Assessment of Metabolic Parameters in Female Triathletes with Hashimoto’s Thyroiditis in Poland
Abstract
:1. Introduction
2. Material and Methods
2.1. Participants
2.2. Body Composition Analysis
2.3. Thyroid Gland Ultrasonography
2.4. Biochemical Analyses
2.5. Statistical Analyses
2.6. Ethic Approval
3. Results
4. Discussion
5. Limitation of Our Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Szwajkosz, K.; Wawryniuk, A.; Sawicka, K.; Łuczyk, R.; Tomaszewski, A. Hypothyroidism being caused by chronic autoimmune inflammation of the thyroid gland. J. Educ. Health Sport 2017, 7, 41–54. [Google Scholar] [CrossRef]
- Gawrychowski, J.; Jastrząb, B. Diagnosis and treatment. In Thyroid and Parathyroid Disorders, 2nd ed.; Wydawnictwo Medipage: Warsaw, Poland, 2014; Volume 2, pp. 23–34. [Google Scholar]
- Krotkiewski, M. Thyroid hormones in the pathogenesis and treatment of obesity. Eur. J. Pharmacol. 2002, 440, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Reinehr, T. Obesity and thyroid function. Mol. Cell. Endocrinol. 2010, 316, 165–171. [Google Scholar] [CrossRef]
- Sanyal, D.; Raychaudhuri, M. Hypothyroidism and obesity: An intriguing link. Indian J. Endocr. Metab. 2016, 20, 554–557. [Google Scholar] [CrossRef] [PubMed]
- Asvold, B.O.; Bjoro, T.; Vatten, L.J. Association of serum TSH with high body mass differs between smokers and never-smokers. J. Clin. Endocrinol. Metab. 2009, 94, 5023–5027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Moura Souza, A.; Sichieri, R. Association between serum TSH concentration within the normal range and adiposity. Eur. J. Endocrinol. 2011, 165, 11–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makepeace, A.E.; Bremner, A.P.; O’Leary, P.; Leedman, P.J.; Feddema, P.; Michelangeli, V.; Walsh, J.P. Significant inverse relationship between serum free T4 concentration and body mass index in euthyroid subjects: Differences between smokers and non-smokers. Clin. Endocrinol. 2008, 69, 648–652. [Google Scholar] [CrossRef] [PubMed]
- Manji, N.; Boelaert, K.; Sheppard, M.C.; Holder, R.L.; Gough, S.C.; Franklyn, J.A. Lack of association between serum TSH or free T4 and body mass index in euthyroid subjects. Clin. Endocrinol. 2006, 64, 125–128. [Google Scholar] [CrossRef]
- Bentley, D.; Millet, G.; Vleck, V.; McNaughton, L. Specific aspects of contemporary triathlon: Implications for physiological analysis and performance. Sports Med. 2002, 32, 345–359. [Google Scholar] [CrossRef]
- Halson, S.L. Monitoring training load to understand fatigue in athletes. Sports Med. 2014, 44 (Suppl. 2), S139–S147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosy-Westphal, A.; Schautz, B.; Later, W.; Kehayias, J.J.; Gallagher, D.; Müller, M.J. What makes a BIA equation unique? Validity of eight-electrode multifrequency BIA to estimate body composition in a healthy adult population. Eur. J. Clin. Nutr. 2013, 67 (Suppl. 1), 14–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosy-Westphal, A.; Jensen, B.; Braun, W.; Pourhassan, M.; Gallagher, D.; Müller, M.J. Quantification of whole-body and segmental skeletal muscle mass using phase-sensitive 8-electrode medical bioelectrical impedance devices. Eur. J. Clin. Nutr. 2017, 71, 1061–1067. [Google Scholar] [CrossRef] [PubMed]
