Atherosclerosis, Cardiovascular Disease, and COVID-19: A Narrative Review
Abstract
:1. Introduction
2. Atherosclerosis and CVD as COVID-19 Risk Factors
3. COVID-19 as a Risk Factor of Atherosclerosis or CVD
4. Long-Term Cardiovascular Outcomes of COVID-19
5. How the Most Common Treatments for CVD Prevention Influence SARS-CoV-2 Infection
5.1. ACEIs and ARBs
5.2. Statins
5.3. Anticoagulants and Aspirin
6. Summary and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO Coronavirus (COVID-19) Dashboard; World Health Organization: Geneva, Switzerland, 2023; Available online: https://covid19.who.int/ (accessed on 14 March 2023).
- Ma, Y.; Deng, J.; Liu, Q.; Du, M.; Liu, M.; Liu, J. Long-term consequences of COVID-19 at 6 months and above: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2022, 19, 6865. [Google Scholar] [CrossRef] [PubMed]
- Rey-Reñones, C.; Martinez-Torres, S.; Martín-Luján, F.M.; Pericas, C.; Redondo, A.; Vilaplana-Carnerero, C.; Dominguez, A.; Grau, M. Type 2 diabetes mellitus and COVID-19: A narrative review. Biomedicines 2022, 10, 2089. [Google Scholar] [CrossRef]
- Lee, C.C.E.; Ali, K.; Connell, D.; Mordi, I.R.; George, J.; Lang, E.M.; Lang, C.C. COVID-19-associated cardiovascular complications. Diseases 2021, 9, 47. [Google Scholar] [CrossRef]
- Garg, M.; Maralakunte, M.; Garg, S.; Dhooria, S.; Sehgal, I.; Bhalla, A.S.; Vijayvergiya, R.; Grover, S.; Bhatia, V.; Jagia, P.; et al. The conundrum of ‘Long-COVID-19’: A narrative review. Int. J. Gen. Med. 2021, 14, 2491–2506. [Google Scholar] [CrossRef]
- Seeherman, S.; Suzuki, Y.J. Viral infection and cardiovascular disease: Implications for the molecular basis of COVID-19 pathogenesis. Int. J. Mol. Sci. 2021, 22, 1659. [Google Scholar] [CrossRef] [PubMed]
- Streblow, D.N.; Orloff, S.L.; Nelson, J.A. Do pathogens accelerate atherosclerosis? J. Nutr. 2001, 131, 2798S–2804S. [Google Scholar] [CrossRef] [PubMed]
- Kunutsor, S.K.; Laukkanen, J.A. Cardiovascular complications in COVID-19: A systematic review and meta-analysis. J. Infect. 2020, 81, e139–e141. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, G.; Cheruiyot, I.; Aggarwal, S.; Wong, J.; Lippi, G.; Lavie, C.J.; Henry, B.M.; Sanchis-Gomar, F. Association of cardiovascular disease with coronavirus disease 2019 (COVID-19) severity: A meta-analysis. Curr. Probl. Cardiol. 2020, 45, 100617. [Google Scholar] [CrossRef]
- Madjid, M.; Aboshady, I.; Awan, I.; Litovsky, S.; Casscells, S.W. Influenza and cardiovascular disease: Is there a causal relationship? Tex. Heart Inst. J. 2004, 31, 4–13. [Google Scholar] [PubMed]
- Jalili, M.; Sayehmiri, K.; Ansari, N.; Pourhossein, B.; Fazeli, M.; Azizi Jalilian, F. Association between influenza and COVID-19 viruses and the risk of atherosclerosis: Meta-analysis study and systematic review. Adv. Respir. Med. 2022, 90, 338–348. [Google Scholar] [CrossRef] [PubMed]
- Hansson, G.K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 2005, 352, 1685–1695. [Google Scholar] [CrossRef]
- Libby, P.; Buring, J.E.; Badimon, L.; Hansson, G.K.; Deanfield, J.; Bittencourt, M.S.; Tokgözoğlu, L.; Lewis, E.F. Atherosclerosis. Nat. Rev. Dis. Prim. 2019, 5, 56. [Google Scholar] [CrossRef] [PubMed]
- Makarova, Y.A.; Ryabkova, V.A.; Salukhov, V.V.; Sagun, B.V.; Korovin, A.E.; Churilov, L.P. Atherosclerosis, cardiovascular disorders and COVID-19: Comorbid pathogenesis. Diagnostics 2023, 13, 478. [Google Scholar] [CrossRef] [PubMed]
