Recent Therapeutic Progress and Future Perspectives for the Treatment of Hearing Loss
Abstract
:1. Introduction
1.1. Clinical Burden of Sensorineural Hearing Loss
1.2. Cause of Sensorineural Hearing Loss
1.3. Current Interventions against Sensorineural Hearing Loss
2. Novel Therapeutic Approaches to Restore Hearing
3. Emerging Drug Therapies
4. Gene Therapy
5. Gene Editing Therapies
5.1. CRISPR-Cas Therapeutics
5.2. Base Editing Therapeutics
5.3. CRISPR in Human Models of SNHL
Gene/Disease Model | Model | Type of Edit | Delivery Mode | Effect | Reference |
---|---|---|---|---|---|
DFNA36 | Bth mice, P1–P2 | Allele disruption by SpCas9 | Lipid nanoparticle | Decreased OHC death compared to untreated; improved low–middle frequency hearing | [87] |
DFNA36 | Bth mice, P1–P2 | Allele disruption by SaCas9-KKH | Anc80L65 | Preservation of low–middle frequency hearing and decreased HC death; measured up to 24 weeks | [88] |
DFNA36 | Bth mice, P1–P2 | mRNA transcript disruption by CRISPR-CasRx | Anc80L65 | Improved hearing, HC survival and hair bundle formation; measured up to 15 weeks | [89] |
KCNQ4 | Knock-in mouse model | SpCas9 | Lipid nanoparticle or AAV2/Anc80L65 | Improved auditory function; OHC death not significantly abrogated; no difference in efficacy with injection routes | [91] |
KCNQ4 | KCNQ4G229D mice, P1–P2 | Allele disruption by SaCas9-KKH | AAV-PHP.eB | Improved auditory function compared to untreated, increased survival and hyperpolarized resting potentials of OHCs; measured up to 12 weeks | [90] |
KLHL18 | Homozygous Klhl18lowf mice | Gene correction by HMEJ | AAV9 and AAV-PHP.eB | Hair bundle morphology rescued and improved auditory function up to 6 months post-treatment | [92] |
DFNA22 | Myo6WT/C442Y mice, P0–P2 | SaCas9-KKH | AAV-PHP.eB | Improved auditory function up to 5 months post-treatment; increased HC survival and improved hair bundle morphology | [110] |
MYO7A | Patient-derived iPSCs | Gene correction with SpCas9 and HDR | N/A in vitro study | Edited cells displayed recovered stereocilia morphology and electrophysiological response when differentiated into HC-like cells compared to the differentiated unedited cells | [101] |
MYO15A | Patient-derived iPSCs | Gene correction with Cas9 and HDR | N/A in vitro study | Editing restored hair bundle morphology and electrophysiological responses in the differentiated cells compared to the unedited differentiated cells | [109] |
Neomycin-induced HL | Neomycin-treated mice | Disruption of HTRA2 gene by SaCas9 | AAV2/Anc80L65 | Inhibition of OHC apoptosis, improvement of ABR thresholds; measured up to 8 weeks after neomycin treatment; 1.73% editing efficiency in vivo | [111] |
TMC1 autosomal recessive | Baringo mice, P1 | Cytosine base editing of Tmc1Y182C/Y182C | Dual Anc80L65 vectors | Restoration of HC bundle morphology, sensory transduction current, partial restoration of hearing with improved ABR threshold but no recovery in DPOAE | [99] |
TRMU | Patient-derived iPSCs | Gene correction of TRMU c.28G>T with SpCas9 and HDR | N/A in vitro study | Edited cells differentiated into HC-like cells more efficiently, with improved stereocilia bundle formation, electrophysiological function, mitochondria count and HC marker expression compared to the unedited cells | [107] |
Usher syndrome type 1F | Pcdh15R245X mice | Adenine base editing of c.733C>T mutation | Dual AAV9-PHP.B vectors | Corrected causative c.733C>T substitution mutation in vivo; however, hearing was not restored | [100] |
Usher syndrome type 2A | Patient-derived dermal fibroblasts | Gene correction with SpCas9 and HDR | N/A in vitro study | Correction of c.2299delG deletion mutation in patient dermal fibroblasts | [102] |
Usher syndrome type 2A | Patient-derived iPSCs | Gene correction with SpCas9 and HDR | N/A in vitro study | Correction of c.2299delG deletion mutation in patient iPSCs | [112] |
Usher syndrome type 2A | Patient-derived iPSCs | Gene correction with eSpCas9 and HDR | N/A in vitro study | Correction of c.2299delG and c.2276G>T mutations in patient iPSCs | [105] |
6. Antisense Oligonucleotides
6.1. Splice-Switching ASOs
6.2. RNA Interference (RNAi)
7. Cell Therapy
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chadha, S.; Kamenov, K.; Cieza, A. The world report on hearing, 2021. Bull World Health Organ. 2021, 99, 242–242A. [Google Scholar] [CrossRef] [PubMed]
- Mohr, P.E.; Feldman, J.J.; Dunbar, J.L.; McConkey-Robbins, A.; Niparko, J.K.; Rittenhouse, R.K.; Skinner, M.W. The Societal Costs of Severe to Profound Hearing Loss in The United States. Int. J. Technol. Assess. Health Care 2001, 16, 1120–1135. [Google Scholar] [CrossRef] [PubMed]
- Deniz, B.; Boz, C.; Kara, E.; Deniz, R.; Oruç, Y.; Acar, M.; Yılmaz, Y.Z.; Ataş, A. Direct Health Expenditure Analysis Related to Hearing Loss in Individuals Using Hearing Aids and Cochlear Implants. Turk. Arch. Otorhinolaryngol. 2022, 60, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Ciorba, A.; Bianchini, C.; Pelucchi, S.; Pastore, A. The impact of hearing loss on the quality of life of elderly adults. Clin. Interv. Aging 2012, 7, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Idstad, M.; Tambs, K.; Aarhus, L.; Engdahl, B.L. Childhood sensorineural hearing loss and adult mental health up to 43 years later: Results from the HUNT study. BMC Public. Health 2019, 19, 168. [Google Scholar] [CrossRef] [PubMed]
- Bisogno, A.; Scarpa, A.; Di Girolamo, S.; De Luca, P.; Cassandro, C.; Viola, P.; Ricciardiello, F.; Greco, A.; Vincentiis, M.; Ralli, M.; et al. Hearing Loss and Cognitive Impairment: Epidemiology, Common Pathophysiological Findings, and Treatment Considerations. Life 2021, 11, 1102. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-F.; Zhang, W.; Rolls, E.T.; Li, Y.; Wang, L.; Ma, Y.-H.; Kang, J.; Feng, J.; Yu, J.-T.; Cheng, W. Hearing impairment is associated with cognitive decline, brain atrophy and tau pathology. eBioMedicine 2022, 86, 104336. [Google Scholar] [CrossRef]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef]
- Ji, L.; Lee, H.-J.; Wan, G.; Wang, G.-P.; Zhang, L.; Sajjakulnukit, P.; Schacht, J.; Lyssiotis, C.A.; Corfas, G. Auditory metabolomics, an approach to identify acute molecular effects of noise trauma. Sci. Rep. 2019, 9, 9273. [Google Scholar] [CrossRef]
- Ashmore, J.; Gale, J. The cochlea. Curr. Biol. 2000, 10, R325–R327. [Google Scholar] [CrossRef]
- Hakizimana, P.; Fridberger, A. Inner hair cell stereocilia are embedded in the tectorial membrane. Nat. Commun. 2021, 12, 2604. [Google Scholar] [CrossRef] [PubMed]
- Lv, P.; Sihn, C.-R.; Wang, W.; Shen, H.; Kim, H.J.; Rocha-Sanchez, S.M.; Yamoah, E.N. Posthearing Ca2+ Currents and Their Roles in Shaping the Different Modes of Firing of Spiral Ganglion Neurons. J. Neurosci. 2012, 32, 16314. [Google Scholar] [CrossRef]
- Neng, L.; Zhang, F.; Kachelmeier, A.; Shi, X. Endothelial Cell, Pericyte, and Perivascular Resident Macrophage-Type Melanocyte Interactions Regulate Cochlear Intrastrial Fluid–Blood Barrier Permeability. JARO J. Assoc. Res. Otolaryngol. 2013, 14, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Cosgrove, D.; Zallocchi, M. Usher protein functions in hair cells and photoreceptors. Int. J. Biochem. Cell Biol. 2014, 46, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Warren, R.L.; Ramamoorthy, S.; Ciganović, N.; Zhang, Y.; Wilson, T.M.; Petrie, T.; Wang, R.K.; Jacques, S.L.; Reichenbach, T.; Nuttall, A.L.; et al. Minimal basilar membrane motion in low-frequency hearing. Proc. Natl. Acad. Sci. USA 2016, 113, E4304–E4310. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, L.L.; Tucci, D.L. Hearing Loss in Adults. N. Engl. J. Med. 2017, 377, 2465–2473. [Google Scholar] [CrossRef] [PubMed]
- Rizk, H.G.; Lee, J.A.; Liu, Y.F.; Endriukaitis, L.; Isaac, J.L.; Bullington, W.M. Drug-Induced Ototoxicity: A Comprehensive Review and Reference Guide. Pharmacotherapy 2020, 40, 1265–1275. [Google Scholar] [CrossRef]
- Kakarlapudi, V.; Sawyer, R.; Staecker, H. The Effect of Diabetes on Sensorineural Hearing Loss. Otol. Neurotol. 2003, 24, 382–386. [Google Scholar] [CrossRef]
- Kumar, A.; Gulati, R.; Singhal, S.; Hasan, A.; Khan, A. The effect of smoking on the hearing status-a hospital based study. J. Clin. Diagn. Res. 2013, 7, 210–214. [Google Scholar] [CrossRef]
- Sterling, M.R.; Lin, F.R.; Jannat-Khah, D.P.; Goman, A.M.; Echeverria, S.E.; Safford, M.M. Hearing Loss Among Older Adults with Heart Failure in the United States: Data From the National Health and Nutrition Examination Survey. JAMA Otolaryngol. Head. Neck Surg. 2018, 144, 273–275. [Google Scholar] [CrossRef]
- Tan, H.E.; Lan, N.S.R.; Knuiman, M.W.; Divitini, M.L.; Swanepoel, D.W.; Hunter, M.; Brennan-Jones, C.G.; Hung, J.; Eikelboom, R.H.; Santa Maria, P.L. Associations between cardiovascular disease and its risk factors with hearing loss—A cross-sectional analysis. Clin. Otolaryngol. 2018, 43, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Schrijver, I. Hereditary non-syndromic sensorineural hearing loss: Transforming silence to sound. J. Mol. Diagn. 2004, 6, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Gettelfinger, J.D.; Dahl, J.P. Syndromic Hearing Loss: A Brief Review of Common Presentations and Genetics. J. Pediatr. Genet. 2018, 7, 001–008. [Google Scholar] [CrossRef] [PubMed]
- Kenneson, A.; Van Naarden Braun, K.; Boyle, C. GJB2 (connexin 26) variants and nonsyndromic sensorineural hearing loss: A HuGE review. Genet. Med. 2002, 4, 258–274. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.B.; Goldman, J. Syndromic Sensorineural Hearing Loss. Available online: https://www.ncbi.nlm.nih.gov/books/NBK526088/ (accessed on 27 September 2022).
