Kütting, F.; Goeser, T.; Demir, M.; Steffen, H.M. NAFLD and cardiovascular diseases: A clinical review. Clin. Res. Cardiol. 2021, 110, 921–937. [Google Scholar] [CrossRef] [PubMed]
- Venniyoor, A.; Al Farsi, A.A.; Al Bahrani, B.; Küting, F.; Goeser, T.; Demir, M.; Steffen, H.M. The troubling link between Non-alcoholic Fatty Liver Disease (NAFLD) and Extrahepatic Cancers (EHC). Cureus 2021, 13, e17320. [Google Scholar] [CrossRef] [PubMed]
- Zarghamravanbakhsh, P.; Frenkel, M.; Poretskya, L. Metabolic causes and consequences of nonalcoholic fatty liver disease (NAFLD). Metabol. Open 2021, 12, 100149. [Google Scholar] [CrossRef]
- Kosmalski, M.; Ziółkowska, S.; Czarny, P.; Szemraj, J.; Pietras, T. The Coexistence of Nonalcoholic Fatty Liver Disease and Type 2 Diabetes Mellitus. J. Clin. Med. 2022, 11, 1375. [Google Scholar] [CrossRef]
- Cernea, S.; Raz, I. NAFLD in type 2 diabetes mellitus: Still many challenging questions. Diabetes Metab. Res. Rev. 2021, 37, e3386. [Google Scholar] [CrossRef]
- Mantovani, A.; Dalbeni, A.; Beatrice, G.; Cappelli, D.; Gomez-peralta, F. Non-Alcoholic Fatty Liver Disease and risk of macro- and microvascular complications in patients with Type 2 Diabetes. J. Clin. Med. 2022, 11, 968. [Google Scholar] [CrossRef]
- Caussy, C.; Aubin, A.; Loomba, R. The relationship between Type 2 Diabetes, NAFLD, and cardiovascular risk. Curr. Diab. Rep. 2021, 21, 15. [Google Scholar] [CrossRef] [PubMed]
- Martinou, E.; Pericleous, M.; Stefanova, I.; Kaur, V.; Angelidi, A.M. Diagnostic Modalities of Non-Alcoholic Fatty Liver Disease: From Biochemical Biomarkers to Multi-Omics Non-Invasive Approaches. Diagnostics 2022, 12, 407. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, P.; Sapra, A.; Ajmeri, M.S.; Albers, C.E.; Sapra, D. Nonalcoholic Fatty Liver Disease: Could It Be the Next Medical Tsunami? Cureus 2022, 14, e23806. [Google Scholar] [CrossRef]
- Paul, J. Recent advances in non-invasive diagnosis and medical management of non-alcoholic fatty liver disease in adult. Egyptian Liver J. 2020, 10, 37. [Google Scholar] [CrossRef]
- Momenzadeh, S.; Jami, M.S.; Jalalvand, A.; Esfarjani, F.; Shahabi, S.; Zamani, S. Irisin, A mediator of muscle crosstalk with other organs: From metabolism regulation to protective and regenerative effects. Curr. Protein Pept. Sci. 2022, 23, 89–104. [Google Scholar] [CrossRef]
- Perakakis, N.; Triantafyllou, G.A.; Fernández-Real, J.M.; Huh, J.Y.; Park, K.H.; Seufert, J.; Mantzoros, C.S. Physiology and role of irisin in glucose homeostasis. Nat. Rev. Endocrinol. 2017, 13, 324–337. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Chen, K. The role of Irisin in multiorgan protection. Mol. Biol. Rep. 2021, 48, 763–772. [Google Scholar] [CrossRef]
- Polyzos, S.A.; Anastasilakis, A.D.; Efstathiadou, Z.A.; Makras, P.; Perakakis, N.; Kountouras, J.; Mantzoros, C.S. Irisin in metabolic diseases. Endocrine 2018, 59, 260–274. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Ke, Y.; Wu, F.; Liu, S.; Ji, C.; Zhu, X.; Zhang, Y. Circulating irisin levels in patients with nonalcoholic fatty liver disease: A systematic review and meta-analysis. Gastroenterol. Res. Pract. 2020, 2020, 8818191. [Google Scholar] [CrossRef]