- Jensen, B.; Braun, W.; Geisler, C.; Both, M.; Klückmann, K.; Müller, M.J.; Bosy-Westphal, A. Limitations of Fat-Free Mass for the Assessment of Muscle Mass in Obesity. Obes. Facts 2019, 12, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Reljic, D.; Zarafat, D.; Jensen, B.; Herrmann, H.J.; Neurath, M.F.; Konturek, P.C.; Zopf, Y. Phase angle and vector analysis from multifrequency segmental bioelectrical impedance analysis: New reference data for older adults. J. Physiol. Pharmacol. 2020, 71, 491–499. [Google Scholar]
- Caturegli, P.; De Remigis, A.; Rose, N.R. Hashimoto Thyroiditis: Clinical and Diagnostic Criteria. Autoimmun. Rev. 2014, 13, 391–397. [Google Scholar] [CrossRef]
- Malczyk, E.; Wyka, J.; Malczyk, A. Body composition and Hashimoto disease. Rocz. Panstw. Zakl. Hig. 2021, 72, 345–352. [Google Scholar] [CrossRef]
- Okan, B.; Emre, B.; Emine, D.; Ersozlu, B.; Kursat, O. Correction of Hypothyroidism Seems to Have No Effect on Body Fat. Int. J. Endocrinol. 2013, 576794. [Google Scholar] [CrossRef]
- Hoogwerf, B.J.; Nuttal, F.Q. Long term weight regulation in treated hyperthyroid and hypothyroid subjects. Am. J. Med. 1984, 76, 963–970. [Google Scholar] [CrossRef]
- Ruhla, S.; Arafat, A.M.; Osterhoff, M.; Weickert, M.O.; Mai, K.; Spranger, J.; Schöfl, C.; Pfeiffer, A.F.; Möhlig, M. Levothyroxine medication is associated with adiposity independent of TSH. Exp. Clin. Endocrinol. Diabetes 2012, 120, 351–354. [Google Scholar] [CrossRef]
- Chen, X.; Wu, X.; Wu, R.; Sun, X.; Yang, B.; Wang, Y.; Xu, Y. Changes in profile of lipids and adipokines in patients with newly diagnosed hypothyroidism and hyperthyroidism. Sci. Rep. 2016, 6, 26174. [Google Scholar] [CrossRef]
- Coelho, M.; Oliveira, T.; Fernandes, R. Biochemistry of Adipose Tissue: An Endocrine Organ. Arch. Med. Sci. 2013, 9, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Stępień, M.; Wlazeł, R.N.; Paradowski, M.; Banach, M.; Rysz, M.; Misztal, M. Serum Concentrations of Adiponectin, Leptin, Resistin, Ghrelin and Insulin and Their Association with Obesity Indices in Obese Normo- and Hypertensive Patients—Pilot Study. Arch. Med. Sci. 2012, 8, 431–436. [Google Scholar] [CrossRef]
- Roef, G.; Lapauw, B.; Goemaere, S.; Zmierczak, H.G.; Toye, K.; Kaufman, J.M. Body Composition and Metabolic Parameters Are Associated with Variation in Thyroid Hormone Levels Among Euthyroid Young Men. Eur. J. Endocrinol. 2012, 167, 719–726. [Google Scholar] [CrossRef] [Green Version]
- Marzullo, P.; Minocci, A.; Tagliaferri, M.A.; Guzzaloni, G.; Di Blasio, A.; De Medici, C. Investigations of Thyroid Hormones and Antibodies in Obesity: Leptin Levels Are Associated with Thyroid Autoimmunity Independent of Bioanthropometric, Hormonal, and Weight-Related Determinants. J. Clin. Endocrinol. Metab. 2010, 95, 3965–3972. [Google Scholar] [CrossRef] [Green Version]
- Aydogan, B.; Sahin, M. Adipocytokines in Thyroid Dysfunction. ISRN Inflamm. 2013, 2013, 646271. [Google Scholar] [CrossRef] [PubMed]
- Swartz, A.M.; Evans, M.J.; King, G.A.; Thompson, D.L. Evaluation of a foot-to-foot bioelectrical impedance analyser in highly active, moderately active and less active young men. Br. J. Nutr. 2002, 88, 205–210. [Google Scholar] [CrossRef] [Green Version]