- Géléoc, G.S.G.; Holt, J.R. Sound Strategies for Hearing Restoration. Science 2014, 344, 1241062. [Google Scholar] [CrossRef] [PubMed]
- Mirian, C.; Ovesen, T. Intratympanic vs Systemic Corticosteroids in First-line Treatment of Idiopathic Sudden Sensorineural Hearing Loss: A Systematic Review and Meta-analysis. JAMA Otolaryngol. Head. Neck Surg. 2020, 146, 421–428. [Google Scholar] [CrossRef]
- Plontke, S.K.; Meisner, C.; Agrawal, S.; Cayé-Thomasen, P.; Galbraith, K.; Mikulec, A.A.; Parnes, L.S.; Premakumar, Y.; Reiber, J.; Schilder, A.G.M.; et al. Intratympanic corticosteroids for sudden sensorineural hearing loss. Cochrane Database Syst. Rev. 2022. [Google Scholar] [CrossRef]
- Salt, A.N.; Plontke, S.K. Pharmacokinetic principles in the inner ear: Influence of drug properties on intratympanic applications. Hear. Res. 2018, 368, 28–40. [Google Scholar] [CrossRef]
- Brock, P.R.; Maibach, R.; Childs, M.; Rajput, K.; Roebuck, D.; Sullivan, M.J.; Laithier, V.; Ronghe, M.; Dall’Igna, P.; Hiyama, E.; et al. Sodium Thiosulfate for Protection from Cisplatin-Induced Hearing Loss. N. Eng. J. Med. 2018, 378, 2376–2385. [Google Scholar] [CrossRef]
- Sooriyaarachchi, M.; George, G.N.; Pickering, I.J.; Narendran, A.; Gailer, J. Tuning the metabolism of the anticancer drug cisplatin with chemoprotective agents to improve its safety and efficacy. Met. Integr. Biometal Sci. 2016, 8, 1170–1176. [Google Scholar] [CrossRef]
- Jiam, N.T.; Rauch, S.D. Inner ear therapeutics and the war on hearing loss: Systemic barriers to success. Front. Neurosci. 2023, 17, 1169122. [Google Scholar] [CrossRef] [PubMed]
- Driver, E.C.; Kelley, M.W. Development of the cochlea. Development 2020, 147, dev162263. [Google Scholar] [CrossRef] [PubMed]
- Koehler, K.R.; Nie, J.; Longworth-Mills, E.; Liu, X.-P.; Lee, J.; Holt, J.R.; Hashino, E. Generation of inner ear organoids containing functional hair cells from human pluripotent stem cells. Nat. Biotechnol. 2017, 35, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Koehler, K.R.; Mikosz, A.M.; Molosh, A.I.; Patel, D.; Hashino, E. Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature 2013, 500, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Jeong, M.; O’Reilly, M.; Kirkwood, N.K.; Al-Aama, J.; Lako, M.; Kros, C.J.; Armstrong, L. Generating inner ear organoids containing putative cochlear hair cells from human pluripotent stem cells. Cell Death Dis. 2018, 9, 922. [Google Scholar] [CrossRef] [PubMed]
- Quan, Y.-Z.; Wei, W.; Ergin, V.; Rameshbabu, A.P.; Huang, M.; Tian, C.; Saladi, S.V.; Indzhykulian, A.A.; Chen, Z.-Y. Reprogramming by drug-like molecules leads to regeneration of cochlear hair cell–like cells in adult mice. Proc. Natl. Acad. Sci. USA 2023, 120, e2215253120. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, Y.; Xu, H.; Zhang, Y.-W. The γ-secretase complex: From structure to function. Front. Cell Neurosci. 2014, 8, 427. [Google Scholar] [CrossRef]
- Brown, R.; Groves, A.K. Hear, Hear for Notch: Control of Cell Fates in the Inner Ear by Notch Signaling. Biomolecules 2020, 10, 370. [Google Scholar] [CrossRef]
- Polyak, K.; Kato, J.Y.; Solomon, M.J.; Sherr, C.J.; Massague, J.; Roberts, J.M.; Koff, A. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes. Dev. 1994, 8, 9–22. [Google Scholar] [CrossRef]
- Mantela, J.; Jiang, Z.; Ylikoski, J.; Fritzsch, B.; Zacksenhaus, E.; Pirvola, U. The retinoblastoma gene pathway regulates the postmitotic state of hair cells of the mouse inner ear. Development 2005, 132, 2377–2388. [Google Scholar] [CrossRef]
- Laine, H.; Doetzlhofer, A.; Mantela, J.; Ylikoski, J.; Laiho, M.; Roussel, M.F.; Segil, N.; Pirvola, U. p19Ink4d and p21Cip1 Collaborate to Maintain the Postmitotic State of Auditory Hair Cells, Their Codeletion Leading to DNA Damage and p53-Mediated Apoptosis. J. Neurosci. 2007, 27, 1434–1444. [Google Scholar] [CrossRef] [PubMed]
- Walters, B.J.; Liu, Z.; Crabtree, M.; Coak, E.; Cox, B.C.; Zuo, J. Auditory Hair Cell-Specific Deletion of p27Kip1 in Postnatal Mice Promotes Cell-Autonomous Generation of New Hair Cells and Normal Hearing. J. Neurosci. 2014, 34, 15751–15763. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Segil, N. p27Kip1 links cell proliferation to morphogenesis in the developing organ of Corti. Development 1999, 126, 1581–1590. [Google Scholar] [CrossRef] [PubMed]
- Löwenheim, H.; Furness, D.N.; Kil, J.; Zinn, C.; Gültig, K.; Fero, M.L.; Frost, D.; Gummer, A.W.; Roberts, J.M.; Rubel, E.W.; et al. Gene disruption of p27Kip1 allows cell proliferation in the postnatal and adult organ of Corti. Proc. Natl. Acad. Sci. USA 1999, 96, 4084–4088. [Google Scholar] [CrossRef] [PubMed]
- Kil, J.; Gu, R.; Fero, M.; Lynch, E.D. The Cyclin Dependent Kinase Inhibitor p27Kip1 Maintains Terminal Differentiation in the Mouse Organ of Corti. Open Otorhinolaryngol. J. 2011, 5, 25–34. [Google Scholar] [CrossRef]
- Jones, D. To hear a whisper: Biotechs chase new thinking to restore hearing. Nat Biotechnol. 2018, 36, 1128–1129. [Google Scholar] [CrossRef]
- Sly, D.J.; Campbell, L.; Uschakov, A.; Saief, S.T.; Lam, M.; O’Leary, S.J. Applying Neurotrophins to the Round Window Rescues Auditory Function and Reduces Inner Hair Cell Synaptopathy After Noise-induced Hearing Loss. Otol. Neurotol. 2016, 37, 1223–1230. [Google Scholar] [CrossRef]
- Szobota, S.; Mathur, P.D.; Siegel, S.; Black, K.; Saragovi, H.U.; Foster, A.C. BDNF, NT-3 and Trk receptor agonist monoclonal antibodies promote neuron survival, neurite extension, and synapse restoration in rat cochlea ex vivo models relevant for hidden hearing loss. PLoS ONE 2019, 14, e0224022. [Google Scholar] [CrossRef]
- Wise, A.K.; Richardson, R.; Hardman, J.; Clark, G.; O’Leary, S. Resprouting and survival of guinea pig cochlear neurons in response to the administration of the neurotrophins brain-derived neurotrophic factor and neurotrophin-3. J. Comp. Neurol. 2005, 487, 147–165. [Google Scholar] [CrossRef]
- Pollack, S.J.; Harper, S.J. Small Molecule Trk Receptor Agonists and Other Neurotrophic Factor Mimetics. CNS Neurol. Disord. Drug Targets 2002, 1, 59–80. [Google Scholar] [CrossRef]
- Qing, Y.; Qing, C.; Xia, L.; Yunfeng, W.; Huawei, L.; Shusheng, G.; Keqiang, Y.; Xi, L. Protection of Spiral Ganglion Neurons from Degeneration Using Small-Molecule TrkB Receptor Agonists. J. Neurosci. 2013, 33, 13042. [Google Scholar] [CrossRef]
- Fernandez, K.A.; Watabe, T.; Tong, M.; Meng, X.; Tani, K.; Kujawa, S.G.; Edge, A.S.B. Trk agonist drugs rescue noise-induced hidden hearing loss. JCI Insight 2021, 6, e142572. [Google Scholar] [CrossRef] [PubMed]
- Kempfle, J.S.; Duro, M.V.; Zhang, A.; Amador, C.D.; Kuang, R.; Lu, R.; Kashemirov, B.A.; Edge, A.S.B.; McKenna, C.E.; Jung, D.H. A Novel Small Molecule Neurotrophin-3 Analogue Promotes Inner Ear Neurite Outgrowth and Synaptogenesis In Vitro. Front. Cell Neurosci. 2021, 15, 666706. [Google Scholar] [CrossRef] [PubMed]
- Pinyon, J.L.; von Jonquieres, G.; Crawford, E.N.; Duxbury, M.; Al Abed, A.; Lovell, N.H.; Klugmann, M.; Wise, A.K.; Fallon, J.B.; Shepherd, R.K.; et al. Neurotrophin gene augmentation by electrotransfer to improve cochlear implant hearing outcomes. Hear. Res. 2019, 380, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chao, T.; Brant, J.; O’Malley, B.; Tsourkas, A.; Li, D. Advances in nano-based inner ear delivery systems for the treatment of sensorineural hearing loss. Adv. Drug Deliv. Rev. 2017, 108, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Valente, F.; Astolfi, L.; Simoni, E.; Danti, S.; Franceschini, V.; Chicca, M.; Martini, A. Nanoparticle drug delivery systems for inner ear therapy: An overview. J. Drug Deliv. Sci. Technol. 2017, 39, 28–35. [Google Scholar] [CrossRef]
- Hao, J.; Li, S.K. Inner ear drug delivery: Recent advances, challenges, and perspective. Eur. J. Pharm. Sci. 2019, 126, 82–92. [Google Scholar] [CrossRef]