- Polyzos, S.A.; Kountouras, J.; Anastasilakis, A.D. Irisin in nonalcoholic fatty liver disease: Need for an updated meta-analysis. Metabolism 2021, 121, 154818. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, D.; Kim, H.J.; Lee, C.H.; Yang, J.I.; Kim, W.; Kim, Y.J.; Yoon, J.H.; Cho, S.H.; Sung, M.W.; et al. Hepatic steatosis index: A simple screening tool reflecting nonalcoholic fatty liver disease. Dig. Liver Dis. 2010, 42, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Motamed, N.; Sohrabi, M.; Ajdarkosh, H.; Hemmasi, G.; Maadi, M.; Sayeedian, F.S.; Pirzad, R.; Abedi, K.; Aghapour, S.; Fallahnezhad, M.; et al. Fatty liver index vs waist circumference for predicting non-alcoholic fatty liver disease. World J. Gastroenterol. 2016, 22, 3023–3030. [Google Scholar] [CrossRef] [PubMed]
- Huh, Y.; Cho, Y.J.; Nam, G.E. Recent epidemiology and risk factors of nonalcoholic fatty liver disease. J. Obes Metab. Syndr. 2022, 30, 17–27. [Google Scholar] [CrossRef]
- Di Mauro, S.; Scamporrino, A.; Filippello, A.; Di Pino, A.; Scicali, R.; Malaguarnera, R.; Purrello, F.; Piro, S. Clinical and molecular biomarkers for diagnosic and staging of NAFLD. Int. J. Mol. Sci. 2021, 22, 11905. [Google Scholar] [CrossRef]
- Murayama, K.; Okada, M.; Tanaka, K.; Inadomi, C.; Yoshioka, W.; Kubotsu, Y.; Yada, T.; Isoda, H.; Kuwashiro, T.; Oeda, S.; et al. Prediction of Nonalcoholic Fatty Liver Disease Using Noninvasive and Non-Imaging Procedures+ in Japanese Health Checkup Examinees. Diagnostics 2021, 16, 132. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.Y.; Chang, S.H.; Lin, Y.H.; Ho, W.C.; Wang, C.Y.; Jeng, W.J.; Wan, Y.L.; Tsui, P.H. Utility of quantitative ultrasound in community screening for hepatic steatosis. Ultrasonics 2021, 111, 106329. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Mao, L.; Li, C.; Hui, Y.; Yu, Z.; Sun, M.; Li, Y.; Guo, G.; Yang, W.; Cui, B.; et al. The potential role of FNDC5/risin in various liver disease: Awakening the sleeping beauties. Expert. Rev. Mol. Med. 2022, 24, e23. [Google Scholar] [CrossRef]
- Schumacher, M.A.; Chinnam, N.; Ohashi, T.; Shah, R.S.; Erickson, H.P. The structure of irisin reveals a novel intersubunit β-sheet fibronectin type III (FNIII) dimer: Implications for receptor activation. J. Biol. Chem. 2013, 288, 33738–33744. [Google Scholar] [CrossRef]
- Boström, P.; Wu, J.; Jedrychowski, M.; Korde, A.; Ye, L.; Lo, J.C.; Rasbach, K.A.; Boström, E.A.; Choi, J.H.; Long, J.Z.; et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012, 481, 463–468. [Google Scholar] [CrossRef]
- Rodríguez, A.; Becerril, S.; Méndez-Giménez, L.; Ramírez, B.; Saínz, N.; Catalán, V.; Gómez-Ambrosi, J.; Frühbeck, G. Leptin administration activates irisin-induced myogenesis via nitric oxide-dependent mechanisms, but reduces its effect on subcutaneous fat browning in mice. Int. J. Obes. 2015, 39, 397–407. [Google Scholar] [CrossRef]