- Frostegård, J. Immunity, atherosclerosis and cardiovascular disease. BMC Med. 2013, 11, 117. [Google Scholar] [CrossRef]
- Chaves, S.S.; Nealon, J.; Burkart, K.G.; Modin, D.; Biering-Sørensen, T.; Ortiz, J.R.; Vilchis-Tella, V.M.; Wallace, L.E.; Roth, G.; Mahe, C.; et al. Global, regional and national estimates of influenza-attributable ischemic heart disease mortality. EClinicalMedicine 2022, 55, 101740. [Google Scholar] [CrossRef]
- Saeed, S.; Tadic, M.; Larsen, T.H.; Grassi, G.; Mancia, G. Coronavirus disease 2019 and cardiovascular complications: Focused clinical review. J. Hypertens. 2021, 39, 1282–1292. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Luo, S.; Libby, P.; Shi, G.P. Cathepsin L-selective inhibitors: A potentially promising treatment for COVID-19 patients. Pharmacol. Ther. 2020, 213, 107587. [Google Scholar] [CrossRef] [PubMed]
- Siddiqi, H.K.; Libby, P.; Ridker, P.M. COVID-19—A vascular disease. Trends Cardiovasc. Med. 2021, 31, 1–5. [Google Scholar] [CrossRef]
- Nishiga, M.; Wang, D.W.; Han, Y.; Lewis, D.B.; Wu, J.C. COVID-19 and cardiovascular disease: From basic mechanisms to clinical perspectives. Nat. Rev. Cardiol. 2020, 17, 543–558. [Google Scholar] [CrossRef] [PubMed]
- Grzegorowska, O.; Lorkowski, J. Possible correlations between atherosclerosis, acute coronary syndromes and COVID-19. J. Clin. Med. 2020, 9, 3746. [Google Scholar] [CrossRef] [PubMed]
- Sagris, M.; Theofilis, P.; Antonopoulos, A.S.; Tsioufis, C.; Oikonomou, E.; Antoniades, C.; Crea, F.; Kaski, J.C.; Tousoulis, D. Inflammatory mechanisms in COVID-19 and atherosclerosis: Current pharmaceutical perspectives. Int. J. Mol. Sci. 2021, 22, 6607. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Dong, Y.; Wang, H.; Guo, W.; Zhou, H.; Zhang, Z.; Tian, C.; Du, K.; Zhu, R.; Wang, L.; et al. Cardiovascular disease potentially contributes to the progression and poor prognosis of COVID-19. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1061–1067. [Google Scholar] [CrossRef] [PubMed]
- Raisi-Estabragh, Z.; Cooper, J.; Salih, A.; Raman, B.; Lee, A.M.; Neubauer, S.; Harvey, N.C.; Petersen, S.E. Cardiovascular disease and mortality sequelae of COVID-19 in the UK Biobank. Heart 2022, 109, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Xu, E.; Bowe, B.; Al-Aly, Z. Long-term cardiovascular outcomes of COVID-19. Nat. Med. 2022, 28, 583–590. [Google Scholar] [CrossRef]
- Feng, Y.; Ling, Y.; Bai, T.; Xie, Y.; Huang, J.; Li, J.; Xiong, W.; Yang, D.; Chen, R.; Lu, F.; et al. COVID-19 with different severities: A multicenter study of clinical features. Am. J. Respir. Crit. Care Med. 2020, 201, 1380–1388. [Google Scholar] [CrossRef]
- Vinciguerra, M.; Romiti, S.; Fattouch, K.; De Bellis, A.; Greco, E. Atherosclerosis as Pathogenetic Substrate for SARS-CoV2 Cytokine Storm. J. Clin. Med. 2020, 9, 2095. [Google Scholar] [CrossRef] [PubMed]
- Clerkin, K.J.; Fried, J.A.; Raikhelkar, J.; Sayer, G.; Griffin, J.M.; Masoumi, A.; Jain, S.S.; Burkhoff, D.; Kumaraiah, D.; Rabbani, L.; et al. COVID-19 and cardiovascular disease. Circulation 2020, 141, 1648–1655. [Google Scholar] [CrossRef] [PubMed]
- Lazcano, U.; Cuadrado-Godia, E.; Grau, M.; Subirana, I.; Martínez-Carbonell, E.; Boher-Massaguer, M.; Rodríguez-Campello, A.; Giralt-Steinhauer, E.; Fernández-Pérez, I.; Jiménez-Conde, J.; et al. Increased COVID-19 mortality in people with previous cerebrovascular disease: A population-based cohort study. Stroke 2022, 53, 276–1284. [Google Scholar] [CrossRef]