- Xu, X.; Wang, S.; Shu, Y.; Zhang, H. Nanoparticle-based inner ear delivery systems for the treatment of hearing loss. Smart Mater. Med. 2021, 2, 350–353. [Google Scholar] [CrossRef]
- Bermingham, N.A.; Hassan, B.A.; Price, S.D.; Vollrath, M.A.; Ben-Arie, N.; Eatock, R.A.; Bellen, H.J.; Lysakowski, A.; Zoghbi, H.Y. Math1 An Essential Gene for the Generation of Inner Ear Hair Cells. Science 1999, 284, 1837–1841. [Google Scholar] [CrossRef]
- Ben-Arie, N.; Bellen, H.J.; Armstrong, D.L.; McCall, A.E.; Gordadze, P.R.; Guo, Q.; Matzuk, M.M.; Zoghbi, H.Y. Math1 is essential for genesis of cerebellar granule neurons. Nature 1997, 390, 169–172. [Google Scholar] [CrossRef]
- Atkinson, P.J.; Wise, A.K.; Flynn, B.O.; Nayagam, B.A.; Richardson, R.T. Hair Cell Regeneration after ATOH1 Gene Therapy in the Cochlea of Profoundly Deaf Adult Guinea Pigs. PLoS ONE 2014, 9, e102077. [Google Scholar] [CrossRef] [PubMed]
- Allocca, M.; Doria, M.; Petrillo, M.; Colella, P.; Garcia-Hoyos, M.; Gibbs, D.; Kim, S.R.; Maguire, A.; Rex, T.S.; Di Vicino, U.; et al. Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice. J. Clin. Inv. 2008, 118, 1955–1964. [Google Scholar] [CrossRef] [PubMed]
- Lopes, V.S.; Boye, S.E.; Louie, C.M.; Boye, S.; Dyka, F.; Chiodo, V.; Fofo, H.; Hauswirth, W.W.; Williams, D.S. Retinal gene therapy with a large MYO7A cDNA using adeno-associated virus. Gene Ther. 2013, 20, 824–833. [Google Scholar] [CrossRef] [PubMed]
- Dyka, F.M.; Boye, S.L.; Chiodo, V.A.; Hauswirth, W.W.; Boye, S.E. Dual Adeno-Associated Virus Vectors Result in Efficient In Vitro and In Vivo Expression of an Oversized Gene, MYO7A. Hum. Gene Ther. Methods 2014, 25, 166–177. [Google Scholar] [CrossRef] [PubMed]
- Trapani, I.; Colella, P.; Sommella, A.; Iodice, C.; Cesi, G.; de Simone, S.; Marrocco, E.; Rossi, S.; Giunti, M.; Palfi, A.; et al. Effective delivery of large genes to the retina by dual AAV vectors. EMBO Mol. Med. 2014, 6, 194–211. [Google Scholar] [CrossRef]
- Tertrais, M.; Bouleau, Y.; Emptoz, A.; Belleudy, S.; Sutton, R.B.; Petit, C.; Safieddine, S.; Dulon, D. Viral Transfer of Mini-Otoferlins Partially Restores the Fast Component of Exocytosis and Uncovers Ultrafast Endocytosis in Auditory Hair Cells of Otoferlin Knock-Out Mice. J. Neurosci. 2019, 39, 3394–3411. [Google Scholar] [CrossRef]
- Ivanchenko, M.V.; Hathaway, D.M.; Klein, A.J.; Pan, B.; Strelkova, O.; De-la-Torre, P.; Wu, X.; Peters, C.W.; Mulhall, E.M.; Booth, K.T.; et al. Mini-PCDH15 gene therapy rescues hearing in a mouse model of Usher syndrome type 1F. Nat. Commun. 2023, 14, 2400. [Google Scholar] [CrossRef]
- Suzuki, S.; Nakajima, T.; Irie, S.; Ariyasu, R.; Komiyama, T.; Ohki, Y. Vestibular stimulation-induced facilitation of cervical premotoneuronal systems in humans. PLoS ONE 2017, 12, e0175131. [Google Scholar] [CrossRef]
- Pan, B.; Askew, C.; Galvin, A.; Heman-Ackah, S.; Asai, Y.; Indzhykulian, A.A.; Jodelka, F.M.; Hastings, M.L.; Lentz, J.J.; Vandenberghe, L.H.; et al. Gene therapy restores auditory and vestibular function in a mouse model of Usher syndrome type 1c. Nat. Biotechnol. 2017, 35, 264–272. [Google Scholar] [CrossRef]
- Askew, C.; Rochat, C.; Pan, B.; Asai, Y.; Ahmed, H.; Child, E.; Schneider, B.L.; Aebischer, P.; Holt, J.R. Tmc gene therapy restores auditory function in deaf mice. Sci. Transl. Med. 2015, 7, 295ra108. [Google Scholar] [CrossRef]
- Isgrig, K.; Shteamer, J.W.; Belyantseva, I.A.; Drummond, M.C.; Fitzgerald, T.S.; Vijayakumar, S.; Jones, S.M.; Griffith, A.J.; Friedman, T.B.; Cunningham, L.L.; et al. Gene Therapy Restores Balance and Auditory Functions in a Mouse Model of Usher Syndrome. Mol. Ther. Methods Clin. Dev. 2017, 25, 780–791. [Google Scholar] [CrossRef] [PubMed]
- Geng, R.; Omar, A.; Gopal, S.R.; Chen, D.H.C.; Stepanyan, R.; Basch, M.L.; Dinculescu, A.; Furness, D.N.; Saperstein, D.; Hauswirth, W.; et al. Modeling and Preventing Progressive Hearing Loss in Usher Syndrome III. Sci. Rep. 2017, 7, 13480. [Google Scholar] [CrossRef] [PubMed]
- Emptoz, A.; Michel, V.; Lelli, A.; Akil, O.; Boutet de Monvel, J.; Lahlou, G.; Meyer, A.; Dupont, T.; Nouaille, S.; Ey, E.; et al. Local gene therapy durably restores vestibular function in a mouse model of Usher syndrome type 1G. Proc. Natl. Acad. Sci. USA 2017, 114, 9695–9700. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.Y.; Park, Y.-H. Potential of Gene and Cell Therapy for Inner Ear Hair Cells. Biomed. Res. Int. 2018, 2018, 8137614. [Google Scholar] [CrossRef] [PubMed]
- Petit, C.; Bonnet, C.; Safieddine, S. Deafness: From genetic architecture to gene therapy. Nat. Rev. Genet. 2023, 24, 665–686. [Google Scholar] [CrossRef] [PubMed]
- György, B.; Sage, C.; Indzhykulian, A.A.; Scheffer, D.I.; Brisson, A.R.; Tan, S.; Wu, X.; Volak, A.; Mu, D.; Tamvakologos, P.I.; et al. Rescue of Hearing by Gene Delivery to Inner-Ear Hair Cells Using Exosome-Associated AAV. Mol. Ther. 2017, 25, 379–391. [Google Scholar] [CrossRef] [PubMed]
- Akil, O.; Blits, B.; Lustig, L.R.; Leake, P.A. Virally Mediated Overexpression of Glial-Derived Neurotrophic Factor Elicits Age- and Dose-Dependent Neuronal Toxicity and Hearing Loss. Hum. Gene Ther. 2019, 30, 88–105. [Google Scholar] [CrossRef]
- French, L.S.; Mellough, C.B.; Chen, F.K.; Carvalho, L.S. A Review of Gene, Drug and Cell-Based Therapies for Usher Syndrome. Front. Cell Neurosci. 2020, 14, 183. [Google Scholar] [CrossRef]
- Delaney, D.S.; Liew, L.J.; Lye, J.; Atlas, M.D.; Wong, E.Y.M. Overcoming barriers: A review on innovations in drug delivery to the middle and inner ear. Front. Pharmacol. 2023, 14, 1207141. [Google Scholar] [CrossRef]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef]
- Li, G.; Cheng, Y.; Li, Y.; Ma, H.; Pu, Z.; Li, S.; Zhao, Y.; Huang, X.; Yao, Y. A novel base editor SpRY-ABE8eF148A mediates efficient A-to-G base editing with a reduced off-target effect. Mol. Ther. Nucleic Acids 2023, 31, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Walton, R.T.; Christie, K.A.; Whittaker, M.N.; Kleinstiver, B.P. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 2020, 368, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Komor, A.C.; Badran, A.H.; Liu, D.R. CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Cell 2017, 168, 20–36. [Google Scholar] [CrossRef] [PubMed]
- Ran, F.A.; Hsu, P.D.; Wright, J.; Agarwala, V.; Scott, D.A.; Zhang, F. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013, 8, 2281–2308. [Google Scholar] [CrossRef] [PubMed]
- Shams, F.; Bayat, H.; Mohammadian, O.; Mahboudi, S.; Vahidnezhad, H.; Soosanabadi, M.; Rahimpour, A. Advance trends in targeting homology-directed repair for accurate gene editing: An inclusive review of small molecules and modified CRISPR-Cas9 systems. BioImpacts BI 2022, 12, 371–391. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Tao, Y.; Lamas, V.; Huang, M.; Yeh, W.-H.; Pan, B.; Hu, Y.-J.; Hu, J.H.; Thompson, D.B.; Shu, Y.; et al. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature 2018, 553, 217–221. [Google Scholar] [CrossRef]
- György, B.; Nist-Lund, C.; Pan, B.; Asai, Y.; Karavitaki, K.D.; Kleinstiver, B.P.; Garcia, S.P.; Zaborowski, M.P.; Solanes, P.; Spataro, S.; et al. Allele-specific gene editing prevents deafness in a model of dominant progressive hearing loss. Nat. Med. 2019, 25, 1123–1130. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, G.; Cui, C.; Wang, F.; Wang, X.; Xu, Z.; Guo, H.; Chen, Y.; Tang, H.; Wang, D.; et al. Preventing autosomal-dominant hearing loss in Bth mice with CRISPR/CasRx-based RNA editing. Signal Transduct. Target. Ther. 2022, 7, 79. [Google Scholar] [CrossRef]
- Cui, C.; Wang, D.; Huang, B.; Wang, F.; Chen, Y.; Lv, J.; Zhang, L.; Han, L.; Liu, D.; Chen, Z.-Y.; et al. Precise detection of CRISPR-Cas9 editing in hair cells in the treatment of autosomal dominant hearing loss. Mol. Ther. Nucleic Acids 2022, 29, 400–412. [Google Scholar] [CrossRef]