- Rodríguez, A.; Becerril, S.; Ezquerro, S.; Méndez-Giménez, L.; Frühbeck, G. Crosstalk between adipokines and myokines in fat browning. Acta Physiol. 2017, 219, 362–381. [Google Scholar] [CrossRef] [PubMed]
- Huh, J.Y.; Panagiotou, G.; Mougios, V.; Brinkoetter, M.; Vamvini, M.T.; Schneider, B.E.; Christos, S.M. FNDC5 and irisin in humans: I. Predictors of circulating concen- trations in serum and plasma and II. mRNA expression and circulating concentra-tions in response to weight loss and exercise. Metabolism 2012, 61, 1725–1738. [Google Scholar] [CrossRef] [PubMed]
- Waseem, R.; Shamsi, A.; Mohammad, T.; Hassan, M.I.; Kazim, S.N.; Anis Ahmad Chaudhary, A.A.; Rudayni, H.A.; Al-Zharani, M.; Ahmad, F.; Islam, A. FNDC5/Irisin: Physiology and Pathophysiology. Molecules 2022, 27, 1118. [Google Scholar] [CrossRef] [PubMed]
- Polyzos, S.A.; Kountouras, J.; Anastasilakis, A.D.; Geladari, E.V.; Mantzoros, C.S. Irisin in patients with nonalcoholic fatty liver disease. Metabolism 2014, 63, 207–217. [Google Scholar] [CrossRef]
- Shanaki, M.; Moradi, N.; Emamgholipour, S.; Fadaei, R.; Poustchi, H. Lower circulating irisin is associated with nonalcoholic fatty liver disease and type 2 diabetes. Diabetes Metab. Syndr. 2017, 11 (Suppl. S1), S467–S472. [Google Scholar] [CrossRef]
- Ulualan, G.; Küskü Kiraz, Z.K.; Kırel, B. Relation of serum irisin levels to obesity and non-alcoholic fatty liver disease. Turk. J. Pediatr. 2022, 64, 246–254. [Google Scholar] [CrossRef]
- Choi, E.S.; Kim, M.K.; Song, M.K.; Kim, J.M.; Kim, E.S.; Chung, W.J.; Park, K.S.; Cho, K.B.; Hwang, J.S.; Jang, B.K. Association between serum irisin levels and non-alcoholic fatty liver disease in health screen examinees. PLoS ONE 2014, 9, e110680. [Google Scholar]
- Polyzos, S.A.; Kountouras, J.; Anastasilakis, A.D.; Margouta, A.; Mantzoros, C.S. Association between circulating irisin and homocysteine in patients with nonalcoholic fatty liver disease. Endocrine 2015, 49, 560–562. [Google Scholar] [CrossRef]
- Monserrat-Mesquida, M.; Quetglas-Llabrés, M.; Abbate, M.; Montemayor, S.; Mascaró, C.M.; Casares, M.; Tejada, S.; Abete, I.; Zulet, M.A.; Tur, J.A.; et al. Oxidative Stress and Pro-Inflammatory Status in Patients with Non-Alcoholic Fatty Liver Disease. Antioxidants 2020, 9, 759. [Google Scholar] [CrossRef]
- Lind, L.; Johansson, L.; Ahlström, H.; Eriksson, J.W.; Larsson, A.; Risérus, U.; Kullberg, J.; Oscarsson, J. Comparison of four non-alcoholic fatty liver disease detection scores in a Caucasian population. World J. Hepatol. 2020, 12, 49–159. [Google Scholar] [CrossRef]
- Wang, C.; Cai, Z.; Deng, X.; Li, H.; Zhao, Z.; Guo, C.; Zhang, P.; Li, L.; Gu, T.; Yang, L.; et al. Association of Hepatic Steatosis Index and Fatty Liver Index with Carotid Atherosclerosis in Type 2 Diabetes. Int. J. Med. Sci. 2021, 18, 3280. [Google Scholar] [CrossRef] [PubMed]