- Naeini, M.B.; Sahebi, M.; Nikbakht, F.; Jamshidi, Z.; Ahmadimanesh, M.; Hashemi, M.; Ramezani, J.; Miri, H.H.; Yazdian-Robati, R. A meta-meta-analysis: Evaluation of meta-analyses published in the effectiveness of cardiovascular comorbidities on the severity of COVID-19. Obes. Med. 2021, 22, 100323. [Google Scholar] [CrossRef] [PubMed]
- Pellicori, P.; Doolub, G.; Wong, C.M.; Lee, K.S.; Mangion, K.; Ahmad, M.; Berry, C.; Squire, I.; Lambiase, P.D.; Lyon, A.; et al. COVID-19 and its cardiovascular effects: A systematic review of prevalence studies. Cochrane Database Syst. Rev. 2021, 3, CD013879. [Google Scholar] [CrossRef]
- Khawaja, S.A.; Mohan, P.; Jabbour., R.; Bampouri., T.; Bowsher, G.; Hassan, A.M.M.; Huq, F.; Baghdasaryan, L.; Wang, B.; Sethi, A.; et al. COVID-19 and its impact on the cardiovascular system. Open Heart 2021, 8, e001472. [Google Scholar] [CrossRef] [PubMed]
- Hessami, A.; Shamshirian, A.; Heydari, K.; Pourali, F.; Alizadeh-Navaei, R.; Moosazadeh, M.; Abrotan, S.; Shojaie, L.; Sedighi, S.; Shamshirian, D.; et al. Cardiovascular diseases burden in COVID-19: Systematic review and meta-analysis. Am. J. Emerg. Med. 2021, 46, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Buja, L.M.; Wolf, D.A.; Zhao, B.; Akkanti, B.; McDonald, M.; Lelenwa, L.; Reilly, N.; Ottaviani, G.; Elghetany, M.T.; Trujillo, D.O.; et al. The emerging spectrum of cardiopulmonary pathology of the coronavirus disease 2019 (COVID-19): Report of 3 autopsies from Houston, Texas, and review of autopsy findings from other United States cities. Cardiovasc. Pathol. 2020, 48, 107233. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Xiao, W.; Liang, X.; Shi, L.; Zhang, P.; Wang, Y.; Wang, Y.; Yang, H. A meta-analysis on the risk factors adjusted association between cardiovascular disease and COVID-19 severity. BMC Public Health 2021, 21, 1533. [Google Scholar] [CrossRef]
- Collard, D.; Nurmohamed, N.S.; Kaiser, Y.; Reeskamp, L.F.; Dormans, T.; Moeniralam, H.; Simsek, S.; Douma, R.; Eerens, A.; Reidinga, A.C.; et al. Cardiovascular risk factors and COVID-19 outcomes in hospitalised patients: A prospective cohort study. BMJ Open 2021, 11, e045482. [Google Scholar] [CrossRef]
- Mostaza, J.M.; Salinero-Fort, M.A.; Cardenas-Valladolid, J.; Rodriguez-Artalejo, F.; Díaz-Almiron, M.; Vich-Pérez, P.; San Andres-Rebollo, F.J.; Vicente, I.; Lahoz, C. Pre-infection HDL-cholesterol levels and mortality among elderly patients infected with SARS-CoV-2. Atherosclerosis 2022, 341, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Fathi, M.; Vakili, K.; Sayehmiri, F.; Mohamadkhani, A.; Hajiesmaeili, M.; Rezaei-Tavirani, M.; Eilami, O. The prognostic value of comorbidity for the severity of COVID-19: A systematic review and meta-analysis study. PLoS ONE 2021, 16, e0246190. [Google Scholar] [CrossRef]
- Liang, C.; Zhang, W.; Li, S.; Qin, G. Coronary heart disease and COVID-19: A meta-analysis. Med. Clin. 2021, 156, 547–554. [Google Scholar] [CrossRef]
- García-Guimaraes, M.; Mojón, D.; Calvo, A.; Izquierdo, A.; Belarte-Tornero, L.; Salvatella, N.; Llagostera, M.; Negrete, A.; Mas-Stachurska, A.; Ruiz, S.; et al. Influence of cardiovascular disease and cardiovascular risk factors in COVID-19 patients. Data from a large prospective Spanish cohort. REC CardioClin. 2021, 56, 108–117. [Google Scholar]