- Noh, B.; Rim, J.H.; Gopalappa, R.; Lin, H.; Kim, K.M.; Kang, M.J.; Gee, H.Y.; Choi, J.Y.; Kim, H.H.; Jung, J. In vivo outer hair cell gene editing ameliorates progressive hearing loss in dominant-negative Kcnq4 murine model. Theranostics 2022, 12, 2465–2482. [Google Scholar] [CrossRef]
- Gu, X.; Hu, X.; Wang, D.; Xu, Z.; Wang, F.; Li, D.; Li, G.-l.; Yang, H.; Li, H.; Zuo, E.; et al. Treatment of autosomal recessive hearing loss via in vivo CRISPR/Cas9-mediated optimized homology-directed repair in mice. Cell Res. 2022, 32, 699–702. [Google Scholar] [CrossRef] [PubMed]
- Ingham, N.J.; Banafshe, N.; Panganiban, C.; Crunden, J.L.; Chen, J.; Lewis, M.A.; Steel, K.P. Inner hair cell dysfunction in Klhl18 mutant mice leads to low frequency progressive hearing loss. PLoS ONE 2021, 16, e0258158. [Google Scholar] [CrossRef]
- Fu, Y.; Foden, J.A.; Khayter, C.; Maeder, M.L.; Reyon, D.; Joung, J.K.; Sander, J.D. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 2013, 31, 822–826. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Cradick, T.J.; Brown, M.T.; Deshmukh, H.; Ranjan, P.; Sarode, N.; Wile, B.M.; Vertino, P.M.; Stewart, F.J.; Bao, G. CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res. 2014, 42, 7473–7485. [Google Scholar] [CrossRef] [PubMed]
- Gaudelli, N.M.; Komor, A.C.; Rees, H.A.; Packer, M.S.; Badran, A.H.; Bryson, D.I.; Liu, D.R. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 2017, 551, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Anzalone, A.V.; Randolph, P.B.; Davis, J.R.; Sousa, A.A.; Koblan, L.W.; Levy, J.M.; Chen, P.J.; Wilson, C.; Newby, G.A.; Raguram, A.; et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019, 576, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Yeh, W.-H.; Chiang, H.; Rees, H.A.; Edge, A.S.B.; Liu, D.R. In vivo base editing of post-mitotic sensory cells. Nat. Commun. 2018, 9, 2184. [Google Scholar] [CrossRef]
- Yeh, W.H.; Shubina-Oleinik, O.; Levy, J.M.; Pan, B.; Newby, G.A.; Wornow, M.; Burt, R.; Chen, J.C.; Holt, J.R.; Liu, D.R. In vivo base editing restores sensory transduction and transiently improves auditory function in a mouse model of recessive deafness. Sci. Transl. Med. 2020, 12, 546. [Google Scholar] [CrossRef]
- Peters, C.W.; Hanlon, K.S.; Ivanchenko, M.V.; Zinn, E.; Linarte, E.F.; Li, Y.; Levy, J.M.; Liu, D.R.; Kleinstiver, B.P.; Indzhykulian, A.A.; et al. Rescue of hearing by adenine base editing in a humanized mouse model of Usher syndrome type 1F. Mol. Ther. 2023, 31, 2439–2453. [Google Scholar] [CrossRef]
- Tang, Z.-H.; Chen, J.-R.; Zheng, J.; Shi, H.-S.; Ding, J.; Qian, X.-D.; Zhang, C.; Chen, J.-L.; Wang, C.-C.; Li, L.; et al. Genetic Correction of Induced Pluripotent Stem Cells from a Deaf Patient with MYO7A Mutation Results in Morphologic and Functional Recovery of the Derived Hair Cell-Like Cells. Stem Cell Transl. Med. 2016, 5, 561–571. [Google Scholar] [CrossRef]
- Fuster-García, C.; García-García, G.; González-Romero, E.; Jaijo, T.; Sequedo, M.D.; Ayuso, C.; Vázquez-Manrique, R.P.; Millán, J.M.; Aller, E. USH2A Gene Editing Using the CRISPR System. Mol. Ther. Nucleic Acids 2017, 8, 529–541. [Google Scholar] [CrossRef]
- Zaw, K.; Wong, E.Y.M.; Zhang, X.; Zhang, D.; Chen, S.-C.; Thompson, J.A.; Lamey, T.; McLaren, T.; Roach, J.N.D.; Wilton, S.D.; et al. Generation of three induced pluripotent stem cell lines from a patient with Usher syndrome caused by biallelic c.949C>A and c.1256G>T mutations in the USH2A gene. Stem Cell Res. 2020, 50, 102129. [Google Scholar] [CrossRef] [PubMed]
- McLenachan, S.; Wong, E.Y.M.; Zhang, X.; Leith, F.; Moon, S.Y.; Zhang, D.; Chen, S.-C.; Thompson, J.A.; McLaren, T.; Lamey, T.; et al. Generation of two induced pluripotent stem cell lines from a patient with compound heterozygous mutations in the USH2A gene. Stem Cell Res. 2019, 36, 101420. [Google Scholar] [CrossRef] [PubMed]
- Sanjurjo-Soriano, C.; Erkilic, N.; Baux, D.; Mamaeva, D.; Hamel, C.P.; Meunier, I.; Roux, A.-F.; Kalatzis, V. Genome Editing in Patient iPSCs Corrects the Most Prevalent USH2A Mutations and Reveals Intriguing Mutant mRNA Expression Profiles. Mol. Ther. Methods Clin. Dev. 2020, 17, 156–173. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Cang, X.; Peng, Y.; Li, R.; Zhang, Z.; Li, F.; Fan, Q.; Guan, A.S.; Fischel-Ghosian, N.; Zhao, X.; et al. Biochemical Evidence for a Nuclear Modifier Allele (A10S) in TRMU (Methylaminomethyl-2-thiouridylate-methyltransferase) Related to Mitochondrial tRNA Modification in the Phenotypic Manifestation of Deafness-associated 12S rRNA Mutation. J. Biol. Chem. 2017, 292, 2881–2892. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Guan, M.-X. Genetic correction of TRMU allele restored the mitochondrial dysfunction-induced deficiencies in iPSCs-derived hair cells of hearing-impaired patients. Hum. Mol. Genet. 2022, 31, 3068–3082. [Google Scholar] [CrossRef] [PubMed]
- Farjami, M.; Assadi, R.; Afzal Javan, F.; Alimardani, M.; Eslami, S.; Mansoori Derakhshan, S.; Eslahi, A.; Mojarrad, M. The worldwide frequency of MYO15A gene mutations in patients with non-syndromic hearing loss: A meta-analysis. Iran. J. Basic. Med. Sci. 2020, 23, 841–848. [Google Scholar] [CrossRef]
- Chen, J.R.; Tang, Z.H.; Zheng, J.; Shi, H.S.; Ding, J.; Qian, X.D.; Zhang, C.; Chen, J.L.; Wang, C.C.; Li, L.; et al. Effects of genetic correction on the differentiation of hair cell-like cells from iPSCs with MYO15A mutation. Cell Death Differ. 2016, 23, 1347–1357. [Google Scholar] [CrossRef]
- Xue, Y.; Hu, X.; Wang, D.; Li, D.; Li, Y.; Wang, F.; Huang, M.; Gu, X.; Xu, Z.; Zhou, J.; et al. Gene editing in a Myo6 semi-dominant mouse model rescues auditory function. Mol. Ther. 2022, 30, 105–118. [Google Scholar] [CrossRef]
- Gu, X.; Wang, D.; Xu, Z.; Wang, J.; Guo, L.; Chai, R.; Li, G.; Shu, Y.; Li, H. Prevention of acquired sensorineural hearing loss in mice by in vivo Htra2 gene editing. Genome Biol. 2021, 22, 86. [Google Scholar] [CrossRef]
- Liu, X.; Lillywhite, J.; Zhu, W.; Huang, Z.; Clark, A.M.; Gosstola, N.; Maguire, C.T.; Dykxhoorn, D.; Chen, Z.-Y.; Yang, J. Generation and Genetic Correction of USH2A c.2299delG Mutation in Patient-Derived Induced Pluripotent Stem Cells. Genes 2021, 12, 805. [Google Scholar] [CrossRef] [PubMed]
- Kapustin, Y.; Chan, E.; Sarkar, R.; Wong, F.; Vorechovsky, I.; Winston, R.M.; Tatusova, T.; Dibb, N.J. Cryptic splice sites and split genes. Nucleic Acids Res. 2011, 39, 5837–5844. [Google Scholar] [CrossRef] [PubMed]
- Ham, K.A.; Keegan, N.P.; McIntosh, C.S.; Aung-Htut, M.T.; Zaw, K.; Greer, K.; Fletcher, S.; Wilton, S.D. Induction of cryptic pre-mRNA splice-switching by antisense oligonucleotides. Sci. Rep. 2021, 11, 15137. [Google Scholar] [CrossRef] [PubMed]
- Havens, M.A.; Hastings, M.L. Splice-switching antisense oligonucleotides as therapeutic drugs. Nucleic Acids Res. 2016, 44, 6549–6563. [Google Scholar] [CrossRef] [PubMed]
- Urban, E.; Noe, C.R. Structural modifications of antisense oligonucleotides. Farmaco 2003, 58, 243–258. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Corey, D.R. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res. 2018, 46, 1584–1600. [Google Scholar] [CrossRef]
- Summerton, J. Morpholino antisense oligomers: The case for an RNase H-independent structural type. Biochim. Biophys. Acta 1999, 1489, 141–158. [Google Scholar] [CrossRef]
- Grillet, N.; Xiong, W.; Reynolds, A.; Kazmierczak, P.; Sato, T.; Lillo, C.; Dumont, R.A.; Hintermann, E.; Sczaniecka, A.; Schwander, M.; et al. Harmonin mutations cause mechanotransduction defects in cochlear hair cells. Neuron 2009, 62, 375–387. [Google Scholar] [CrossRef]
- Tian, C.; Liu, X.Z.; Han, F.; Yu, H.; Longo-Guess, C.; Yang, B.; Lu, C.; Yan, D.; Zheng, Q.Y. Ush1c gene expression levels in the ear and eye suggest different roles for Ush1c in neurosensory organs in a new Ush1c knockout mouse. Brain Res. 2010, 1328, 57–70. [Google Scholar] [CrossRef]
- Lentz, J.; Pan, F.; Ng, S.S.; Deininger, P.; Keats, B. Ush1c216A knock-in mouse survives Katrina. Mutat. Res. 2007, 616, 139–144. [Google Scholar] [CrossRef]