- Maak, S.; Norheim, F.; Drevon, C.A.; Erickson, H.P. Progress and challenges in the biology of FNDC5 and irisin. Endocr. Rev. 2021, 42, 436–456. [Google Scholar] [CrossRef]
- Peng, H.; Wang, Q.; Lou, T.; Qin, J.; Jung, S.; Shetty, V.; Li, F.; Wang, Y.; Feng, X.H.; Mitch, W.E.; et al. Myokine mediated muscle-kidney crosstalk suppresses metabolic reprogramming and fibrosis in damaged kidneys. Nat. Commun. 2017, 8, 1493. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Xu, Z.; Liu, Y.; Wang, Z.; Li, Y.; Xu, X.; Chen, C.; Xia, T.; Liao, Q.; Yao, Y.; et al. Irisin protects mitochondria function during pulmonary ischemia/reperfusion injury. Sci. Transl. Med. 2017, 9, eaao6298. [Google Scholar] [CrossRef]
- Panagiotou, G.; Mu, L.; Na, B.; Mukamal, K.J.; Mantzoros, C.S. Circulating irisin. omentin-1. and lipoprotein subparticles in adults at higher cardiovascular risk. Metabolism 2014, 63, 1265–1271. [Google Scholar] [CrossRef]
- Wang, R.; Liu, H. Association Between Serum Irisin and Diabetic Nephropathy in Patients with Type 2 Diabetes Mellitus: A Meta-Analysis. Horm. Metab. Res. 2021, 53, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Gan, W.; Chen, W.; Li, W.T.; Shao, D.; Xu, F.; Huo, S.; Li, C.; Yang, Z.; Zeng, X. Circulating irisin level in chronic kidney disease patients: A systematic review and meta-analysis. Int. Urol. Nephrol. 2022, 54, 1295–1302. [Google Scholar] [CrossRef] [PubMed]
- Armandi, A.; Rosso, C.; Nicolosi, A.; Caviglia, G.C.; Abate, M.L.; Olivero, A.; D’Amato, D.; Vernero, M.; Gaggini, M.; Saracco, G.M.; et al. Crosstalk between irisin levels, liver fibrogenesis and liver damage in non-obese, non-diabetic individuals with non-alcoholic fatty liver Disease. J. Clin. Med. 2022, 11, 635. [Google Scholar] [CrossRef]
- Metwally, M.; Bayoumi, A.; Romero-Gomez, M.; Thabet, K.; John, M.; Adams, L.A.; Huo, X.; Aller, R.; García-Monzón, C.; Arias-Loste, M.T.; et al. A polymorphism in the Irisin-encoding gene (FNDC5) associates with hepatic steatosis by differential miRNA binding to the 3’UTR. J. Hepatol. 2019, 70, 494–500. [Google Scholar] [CrossRef]
- Viitasalo, A.; Atalay, M.; Pihlajamäki, J.; Jääskeläinen, J.; Korkmaz, A.; Kaminska, D.; Lindi, V.; Lakka, T.A. The 148 M allele of the PNPLA3 is associated with plasma irisin levels in a population sample of Caucasian children: The PANIC Study. Metabolism 2015, 64, 793–796. [Google Scholar] [CrossRef]
- Inoue, K.; Fujie, S.; Hasegawa, N.; Horii, N.; Uchida, M.; Iemitsu, K.; Sanada, K.; Hamaoka, T.; Iemitsu, M. Aerobic exercise training-induced irisin secretion is associated with the reduction of arterial stiffness via nitric oxide production in adults with obesity. Appl. Physiol. Nutr. Metab. 2020, 45, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.; Rioux, B.V.; Goulet, E.D.B.; Johanssen, N.M.; Swift, D.L.; Bouchard, D.R.; Loewen, H.; Sénéchal, M. Effect of an acute exercise bout on immediate post-exercise irisin concentration in adults: A meta-analysis. Scand. J. Med. Sci. Sports 2018, 28, 16–28. [Google Scholar] [CrossRef] [PubMed]