- Miyakawa, M.; Tsushima, T.; Murakami, H.; Isozaki, O.; Takano, K. Serum leptin levels and bioelectrical impedance assessment of body composition in patients with Graves’ disease and hypothyroidism. Endocr. J. 1999, 46, 665–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seppel, T.; Kosel, A.; Schlaghecke, R. Bioelectrical impedance assessment of body composition in thyroid disease. Eur. J. Endocrinol. 1997, 136, 493–498. [Google Scholar] [CrossRef] [PubMed]
- Langdahl, B.L.; Loft, A.G.; Eriksen, E.F.; Mosekilde, L.; Charles, P. Bone mass, bone turnover and body composition in former hypothyroid patients receiving replacement therapy. Eur. J. Endocrinol. 1996, 134, 702–709. [Google Scholar] [CrossRef]
- Wolf, M.; Weigert, A.; Kreymann, G. Body composition and energy expenditure in thyroidectomized patients during short term hypothyroidism and thyrotropin-suppressive thyroxine therapy. Eur. J. Endocrinol. 1996, 134, 168–173. [Google Scholar] [CrossRef]
- Karmisholt, J.; Andersen, S.; Laurberg, P. Weight loss after therapy of hypothyroidism is mainly caused by excretion of excess body water associated with myxoedema. J. Clin. Endocrinol. Metab. 2011, 96, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Iacobellis, G.; Ribaudo, M.C.; Zappaterreno, A.; Iannucci, C.V.; Leonetti, F. Relationship of thyroid function with body mass index, leptin, insulin sensitivity and adiponectin in euthyroid obese women. Clin. Endocrinol. 2005, 62, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Biondi, B. Thyroid and Obesity: An intriguing relationship. J. Clin. Endocrinol. Metab. 2010, 95, 3614–3617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastemir, M.; Akin, F.; Alkis, E.; Kaptanoglu, B. Obesity is associated with increased serum TSH level, independent of thyroid function. Swiss Med. Wkly. 2007, 137, 431–434. [Google Scholar] [CrossRef] [PubMed]
- Yasar, H.Y.; Topaloglu, O.; Demirpence, M.; Ceyhan, B.O.; Guclu, F. Is Subclinical Hypothyroidism in Patients with Polycystic Ovary Syndrome Associated with BMI? Acta Endocrinol. Buchar. 2016, 12, 431–436. [Google Scholar] [CrossRef]
- Lundbäck, V.; Ekbom, K.; Hagman, E.; Dahlman, I.; Marcus, C. Thyroid-Stimulating Hormone, Degree of Obesity, and Metabolic Risk Markers in a Cohort of Swedish Children with Obesity. Horm. Res. Paediatr. 2017, 88, 140–146. [Google Scholar] [CrossRef]
- Kim, B.J.; Kim, T.Y.; Koh, J.M.; Kim, H.K.; Park, J.Y.; Lee, K.U.; Shong, Y.K.; Kim, W.B. Relationship between serum free T4 (FT4) levels and metabolic syndrome (MS) and its components in healthy euthyroid subjects. Clin. Endocrinol. 2009, 70, 152–160. [Google Scholar] [CrossRef]
- Prats-Puig, A.; Sitjar, C.; Ribot, R.; Calvo, M.; Clausell-Pomés, N.; Soler-Roca, M.; Soriano-Rodríguez, P.; Osiniri, I.; Ros-Miquel, M.; Bassols, J.; et al. Relative hypoadiponectinemia, insulin resistance, and increased visceral fat in euthyroid prepubertal girls with low-normal serum free thyroxine. Obesity 2012, 20, 1455–1461. [Google Scholar] [CrossRef] [PubMed]
Parameters | Recruitment Period ± SD | After 6 Months ± SD | p < 0.01 |
---|---|---|---|
Tch [mg/dL] N < 190 | 187 ± 12 | 178 ± 11 | NS |
LDL-C [mg/dL] N < 115 | 103 ± 11 | 98 ± 10 | NS |
HDL-C [mg/dL] N > 45 | 53 ± 8 | 56 ± 7 | NS |
Non-HDL-C [mg/dL] N < 145 | 132 ± 14 | 126 ± 13 | NS |
TG [mg/dL] N < 150 | 124 ± 16 | 119 ± 15 | NS |
Glucose [mg/dL] N-70-99 | 88 ± 6 | 86 ± 6 | NS |
Creatinine [mg/dL] N-0.6-1.3 | 0.93 ± 0.09 | 0.89 ± 0.08 | NS |
ALT [U/L] N-5-40 | 32 ± 4 | 31 ± 4 | NS |
Calcium [mg/dL] N-2.25-2.65 | 2.31 ± 0.12 | 2.35 ± 0.13 | NS |