- Lentz, J.J.; Jodelka, F.M.; Hinrich, A.J.; McCaffrey, K.E.; Farris, H.E.; Spalitta, M.J.; Bazan, N.G.; Duelli, D.M.; Rigo, F.; Hastings, M.L. Rescue of hearing and vestibular function by antisense oligonucleotides in a mouse model of human deafness. Nat. Med. 2013, 19, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Boëda, B.; El-Amraoui, A.; Bahloul, A.; Goodyear, R.; Daviet, L.; Blanchard, S.; Perfettini, I.; Fath, K.R.; Shorte, S.; Reiners, J.; et al. Myosin VIIa, harmonin and cadherin 23, three Usher I gene products that cooperate to shape the sensory hair cell bundle. EMBO J. 2002, 21, 6689–6699. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Kempton, J.B.; Jiang, H.; Jodelka, F.M.; Brigande, A.M.; Dumont, R.A.; Rigo, F.; Lentz, J.J.; Hastings, M.L.; Brigande, J.V. Fetal antisense oligonucleotide therapy for congenital deafness and vestibular dysfunction. Nucleic Acids Res. 2020, 48, 5065–5080. [Google Scholar] [CrossRef]
- Ponnath, A.; Depreux, F.F.; Jodelka, F.M.; Rigo, F.; Farris, H.E.; Hastings, M.L.; Lentz, J.J. Rescue of Outer Hair Cells with Antisense Oligonucleotides in Usher Mice Is Dependent on Age of Treatment. J. Assoc. Res. Otolaryngol. 2018, 19, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Lentz, J.J.; Pan, B.; Ponnath, A.; Tran, C.M.; Nist-Lund, C.; Galvin, A.; Goldberg, H.; Robillard, K.N.; Jodelka, F.M.; Farris, H.E.; et al. Direct Delivery of Antisense Oligonucleotides to the Middle and Inner Ear Improves Hearing and Balance in Usher Mice. Mol. Ther. 2020, 28, 2662–2676. [Google Scholar] [CrossRef] [PubMed]
- Vaché, C.; Besnard, T.; le Berre, P.; García-García, G.; Baux, D.; Larrieu, L.; Abadie, C.; Blanchet, C.; Bolz, H.J.; Millan, J.; et al. Usher syndrome type 2 caused by activation of an USH2A pseudoexon: Implications for diagnosis and therapy. Hum. Mutat. 2012, 33, 104–108. [Google Scholar] [CrossRef]
- Slijkerman, R.W.N.; Vaché, C.; Dona, M.; García-García, G.; Claustres, M.; Hetterschijt, L.; Peters, T.A.; Hartel, B.P.; Pennings, R.J.E.; Millan, J.M.; et al. Antisense Oligonucleotide-based Splice Correction for USH2A-associated Retinal Degeneration Caused by a Frequent Deep-intronic Mutation. Mol. Ther. Nucleic Acids 2016, 5, e381. [Google Scholar] [CrossRef]
- Feng, P.; Xu, Z.; Chen, J.; Liu, M.; Zhao, Y.; Wang, D.; Han, L.; Wang, L.; Wan, B.; Xu, X.; et al. Rescue of mis-splicing of a common SLC26A4 mutant associated with sensorineural hearing loss by antisense oligonucleotides. Mol. Ther. Nucleic Acids 2022, 28, 280–292. [Google Scholar] [CrossRef]
- Panagiotopoulos, A.-L.; Karguth, N.; Pavlou, M.; Böhm, S.; Gasparoni, G.; Walter, J.; Graf, A.; Blum, H.; Biel, M.; Riedmayr, L.M.; et al. Antisense Oligonucleotide- and CRISPR-Cas9-Mediated Rescue of mRNA Splicing for a Deep Intronic CLRN1 Mutation. Mol. Ther. Nucleic Acids 2020, 21, 1050–1061. [Google Scholar] [CrossRef]
- Montgomery, M.K.; Xu, S.; Fire, A. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 1998, 95, 15502–15507. [Google Scholar] [CrossRef]
- Lam, J.K.; Chow, M.Y.; Zhang, Y.; Leung, S.W. siRNA Versus miRNA as Therapeutics for Gene Silencing. Mol. Ther. Nucleic Acids 2015, 4, e252. [Google Scholar] [CrossRef] [PubMed]
- Robillard, K.N.; de Vrieze, E.; van Wijk, E.; Lentz, J.J. Altering gene expression using antisense oligonucleotide therapy for hearing loss. Hear. Res. 2022, 426, 108523. [Google Scholar] [CrossRef] [PubMed]
- Kaur, T.; Mukherjea, D.; Sheehan, K.; Jajoo, S.; Rybak, L.P.; Ramkumar, V. Short interfering RNA against STAT1 attenuates cisplatin-induced ototoxicity in the rat by suppressing inflammation. Cell Death Dis. 2011, 2, e180. [Google Scholar] [CrossRef] [PubMed]
- Mukherjea, D.; Jajoo, S.; Kaur, T.; Sheehan, K.E.; Ramkumar, V.; Rybak, L.P. Transtympanic administration of short interfering (si)RNA for the NOX3 isoform of NADPH oxidase protects against cisplatin-induced hearing loss in the rat. Antioxid. Redox Signal 2010, 13, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Oishi, N.; Chen, F.Q.; Zheng, H.W.; Sha, S.H. Intra-tympanic delivery of short interfering RNA into the adult mouse cochlea. Hear. Res. 2013, 296, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, J.C.; Bachi, A.L.L.; Silva, G.A.V.; Rossi, M.; do Amaral, J.B.; Lezirovitz, K.; de Brito, R. New Insights on the Effect of TNF Alpha Blockade by Gene Silencing in Noise-Induced Hearing Loss. Int. J. Mol. Sci. 2020, 21, 2692. [Google Scholar] [CrossRef] [PubMed]
- Maeda, Y.; Fukushima, K.; Nishizaki, K.; Smith, R.J.H. In vitro and in vivo suppression of GJB2 expression by RNA interference. Hum Mol Genet. 2005, 14, 1641–1650. [Google Scholar] [CrossRef]
- De Vrieze, E.; Cañas Martín, J.; Peijnenborg, J.; Martens, A.; Oostrik, J.; van den Heuvel, S.; Neveling, K.; Pennings, R.; Kremer, H.; van Wijk, E. AON-based degradation of c.151C>T mutant COCH transcripts associated with dominantly inherited hearing impairment DFNA9. Mol. Ther. Nucleic Acids 2021, 24, 274–283. [Google Scholar] [CrossRef]
- Shibata, S.B.; Ranum, P.T.; Moteki, H.; Pan, B.; Goodwin, A.T.; Goodman, S.S.; Abbas, P.J.; Holt, J.R.; Smith, R.J.H. RNA Interference Prevents Autosomal-Dominant Hearing Loss. Am. J. Hum. Genet. 2016, 98, 1101–1113. [Google Scholar] [CrossRef]
- Yoshimura, H.; Shibata, S.B.; Ranum, P.T.; Moteki, H.; Smith, R.J.H. Targeted Allele Suppression Prevents Progressive Hearing Loss in the Mature Murine Model of Human TMC1 Deafness. Mol. Ther. 2019, 27, 681–690. [Google Scholar] [CrossRef]
- Du, X.; Li, W.; Gao, X.; West, M.B.; Saltzman, W.M.; Cheng, C.J.; Stewart, C.; Zheng, J.; Cheng, W.; Kopke, R.D. Regeneration of mammalian cochlear and vestibular hair cells through Hes1/Hes5 modulation with siRNA. Hear. Res. 2013, 304, 91–110. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Cai, Q.; West, M.B.; Youm, I.; Huang, X.; Li, W.; Cheng, W.; Nakmali, D.; Ewert, D.L.; Kopke, R.D. Regeneration of Cochlear Hair Cells and Hearing Recovery through Hes1 Modulation with siRNA Nanoparticles in Adult Guinea Pigs. Mol. Ther. 2018, 26, 1313–1326. [Google Scholar] [CrossRef] [PubMed]
- Zine, A.; Aubert, A.; Qiu, J.; Therianos, S.; Guillemot, F.; Kageyama, R.; de Ribaupierre, F. Hes1 and Hes5 Activities Are Required for the Normal Development of the Hair Cells in the Mammalian Inner Ear. J. Neurosci. 2001, 21, 4712–4720. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Jin, Y. Role of Oct4 in maintaining and regaining stem cell pluripotency. Stem Cell Res. Ther. 2010, 1, 39. [Google Scholar] [CrossRef] [PubMed]
- Feng, R.; Wen, J. Overview of the roles of Sox2 in stem cell and development. Biol. Chem. 2015, 396, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Nandan, M.O.; Yang, V.W. The role of Krüppel-like factors in the reprogramming of somatic cells to induced pluripotent stem cells. Histol. Histopathol. 2009, 24, 1343–1355. [Google Scholar] [CrossRef]
- Araki, R.; Hoki, Y.; Uda, M.; Nakamura, M.; Jincho, Y.; Tamura, C.; Sunayama, M.; Ando, S.; Sugiura, M.; Yoshida, M.A.; et al. Crucial Role of C-Myc in the Generation of Induced Pluripotent Stem Cells. Stem Cells 2011, 29, 1362–1370. [Google Scholar] [CrossRef]
- Li, H.; Roblin, G.; Liu, H.; Heller, S. Generation of hair cells by stepwise differentiation of embryonic stem cells. Proc. Natl. Acad. Sci. USA 2003, 100, 13495–13500. [Google Scholar] [CrossRef]
- Oshima, K.; Shin, K.; Diensthuber, M.; Peng, A.W.; Ricci, A.J.; Heller, S. Mechanosensitive Hair Cell-like Cells from Embryonic and Induced Pluripotent Stem Cells. Cell 2010, 141, 704–716. [Google Scholar] [CrossRef]
- Chen, W.; Jongkamonwiwat, N.; Abbas, L.; Eshtan, S.J.; Johnson, S.L.; Kuhn, S.; Milo, M.; Thurlow, J.K.; Andrews, P.W.; Marcotti, W.; et al. Restoration of auditory evoked responses by human ES-cell-derived otic progenitors. Nature 2012, 490, 278–282. [Google Scholar] [CrossRef]