Parameter * | Group 0 −NAFLD (n = 66) | Group 1 +NAFLD (n = 72) | p ** |
---|---|---|---|
Age [years] | 67.00 (60.75; 75.00) | 65.00 (58.00; 71.75) | 0.0632 |
Body weight [kg] | 80.00 (71.50; 90.25) | 87.00 (79.00; 99.75) | 0.0007 |
Height [cm] | 165.00 (160.00; 176.00) | 168.00 (160.00; 175.00) | 0.6722 |
WC [cm] | 100.50 (94.75; 108.30) | 110.00 (101.00; 118.80) | 0.0002 |
HC [cm] | 106.00 (100.80; 112.00) | 112.00 (103.30; 117.80) | 0.0137 |
BMI [kg/m2] | 29.44 (25.57; 31.96) | 30.86 (28.72; 34.69) | 0.0015 |
WHR | 0.95 (0.90; 0.99) | 0.98 (0.93; 1.04) | 0.0073 |
SBP [mmHg] | 130.00 (120.00; 140.00) | 135.00 (120.00; 145.00) | 0.1712 |
DBP [mmHg] | 80.00 (70.00; 80.00) | 80.00 (70.00; 83.75) | 0.4875 |
Sex [% of F] | 53 | 46 | 0.3983 |
T2DM [%] | 47 | 64 | 0.0456 |
Parameter * | Group 0 −NAFLD (n = 66) | Group 1 +NAFLD (n = 72) | p ** |
---|---|---|---|
FPG [mmol/L] | 6.82 (5.30; 10.05) | 8.12 (5.64; 10.98) | 0.1616 |
PPG [mmol/L] | 8.55 (6.45; 16.45) | 9.10 (5.98; 13.21) | 0.5080 |
HbA1c [%] | 7.59 (5.70; 9.22) | 7.92 (6.10; 9.81) | 0.1655 |
ALT [U/L] | 20.50 (14.00; 25.00) | 26.00 (18.25; 42.75) | 0.0018 |
AST [U/L] | 21.00 (17.00; 30.00) | 26.50 (19.00; 38.25) | 0.0256 |
GGTP [U/L] | 25.00 (17.00; 48.78) | 48.47 (29.25; 72.25) | <0.0001 |
Total bilirubin [μmol/L] | 9.65 (7.40; 16.28) | 11.85 (7.83; 19.13) | 0.0833 |
Creatinine [μmol/L] | 85.00 (67.75; 110.00) | 84.00 (70.25;103.50) | 0.9975 |
Urea [mmol/L] | 7.00 (5.20; 9.97) | 6.30 (5.25; 8.90) | 0.3201 |
eGFR [ml/min/1.73 m2] | 72.50 (51.43; 91.75) | 72.30 (58.83; 93.00) | 0.6168 |
T-CH [mmol/L] | 4.31 (3.80; 5.27) | 4.12 (3.51; 5.38) | 0.4524 |
LDL-CH [mmol/L] | 2.67 (2.20; 3.26) | 2.39 (1.92; 3.20) | 0.2136 |
HDL-CH [mmol/L] | 1.04 (0.85; 1.29) | 0.92 (0.73; 1.22) | 0.0841 |
TG [mmol/] | 1.29 (0.89; 1.78) | 1.56 (1.05; 2.31) | 0.0053 |
Uric acid [μmol/L] | 370.00 (288.80; 436.50) | 399.00 (309.00; 470.30) | 0.2273 |
HIS | 33.30 (28.10; 37.35) | 37.20 (31.88; 41.53) | 0.0007 |
FLI | 56.69 (35.96; 73.60) | 88.75 (58.23; 95.28) | <0.0001 |
Parameters * | Rho ** | p *** | β ± SE **** | p *** |
---|---|---|---|---|
Age [years] | −0.105978 | 0.216040 | ||
Body weight [kg] | 0.101933 | 0.234184 | ||
Height [cm] | −0.162921 | 0.056230 | ||
Waist [cm] | 0.061384 | 0.474479 | ||
Hip [cm] | 0.115337 | 0.177955 | ||
BMI [kg/m2] | 0.187116 | 0.027980 | 0.182 ± 0.084 | 0.031 |
WHR | −0.008709 | 0.919253 | ||
SBP [mmHg] | 0.062872 | 0.463811 | ||
DBP [mmHg] | 0.033138 | 0.699609 | ||
FPG [mmol/L] | 0.164347 | 0.054079 | ||
PPG [mmol/L] | 0.128057 | 0.134441 | ||
HbA1c [%] | 0.274798 | 0.001107 | 0.188 ± 0.085 # | 0.028 |
ALT [U/L] | +0.044641 | 0.603135 | ||
AST [U/L] | −0.032370 | 0.706247 | ||
GTP [U/L] | −0.023240 | 0.786731 | ||
Total bilirubin [μmol/L] | −0.191931 | 0.024122 | ||
Creatinine [μmol/L] | −0.361875 | 0.000013 | −0.245 ± 0.080 # | 0.003 |
Urea [mmol/L] | −0.262494 | 0.001869 | ||
eGFR [mL/min/1.73 m2] | 0.303918 | 0.000290 | ||
TCH [mmol/L] | 0.060998 | 0.477266 | ||