Iron [µg/dL] N-60-180 | 89 ± 16 | 93 ± 18 | NS |
Magnesium [mmol/L] N-0.65-1.2 | 0.87 ± 0.12 | 0.89 ± 0.11 | NS |
Parameters | Recruitment Period | 3 Months | 6 Months | p < 0.01 |
---|---|---|---|---|
BMI [kg/m2] | 23.78 ± 4.57 | 23.22 ± 4.33 | 23.14 ± 4.16 | NS |
FM [kg/m2] | 21.16 ± 1.8 | 20.32 ± 1.6 | 19.27 ± 1.5 | <0.01 |
FM [%] | 31.1% | 30.2% | 29.2% | <0.01 |
FFM [kg/m2] | 46.88 ± 2.45 | 46.64 ± 2.23 | 46.23 ± 2.27 | NS |
FFM [%] | 68.9% | 69.2% | 70.8% | NS |
SMM [kg] | 21.23 ± 1.23 | 21.56 ± 1.12 | 21.62 ± 1.13 | NS |
SMM [%] | 31.1% | 31.6% | 31.5% | NS |
TBW [l/%] | 29.7/43.6 | 30.2/44.5 | 30.5/44.7 | NS |
ECW [l/%] | 12.6/18.5 | 13.2/18.9 | 13.4/19.2 | NS |
ECW/TBW [%] | 42.42 | 43.71 | 43.93 | NS |
BIWA [Ω] | 643.9 | 622.4 | 613.3 | NS |
VAT [l] | 0.8 | 0.6 | 0.4 | <0.01 |
Thyroid Parameters | Recruitment Period | 3 Months | 6 Months | p < 0.01 |
---|---|---|---|---|
TSH [uIU/mL] (N-0.35-4.55) + SD | 4.84 ± 1.44 | 2.31 ± 1.12 | 1.93 ± 0.87 | <0.01 |
fT4 [pmol/L] (N-7.3-14.4) + SD | 9.26 ± 2.15 | 11.23 ± 2.54 | 12.87 ± 2.66 | <0.01 |
TPOAbs [IU/mL] (N-0-9) + SD | 289 ± 76 | 266 ± 74 | 263 ± 66 | NS |
TgAbs [IU/mL] (N-0-4) + SD | 192 ± 57 | 186 ± 55 | 172 ± 62 | NS |
L-thyroxine- average dose + SD | - | 58.4 ± 10.2 | 73.2 ± 14.4 | NS |
Metabolic Parameters | TSH | fT4 | TPOAbs | TgAbs | ||||
---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | |
BMI | 0.236 | <0.01 | −0.087 | <0.01 | 0.113 | NS | 0.094 | NS |
VAT | 0.324 | <0.01 | −0.125 | <0.01 | 0.142 | NS | 0.155 | NS |
FM | 0.126 | NS | −0.056 | NS | 0.008 | NS | 0.006 | NS |
FFM | 0.142 | NS | 0.004 | NS | 0.013 | NS | 0.021 | NS |
SSM | 0.015 | NS | 0.012 | NS | 0.043 | NS | 0.023 | NS |
TBW | −0.047 | NS | 0.013 | NS | 0.003 | NS | 0.008 | NS |
Metabolic Parameters | TSH | fT4 | TPOAbs | TgAbs | ||||
---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | |
BMI | 0.202 | <0.01 | −0.065 | <0.01 | 0.084 | NS | 0.042 | NS |
VAT | 0.277 | <0.01 | −0.088 | <0.01 | 0.075 | NS | 0.038 | NS |
FFM | 0.112 | NS | −0.072 | NS | 0.021 | NS | 0.032 | NS |
FM | 0.089 | NS | 0.008 | NS | 0.006 | NS | 0.004 | NS |
SSM | 0.023 | NS | 0.031 | NS | 0.004 | NS | 0.012 | NS |
TBW | −0.012 | NS | 0.009 | NS | 0.002 | NS | 0.003 | NS |
Metabolic Parameters | TSH | fT4 | TPOAbs | TgAbs | ||||
---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | |
BMI | 0.255 | <0.01 | −0.125 | <0.01 | 0.033 | NS | 0.029 | NS |
VAT | 0.223 | <0.01 | −0.123 | <0.01 | 0.048 | NS | 0.019 | NS |
FFM | 0.135 | NS | −0.086 | NS | 0.044 | NS | 0.036 | NS |
FM | 0.076 | NS | 0.013 | NS | 0.012 | NS | 0.023 | NS |
SSM | 0.009 | NS | 0.008 | NS | 0.006 | NS | 0.007 | NS |
TBW | −0.004 | NS | 0.012 | NS | 0.004 | NS | 0.002 | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gierach, M.; Junik, R. Assessment of Metabolic Parameters in Female Triathletes with Hashimoto’s Thyroiditis in Poland. Biomedicines 2023, 11, 769. https://doi.org/10.3390/biomedicines11030769
Gierach M, Junik R. Assessment of Metabolic Parameters in Female Triathletes with Hashimoto’s Thyroiditis in Poland. Biomedicines. 2023; 11(3):769. https://doi.org/10.3390/biomedicines11030769
Chicago/Turabian StyleGierach, Marcin, and Roman Junik. 2023. "Assessment of Metabolic Parameters in Female Triathletes with Hashimoto’s Thyroiditis in Poland" Biomedicines 11, no. 3: 769. https://doi.org/10.3390/biomedicines11030769