- Barboza, L.C., Jr.; Lezirovitz, K.; Zanatta, D.B.; Strauss, B.E.; Mingroni-Netto, R.C.; Oiticica, J.; Haddad, L.A.; Bento, R.F. Transplantation and survival of mouse inner ear progenitor/stem cells in the organ of Corti after cochleostomy of hearing-impaired guinea pigs: Preliminary results. Braz. J. Med. Biol. Res. 2016, 49, e5064. [Google Scholar] [CrossRef]
- Chen, J.; Hong, F.; Zhang, C.; Li, L.; Wang, C.; Shi, H.; Fu, Y.; Wang, J. Differentiation and transplantation of human induced pluripotent stem cell-derived otic epithelial progenitors in mouse cochlea. Stem Cell Res. Ther. 2018, 9, 230. [Google Scholar] [CrossRef]
- Takeda, H.; Hosoya, M.; Fujioka, M.; Saegusa, C.; Saeki, T.; Miwa, T.; Okano, H.; Minoda, R. Engraftment of Human Pluripotent Stem Cell-derived Progenitors in the Inner Ear of Prenatal Mice. Sci. Rep. 2018, 8, 1941. [Google Scholar] [CrossRef]
- Lee, M.Y.; Hackelberg, S.; Green, K.L.; Lunghamer, K.G.; Kurioka, T.; Loomis, B.R.; Swiderski, D.L.; Duncan, R.K.; Raphael, Y. Survival of human embryonic stem cells implanted in the guinea pig auditory epithelium. Sci. Rep. 2017, 7, 46058. [Google Scholar] [CrossRef]
- Takeda, H.; Dondzillo, A.; Randall, J.A.; Gubbels, S.P. Selective ablation of cochlear hair cells promotes engraftment of human embryonic stem cell-derived progenitors in the mouse organ of Corti. Stem Cell Res. Ther. 2021, 12, 352. [Google Scholar] [CrossRef]
- Jeon, S.J.; Oshima, K.; Heller, S.; Edge, A.S. Bone marrow mesenchymal stem cells are progenitors in vitro for inner ear hair cells. Mol. Cell Neurosci. 2007, 34, 59–68. [Google Scholar] [CrossRef]
- Lee, J.H.; Kang, W.K.; Seo, J.H.; Choi, M.Y.; Lee, Y.H.; Kim, H.M.; Park, K.H. Neural differentiation of bone marrow-derived mesenchymal stem cells: Applicability for inner ear therapy. Korean J. Audiol. 2012, 16, 47–53. [Google Scholar] [CrossRef]
- Jang, S.; Cho, H.H.; Kim, S.H.; Lee, K.H.; Jun, J.Y.; Park, J.S.; Jeong, H.S.; Cho, Y.B. Neural-induced human mesenchymal stem cells promote cochlear cell regeneration in deaf Guinea pigs. Clin. Exp. Otorhinolaryngol. 2015, 8, 83–91. [Google Scholar] [CrossRef]
- Mittal, R.; Ocak, E.; Zhu, A.; Perdomo, M.M.; Pena, S.A.; Mittal, J.; Bohorquez, J.; Eshraghi, A.A. Effect of Bone Marrow-Derived Mesenchymal Stem Cells on Cochlear Function in an Experimental Rat Model. Anat. Rec. 2020, 303, 487–493. [Google Scholar] [CrossRef]
- Tsai, S.C.; Yang, K.D.; Chang, K.H.; Lin, F.C.; Chou, R.H.; Li, M.C.; Cheng, C.C.; Kao, C.Y.; Chen, C.P.; Lin, H.C.; et al. Umbilical Cord Mesenchymal Stromal Cell-Derived Exosomes Rescue the Loss of Outer Hair Cells and Repair Cochlear Damage in Cisplatin-Injected Mice. Int. J. Mol. Sci. 2021, 22, 6664. [Google Scholar] [CrossRef]
- Huang, X.; Kou, X.; Zhan, T.; Wei, G.; He, F.; Mao, X.; Yang, H. Apoptotic vesicles resist oxidative damage in noise-induced hearing loss through activation of FOXO3a-SOD2 pathway. Stem Cell Res. Ther. 2023, 14, 88. [Google Scholar] [CrossRef]
- Warnecke, A.; Prenzler, N.; Harre, J.; Köhl, U.; Gärtner, L.; Lenarz, T.; Laner-Plamberger, S.; Wietzorrek, G.; Staecker, H.; Lassacher, T.; et al. First-in-human intracochlear application of human stromal cell-derived extracellular vesicles. J. Extracell. Vesicles 2021, 10, e12094. [Google Scholar] [CrossRef]
- Galán, L.; Guerrero-Sola, A.; Gómez-Pinedo, U.; Matias-Guiu, J. Cell therapy in amyotrophic lateral sclerosis: Science and controversy. Neurología 2010, 25, 467–469. [Google Scholar] [CrossRef]
- Baumgartner, L.S.; Moore, E.; Shook, D.; Messina, S.; Day, M.C.; Green, J.; Nandy, R.; Seidman, M.; Baumgartner, J.E. Safety of Autologous Umbilical Cord Blood Therapy for Acquired Sensorineural Hearing Loss in Children. J. Audiol. Otol. 2018, 22, 209–222. [Google Scholar] [CrossRef]
- Lee, H.S.; Kim, W.J.; Gong, J.S.; Park, K.H. Clinical Safety and Efficacy of Autologous Bone Marrow-Derived Mesenchymal Stem Cell Transplantation in Sensorineural Hearing Loss Patients. J. Audiol. Otol. 2018, 22, 105–109. [Google Scholar] [CrossRef]
- Andrade da Silva, L.H.; Heuer, R.A.; Roque, C.B.; McGuire, T.L.; Hosoya, T.; Kimura, H.; Tamura, K.; Matsuoka, A.J. Enhanced survival of hypoimmunogenic otic progenitors following intracochlear xenotransplantation: Repercussions for stem cell therapy in hearing loss models. Stem Cell Res. Ther. 2023, 14, 83. [Google Scholar] [CrossRef]
Cause of Hearing Loss | Intervention (Drug Name) | Route of Administration | Sponsor (Company) | Drug Component (Mechanism of Action) | Study Phase and Status (Clinical Trial ID) |
---|---|---|---|---|---|
ARHL | Small molecule (PF-04958242) | Oral solution | Biogen (Cambridge, MA, USA) | AMPA receptor potentiator | Phase 1 completed (NCT01518920) |
ARHL, tinnitus | Small molecule (AUT00063) | Oral administration | Autifony Therapeutics Limited (Stevenage, UK) | Kv3 potassium channel modulator | Phase 2 completed (NCT02315508; NCT02345031; NCT02832128) |
AIED | Biologics (Anakinra (Kineret)) | Subcutaneous injection | Northwell Health (New Hyde Park, NY, USA) | Interleukin-1 receptor antagonist | Phase 2 (NCT03587701) |
AIED | Monoclonal antibody (Gevokizumab) | Subcutaneous injection | XOMA Corporation (Emeryville, CA, USA) | Proinflammatory interleukin-1 inhibitor | Phase 2 completed (NCT01950312) |
AIED | Fusion protein (Rilonacept) | Subcutaneous injection | Stanley Cohen (Regeneron Pharmaceuticals) (Tarrytown, NY, USA) | Interleukin-1 receptor antagonist | Phase 1 (NCT02828033) |
DIHL (aminoglycoside) | Small molecule (ORC-13661) | Oral administration | Kevin Winthrop (Oricula Therapeutics) (Seattle, WA, USA) | Mechanotransduction channel blocker | Phase 2 (NCT05730283) |
DIHL (cisplatin) | Small molecule (DB-020) | Intratympanic | Decibel Therapeutics (Boston, MA, USA) | Sodium thiosulfate—cation chelator and antioxidant | Phase 1 completed (NCT04262336) |
DIHL (cisplatin) | Small molecule | Intravenous | Hyunseok Kang (NRG Oncology) (Philadelphia, PA, USA) | Sodium thiosulfate—cation chelator and antioxidant | Phase 2 completed (NCT04541355) |
DIHL (cisplatin) | Small molecule | Intravenous infusion | Sunnybrook Health Sciences Centre (Toronto, ON, Canada) | Sodium thiosulfate—cation chelator and antioxidant; Mannitol—JNK pathway inhibitor | Phase 2 (NCT05129748) |
DIHL (cisplatin) | Small molecule | Intratympanic | Sunnybrook Health Sciences Centre (Toronto, ON, Canada) | N-acetylcysteine—antioxidant, reduce inflammation | Phase 1/2 (NCT04291209) |
DIHL | Small molecule (SPI-3005) | Oral administration | Sound Pharmaceuticals (Seattle, WA, USA) | Ebselen and allopurinol—mimic antioxidant property of glutathione peroxidase | Phase 2 (NCT01451853; NCT02819856) |
Congenital CMV HL | Antiviral (Valganciclovir) | Oral solution | Dr. Ann C.T.M. Vossen (Stichting Nuts Ohra (Amsterdam, The Netherlands) and Leiden University Medical Center (Leiden, The Netherlands)) | Viral DNA synthesis inhibitor | Phase 3 terminated (NCT01655212); Phase 3 completed (NCT02005822) |
Congenital CMV HL | Antiviral (Valganciclovir) | Oral solution | Albert Park (Genentech) (South San Francisco, CA, USA) | Viral DNA synthesis inhibitor | Phase 2 (NCT03107871) |
Congenital CMV HL | mRNA vaccine (mRNA-1647) | Intramuscular injection | ModernaTX, Inc. (Cambridge, MA, USA) | Prophylactic vaccine containing six mRNA sequences for two CMV antigens (glycoprotein B and pentameric glycoprotein complex) | Phase 1 completed (NCT05105048); Phase 2 (NCT0683457); Phase 3 (NCT05085366) |
MD, NIHL, tinnitus | Small molecule (SPI-1005) | Oral administration | Sound Pharmaceuticals (Seattle, WA, USA) | Ebselen—mimic antioxidant property of glutathione peroxidase | Phase 1 completed (NCT01452607); Phase 1/2 completed (NCT02603081); Phase 2 (NCT02779192); Phase 2 completed (NCT01444846; NCT03325790); Phase 3 (NCT04677972) |
MD | Small molecule (Latanoprost) | Intratympanic | Synphora AB (Uppsala, Sweden) | Prostaglandin F2 α receptor agonist | Phase 2 (NCT01973114) |