LDL-CH [mmol/L] | −0.005353 | 0.950311 | ||
HDL-CH [mmol/L] | 0.141906 | 0.096862 | ||
TG [mmol/L] | 0.085787 | 0.317093 | ||
Uric acid [μmol/L] | −0.232041 | 0.006171 | ||
HSI | 0.168457 | 0.048262 | ||
FLI | 0.132456 | 0.121458 |
Effect * | SS ** | DF *** | MS **** | F ***** | p ****** | |
---|---|---|---|---|---|---|
Model 1 | Intercept | 1.34522767 | 1 | 1.34522767 | 33.6206225 | 0.000000 |
NAFLD | 0.0577242089 | 1 | 0.0577242089 | 1.44267315 | 0.231874 | |
Creatinine | 0.508549215 | 1 | 0.508549215 | 12.7099238 | 0.000508 | |
NAFLD * Creatinine | 0.240224892 | 1 | 0.240224892 | 6.00382421 | 0.015595 | |
AST | 0.100042825 | 1 | 0.100042825 | 2.5003218 | 0.116235 | |
NAFLD * AST | 0.246810535 | 1 | 0.246810535 | 6.16841598 | 0.014268 | |
HbA1c | 0.2842315 | 1 | 0.2842315 | 7.10366 | 0.008661 | |
Error | 5.24156934 | 131 | 0.0400119797 | |||
Model 2 | Intercept | 0.557284672 | 1 | 0.557284672 | 12.6422799 | 0.000521 |
Urea | 0.354331947 | 1 | 0.354331947 | 8.03819643 | 0.005290 | |
HbA1c | 0.222915099 | 1 | 0.222915099 | 5.05693987 | 0.026159 | |
BMI | 0.220387716 | 1 | 0.220387716 | 4.99960493 | 0.027006 | |
Error | 5.90685751 | 134 | 0.0440810262 | |||
Model 3 | Intercept | 0.625281112 | 1 | 0.625281112 | 14.3295681 | 0.000230 |
BMI | 0.206800496 | 1 | 0.206800496 | 4.73924723 | 0.031233 | |
Creatinine | 0.414002118 | 1 | 0.414002118 | 9.48768707 | 0.002510 | |
HbA1c | 0.21534678 | 1 | 0.21534678 | 4.93510245 | 0.027994 | |
Error | 5.84718734 | 134 | 0.0436357264 |
Effect * | OR ** | p *** | |
---|---|---|---|
Model 1 (unadjusted) | Intercept | 0.486 (0.234–1.009) | 0.053 |
Irisin | 1.172 (1.028–1.336) | 0.018 | |
Model 2 (adjusted) | Intercept | 0.014 (0.001–0.214) | 0.002 |
Irisin | 1.143 (0.994–1.314) | 0.061 | |
Creatinine | 1.001 (0.994–1.009) | 0.734 | |
HbA1c | 0.967 (0.810–1.155) | 0.711 | |
BMI | 1.134 (1.045–1.231) | 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosmalski, M.; Drzewoski, J.; Szymczak-Pajor, I.; Zieleniak, A.; Mikołajczyk-Solińska, M.; Kasznicki, J.; Śliwińska, A. Irisin Is Related to Non-Alcoholic Fatty Liver Disease (NAFLD). Biomedicines 2022, 10, 2253. https://doi.org/10.3390/biomedicines10092253
Kosmalski M, Drzewoski J, Szymczak-Pajor I, Zieleniak A, Mikołajczyk-Solińska M, Kasznicki J, Śliwińska A. Irisin Is Related to Non-Alcoholic Fatty Liver Disease (NAFLD). Biomedicines. 2022; 10(9):2253. https://doi.org/10.3390/biomedicines10092253
Chicago/Turabian StyleKosmalski, Marcin, Józef Drzewoski, Izabela Szymczak-Pajor, Andrzej Zieleniak, Melania Mikołajczyk-Solińska, Jacek Kasznicki, and Agnieszka Śliwińska. 2022. "Irisin Is Related to Non-Alcoholic Fatty Liver Disease (NAFLD)" Biomedicines 10, no. 9: 2253. https://doi.org/10.3390/biomedicines10092253
APA StyleKosmalski, M., Drzewoski, J., Szymczak-Pajor, I., Zieleniak, A., Mikołajczyk-Solińska, M., Kasznicki, J., & Śliwińska, A. (2022). Irisin Is Related to Non-Alcoholic Fatty Liver Disease (NAFLD). Biomedicines, 10(9), 2253. https://doi.org/10.3390/biomedicines10092253