MD | Small molecule (Montelukast) | Oral administration | House Ear Institute (Merck) (Los Angeles, CA, USA) | Leukotriene receptor antagonists | Phase 4 (NCT04815187) |
NIHL | Small molecule (Zonisamide) | Oral administration | Gateway Biotechnology (St. Louis, MO, USA) | Voltage-dependent sodium channel inhibitor and neurotransmitters degrader | Phase 2 (NCT04768569); Phase 2 terminated (NCT04774250) |
NIHL, SNHL | Small molecule (NHPN-1010) | Oral administration | Otologic Pharmaceuticals (Oklahoma City, OK, USA) | Disufenton—nitrone-based antioxidant and neuroprotective; N-acetylcysteine—free radical scavenger | Phase 1 completed (NCT02259595) |
NIHL (with mitochondrial point mutation) | Small molecule (VincerinoneTM (EPI-743)) | Oral administration | Edison Pharmaceuticals (Mountain View, CA, USA) | Vatiquinone—mitochondrial redox modulator | Phase 2 completed (NCT02257983) |
SNHL | Small molecule (AM-111) | Intratympanic | Auris Medical (Basel, Switzerland) | Brimapitide—JNK pathway inhibitor | Phase 2 completed (NCT00802425); Phase 3 completed (NCT02561091); Phase 3 terminated (NCT02809118) |
SNHL | Small molecule (PIPE-505) | Intratympanic | Pipeline Therapeutics (San Diego, CA, USA) | HC regeneration via Notch signaling pathway and γ-secretase inhibition; synaptic regeneration via netrin/DCC pathway inhibition | Phase 1/2 completed (NCT04462198) |
SNHL | Cell-based therapy (Autologous bone marrow infusion) | Intravenous infusion | James Baumgartner, CBR Systems, Inc. (Los Angeles, CA, USA) | Umbilical cord-derived mesenchymal stem cells | Phase 1/2 completed (NCT02038972) |
Idiopathic SSNHL | Steroid (AC102) | Intratympanic | AudioCure Pharma GmbH (Berlin, Germany) | Prednisolone | Phase 2 (NCT05776459) |
SSNHL | Steroid | Intratympanic | Massachusetts Eye and Ear Infirmary (Boston, MA, USA) | Dexamethasone sodium succinate and prednisone | Phase 3 completed (NCT00097448) |
SSNHL | Steroid | Intratympanic | University Hospital Tuebingen (Tuebingen, Germany) | Dexamethasone-dihydrogenphosphate | Phase 3 completed (NCT00335920) |
SSNHL | Biologics (Ancrod) | Intravenous | Nordmark Arzneimittel GmbH & Co. KG (Uetersen, Germany) | Anticoagulant—fibrinogen inhibitors and plasminogen activator stimulants | Phase 1/2 completed (NCT01621256) |
SSNHL | Steroid | Oral administration | University of Colorado, Denver (Denver, CO, USA) | Dexamethasone and prednisone | Phase 2 completed (NCT03255473) |
SSNHL | Steroid | Oral administration | Beijing Tsinghua Chang Gung Hospital (Beijing, USA) | Methylprednisolone hemisuccinate and ginkgo biloba | Phase 4 (NCT04192656) |
SSNHL | Steroid | Intratympanic with hydrogel gel | Seoul National University Hospital (Seoul, South Korea) | Dexamethasone and hyaluronic acid | Phase 1/2 (NCT04766853) |
SSNHL | Steroid | Oral administration | Northwestern University (Evanston, IL, USA) | Dexamethasone and methylprednisolone | Phase 4 (NCT04826237) |
SSNHL | Small molecule (STR001) | Intratympanic versus oral administration | Strekin AG (Basel, Switzerland) | Peroxisome proliferator-activated receptor-γ agonist | Phase 3 completed (NCT03331627) |
SSNHL | Small molecule (SENS-401) | Oral administration | Sensorion (Montpellier, France) | R-azasetron besylate—5-HT3 antagonist and calcineurin inhibitor | Phase 2 (NCT05258773; NCT05628233); Phase 2/3 completed (NCT03603314) |
SSNHL | Steroid (HY01) | Intratympanic | Heyu (Suzhou, China) Pharmaceutical Technology Co. (Wuxi, China) | Dexamethasone sodium phosphate | Phase 1 (NCT04961099) |
Tinnitus | Small molecule (Brexanolone) | Intravenous | Sage Therapeutics (Cambridge, MA, USA) | Gamma-aminobutyric acid A receptor positive modulator | Phase 2 (NCT05645432) |
Tinnitus | Small molecule (Gabapentin) | Oral administration | Islamic Azad University of Mashhad (Mashhad, Iran) | Gamma-aminobutyric acid analogue | Phase 2 completed (NCT00555776) |
Tinnitus | Small molecule (BGG492A (Selurampanel)) | Oral administration | Novartis Pharmaceuticals (Basel, Switzerland) | AMPA-type glutamate receptor antagonist | Phase 2 completed (NCT01302873) |
Tinnitus | Small molecule (Etanercept–Enbrel) | Systemic injection | Wayne State University (Detroit, MI, USA) | TNF-α inhibitor | Phase 2 (NCT04066348) |
Genetic (otoferlin-mediated HL) | Gene therapy (AK-OTOF) | Intracochlear | Akouos, Inc. (Boston, MA, USA) | Replace defective OTOF with healthy OTOF cDNA transcript | Phase 1/2 (NCT05821959) |
Genetic (otoferlin-mediated HL) | Gene therapy (DB-OTO) | Intracochlear | Decibel Therapeutics (Boston, MA, USA) | Replace defective OTOF with healthy OTOF cDNA transcript | Phase 1/2 (NCT05788536) |
Genetic (otoferlin-mediated HL) | Gene editing (HG205) | Intracochlear | HuidaGene Therapeutics Co., Ltd. (Shangai, China) | CRISPR/Cas13 RNA base editing for p.Q829X mutation in the OTOF gene | Phase 1 (NCT06025032) |
Genetic (Wolfram syndrome) | Small molecule (Depakine) | Oral administration | Centre d’Etude des Cellules Souches (Corbeil-Essonnes, France) | Sodium valproate—voltage-gated ion channel blocker and histone deacetylase inhibitor | Phase 2 (NCT04940572) |
Genetic (mitochondrial DNA tRNA mutation) | Small molecule (KH176) | Oral administration | Khondrion BV (Nijmegen, The Netherlands) | Intracellular redox modulating agent | Phase 2 (NCT04604548) |
Cause of Hearing Loss | Therapeutic Effect | Intervention (Drug Name) | Route of Administration | Sponsor (Company) | Drug Component (Mechanism of Action) |
---|---|---|---|---|---|
ARHL, NIHL | Otoprotection | ACOU082 | Transdermal patch | Acousia Therapeutics (Tuebingen, Germany) | KCNQ4 receptor agonist |
DIHL (cisplatin) | Otoprotection | ACOU085 | Intratympanic | Acousia Therapeutics (Tuebingen, Germany) | KCNQ4 receptor agonist |
Genetic (CLRN1-mediated HL) | Gene therapy | AK-CLRN1 | Intratympanic | Akouos, Inc. (Boston, MA, USA) | AAV CLRN1 gene transfer to cochlear HCs |
Genetic (autosomal dominant) | Gene therapy | Undisclosed | N/A | Akouos, Inc. (Boston, MA, USA) | N/A |
Genetic (GJB2-mediated HL) | Gene therapy | GJB2 | N/A | Akouos, Inc. (Boston, MA, USA) | GJB2 gene correction in SCs |
Genetic | HC regeneration | Undisclosed | N/A | Akouos, Inc. (Boston, MA, USA) | N/A |
Genetic (vestibular schwannoma) | Gene therapy | AK-antiVEGF | N/A | Akouos, Inc. (Boston, MA, USA) | N/A |
AIHL, DIHL, NIHL | Otoprotection | AP-001 | Transtympanic | Anida Pharma (Cambridge, MA, USA) | Neuroprotectin (D1/NPD1) with anti-inflammatory, cell survival and tissue repair properties |
Genetic (GJB2-mediated HL) | Gene therapy | AAV.103 | N/A | Decibel Therapeutics (collaboration with Regeneron) | AAV GJB2 gene transfer to cells that would normally express GJB2 |
Genetic (STRC-mediated HL) | Gene therapy | AAV.104 | Undisclosed | Decibel Therapeutics (collaboration with Regeneron) | AAV STRC gene transfer to selectively target outer HCs |
Genetic | Gene therapy | AAV.105 | Undisclosed | Decibel Therapeutics (Boston, MA, USA) | Undisclosed |
Genetic | Regeneration | AAV.201 | Undisclosed | Decibel Therapeutics (Boston, MA, USA) | ATOH1 and SOX2 inhibitor |
Genetic | HC regeneration | Undisclosed | Undisclosed | Decibel Therapeutics (Boston, MA, USA) | Undisclosed |
Tinnitus | Undisclosed | GW-TT2 | Nasal spray | Gateway Biotechnology (St. Louis, MO, USA) | FDA-approved drug |
Tinnitus | Gene therapy | GW-TT5 | N/A | Gateway Biotechnology (St Louis, MO, USA) | N/A |
Tinnitus | Undisclosed | GW-TT23 | Nasal spray | Gateway Biotechnology (St. Louis, MO, USA) | N/A |
DIHL, NIHL | Neural protection and regeneration | HB-097 (Cometin) | N/A | Hoba Therapeutics (Copenhagen, Denmark) | Neurotrophic factor targeting the JAK-STAT3 and MEK-MERK pathways promote the survival of neuronal cells |
MD | Otoprotection | IB2000 | N/A | IntraBio (London, UK) | Diferuloylmethane analogue with anti-inflammatory property |
MD | Otoprotection | IB5000 (Betahistidine) | N/A | IntraBio (London, UK) | Monoamine oxidase inhibitor |
Auditory neuropathy | Neural cell replacement therapy | ANP1 | N/A | Lineage Cell Therapeutics (Carlsbad, CA, USA) | Replace damaged cells with auditory neuronal progenitors |
Genetic (TMPRSS3-mediated HL) | Gene therapy | Myr-201 | N/A | Myrtelle, Inc. (Wakefield, MA, USA) | AAV TMPRSS3 gene transfer |
AIED | Otoprotection | OR-102A | N/A | O-Ray Pharma (Pasadena, CA, USA) | TNFα inhibitor |
SNHL | Otoprotection | OR-102C | N/A | O-Ray Pharma (Pasadena, CA, USA) | Protective effect during cochlear implant surgery |
ARHL | Otoprotection | OR-112 | N/A | O-Ray Pharma (Pasadena, CA, UAS) | N/A |
MD | Otoprotection | ORB-202 (Betamethasone) | Intratympanic | Orbis Biosciences (Lenexa, KS, USA) | Fast film-forming agent (FFA) encapsulating betamethasone |
SNHL | HC regeneration | Small molecule (OPI-001) | N/A | Otologic Pharmaceuticals (Okhaloma City, OK, USA) | Small molecule drugs and siRNA to promote HC regeneration |
Genetic (TMPRSS3-mediated HL) | Gene therapy | RHI100 | N/A | Rescue Hearing Inc. (Gainesville, FL, USA) | AAV TMPRSS3 gene transfer |
Genetic (non-syndromic HL) | Gene therapy | RHI400 | N/A | Rescue Hearing Inc. (Gainesville, FL, USA) | Target major cause of non-syndromic HL |
SNHL | Gene therapy | RHI500 | N/A | Rescue Hearing Inc. (Gainesville, FL, USA) | Target HL in cochlear implant population |
Neurodegenerative disease | Gene therapy | RHI600 | N/A | Rescue Hearing Inc (Gainesville, FL, USA) | N/A |
Auditory neuropathy | Neural cell replacement therapy | Rincell-1 | N/A | Rinri Therapeutics (Sheffield, UK) | Replace damaged cells with embryonic stem cells |
Genetic (OTOF-mediated HL) | Gene therapy | OTOF-GT (SENS-501) | N/A | Sensorion (Montpellier, France) | Dual AAV OTOF gene transfer to cochlear HCs |
Genetic (GJB2-mediated HL) | Gene therapy | GJB2-GT | N/A | Sensorion (Montpellier, France) | Dual AAV GJB2 gene transfer to cochlear HCs |
SNHL | Regeneration | SPI-5557 | N/A | Sound Pharmaceuticals (Seattle, WA, USA) | Cyclin-dependent kinase (p27Kip1) inhibitor |
DIHL (cisplatin) | Otoprotection | LPT99 | Transtympanic (hydrogel formulation) | Spiral Therapeutics (South San Francisco, CA, USA) | APAF-1 inhibitor, anti-apoptotic |
DIHL (cisplatin) | Otoprotection | TT001 (AZD5438) | N/A | Ting Therapeutics (Ohama, NE, USA) | Cyclin-dependent kinase (p27Kip1) inhibitor |
DIHL (cisplatin) | Otoprotection | TT002 (Niclosamide) | N/A | Ting Therapeutics (Ohama, NE, USA) | EGFR-ERK pathway |
DIHL | Otoprotection | TT003 (Piperlongumine) | N/A | Ting Therapeutics (Ohama, NE, USA) | Akt phophorylation inhibition via the accumulation of reactive oxygen species |
Gene/Disease Model | Model | Mechanism of Action | Chemical Modification | Effect | Reference |
---|---|---|---|---|---|
DFNA9 | Minigene splicing assay | RNAse H1-mediated degradation with siRNA | 2′-deoxyribose flanked with 2′-O-methyl-RNA with PS backbone | Selective suppression of the mutant COCH c.151C>T pre-mRNA transcript | [139] |
DFNA3 | Gjb2R75W mice, P19 | RNAi-mediated degradation with siRNA | 2′-deoxythymidine residues | Selective suppression of the dominant negative Gjb2R75W expression in the organ of Corti and prevention of HL in mice | [140] |
Pendred syndrome | Patient-derived PBM cells; chimeric mice, P3–P4 | Splice modification | 2′-MOE with PS backbone | Correction of splicing caused by SLC26A4 c.919-2A>G mutation in patient-derived blood cells and in the chimeric mouse inner ear | [129] |
DFNA36 | Beethoven mice, P0–P2 | RNAi-mediated degradation with miRNA | miRNA conjugated to AAV2/9 vector | Improved ABR thresholds; expression of Tmc1Bth/+ mutant allele significantly reduced compared to the untreated mutant Bth mice | [140] |
DFNA36 | Beethoven mice, P15–P16, P56–P60 and P84–P90 | RNAi-mediated degradation with miRNA | miRNA conjugated to AAV2/9 vector | Single dose of miTmc at P15–P16 showed significant preservation of hearing and HC morphology at 8–12 weeks of age | [141] |
Usher syndrome type 1C | Ush1c216AA mice, P3–P18 | Splice modification | 2′-MOE with PS backbone | Improved hearing function and correction of harmonin expression in HCs was maintained up to P180 in Ush1c mutant mice injected at P3 and P5 | [122] |
Usher syndrome type 1C | Ush1c216AA mice, P1–P7 | Splice modification | 2′-MOE with PS backbone | ASO-29 treatment at P1–P5 rescued both IHCs and OHCs but treatment at P7 only partially rescued IHC function | [125] |
Usher syndrome type 1C | Ush1c216AA mice, P1–P20 | Splice modification | 2′-MOE with PS backbone | Detectable harmonin protein expression and correction of full-length harmonin transcript; post-treatment of ASO-29 at 1 month showed significant improvement in hearing | [126] |
Usher syndrome type 1C | Ush1c216AA mice, E12.5 | Splice modification | 2′-MOE with PS backbone | Partial restoration of hearing and vestibular function was observed 1 month after injecting in utero in E12.5 Ush1c mice | [124] |
Usher syndrome type 2A | Patient-derived fibroblasts (USH2A c.7595-2144A>G and c.12575G>A) | Splice modification | 2′-MOE with PS backbone | ASO treatment excluded intron 40 caused by the USH2A c.7595-2144A>G mutation into the mature USH2A mRNA transcript in patient-derived fibroblasts | [128] |
Usher syndrome type 3A | Minigene splicing assay | Splice modification | 2′-MOE with PS backbone | ASO treatment showed robust splicing correction of the CLRN1 c.254-649T>G splicing mutation in the cell lines carrying patient mutation | [130] |
Cisplatin-induced HL | Cisplatin-treated rats | RNA-mediated degradation with siRNA | N/A | NOX3 siRNA treatment showed otoprotective effects by suppressing inflammation and apoptotic activity in the cochlea | [135] |
Cisplatin-induced HL | Cisplatin-treated rats | RNAi-mediated degradation with siRNA | N/A | Knockdown of STAT1 inhibited cisplatin-induced inflammation and protected HCs in rat cochleae | [134] |
NIHL | Noise-exposed mice | RNAi-mediated degradation with siRNA | N/A | NOX3 expression was reduced in OHCs and hearing threshold shifts were attenuated in noise-exposed mice | [136] |
NIHL | Noise-exposed rats | RNAi-mediated degradation with siRNA | N/A | Knockdown of TNFα downregulated the genes involved in ROS generation, and therefore improved the hearing outcome after noise exposure | [137] |
HC regeneration | Neomycin-treated mouse cochlea explants | RNAi-mediated degradation with siRNA | N/A | Hes1 and Hes5 mRNA expression levels were reduced where an increase in Atoh1 expression level led to HC regeneration | [142] |
HC regeneration | Noise-exposed guinea pigs | RNAi-mediated degradation with siRNA | N/A | Supernumerary IHCs were observed in 50% of the cochleae treated with Hes1 siRNA; ABR thresholds were well preserved | [143] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lye, J.; Delaney, D.S.; Leith, F.K.; Sardesai, V.S.; McLenachan, S.; Chen, F.K.; Atlas, M.D.; Wong, E.Y.M. Recent Therapeutic Progress and Future Perspectives for the Treatment of Hearing Loss. Biomedicines 2023, 11, 3347. https://doi.org/10.3390/biomedicines11123347
Lye J, Delaney DS, Leith FK, Sardesai VS, McLenachan S, Chen FK, Atlas MD, Wong EYM. Recent Therapeutic Progress and Future Perspectives for the Treatment of Hearing Loss. Biomedicines. 2023; 11(12):3347. https://doi.org/10.3390/biomedicines11123347
Chicago/Turabian StyleLye, Joey, Derek S. Delaney, Fiona K. Leith, Varda S. Sardesai, Samuel McLenachan, Fred K. Chen, Marcus D. Atlas, and Elaine Y. M. Wong. 2023. "Recent Therapeutic Progress and Future Perspectives for the Treatment of Hearing Loss" Biomedicines 11, no. 12: 3347. https://doi.org/10.3390/biomedicines11123347
APA StyleLye, J., Delaney, D. S., Leith, F. K., Sardesai, V. S., McLenachan, S., Chen, F. K., Atlas, M. D., & Wong, E. Y. M. (2023). Recent Therapeutic Progress and Future Perspectives for the Treatment of Hearing Loss. Biomedicines, 11(12), 3347. https://doi.org/10.3390/biomedicines11123347