- Sheppard, J.P.; Nicholson, B.D.; Lee, J.; McGagh, D.; Sherlock, J.; Koshiaris, C.; Oke, J.; Jones, N.R.; Hinton, W.; Armitage, L.; et al. Association between blood pressure control and coronavirus disease 2019 outcomes in 45 418 symptomatic patients with hypertension: An observational cohort study. Hypertension 2021, 77, 846–855. [Google Scholar] [CrossRef]
- Mahat, R.K.; Rathore, V.; Singh, N.; Singh, N.; Singh, S.-K.; Shah, R.K.; Garg, C. Lipid profile as an indicator of COVID-19 severity: A systematic review and meta-analysis. Clin. Nutr. ESPEN 2021, 45, 91–101. [Google Scholar] [CrossRef]
- Arif, Y.A.; Stefanko, A.M.; Garcia, N.; Beshai, D.A.; Fan, W.; Wong, N.D. Estimated atherosclerotic cardiovascular disease risk: Disparities and severe COVID-19 outcomes (from the National COVID Cohort Collaborative). Am. J. Cardiol. 2022, 183, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Budoff, M.J.; Mayrhofer, T.; Ferencik, M.; Bittner, D.; Lee, K.L.; Lu, M.T.; Coles, A.; Jang, J.; Krishnam, M.; Douglas, P.S.; et al. PROMISE Investigators. Prognostic value of coronary artery calcium in the PROMISE Study (Prospective Multicenter Imaging Study for Evaluation of Chest Pain). Circulation 2017, 136, 1993–2005. [Google Scholar] [CrossRef]
- Kotlo, S.; Thorgerson, A.; Kulinski, J. Coronary artery calcification as a predictor of adverse outcomes in patients hospitalized with COVID-19. Am. Heart J. Plus 2023, 28, 100288. [Google Scholar] [CrossRef]
- Lee, K.K.; Rahimi, O.; Lee, C.K.; Shafi, A.; Hawwass, D. A Meta-analysis: Coronary artery calcium score and COVID-19 prognosis. Med. Sci. 2022, 10, 5. [Google Scholar] [CrossRef]
- Yang, J.; Zheng, Y.; Gou, X.; Pu, K.; Chen, Z.; Guo, Q.; Ji, R.; Wang, H.; Wang, Y.; Zhou, Y. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis. Int. J. Infect. Dis. 2020, 94, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Emami, A.; Javanmardi, F.; Pirbonyeh, N.; Akbari, A. Prevalence of underlying diseases in hospitalized patients with COVID-19: A systematic review and meta-analysis. Arch. Acad. Emerg. Med. 2020, 8, e35. [Google Scholar]
- Pillarisetti, J.; Cheema, M.S.; Haloot, J.; Panday, M.; Badin, A.; Mehta, A.; Anderson, A.S.; Prasad, A. Cardiac complications of COVID-19: Incidence and outcomes. Indian Heart J. 2022, 74, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.C.; Hsu, C.K.; Yen, M.Y.; Lee, P.I.; Ko, W.C.; Hsueh, P.R. Long COVID: An inevitable sequela of SARS-CoV-2 infection. J. Microbiol. Immunol. Infect. 2023, 56, 1–9. [Google Scholar] [CrossRef]
- Tobler, D.L.; Pruzansky, A.J.; Naderi, S.; Ambrosy, A.P.; Slade, J.J. Long-term cardiovascular effects of COVID-19: Emerging data relevant to the cardiovascular clinician. Curr. Atheroscler. Rep. 2022, 24, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Maestre-Muñiz, M.M.; Arias, Á.; Mata-Vázquez, E.; Martín-Toledano, M.; López-Larramona, G.; Ruiz-Chicote, A.M.; Nieto-Sandoval, B.; Lucendo, A.J. Long-term outcomes of patients with coronavirus disease 2019 at one year after hospital discharge. J. Clin. Med. 2021, 10, 2945. [Google Scholar] [CrossRef] [PubMed]
- Negreira-Caamaño, M.; Martínez-Del Río, J.; Águila-Gordo, D.; Mateo-Gómez, C.; Soto-Pérez, M.; Piqueras-Flores, J. Cardiovascular events after COVID-19 hospitalization: Long-term follow-up. Rev. Esp. Cardiol. (Engl. Ed.) 2022, 75, 100–102. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, C.Y.; Wang, S.I.; Wei, J.C. Long-term cardiovascular outcomes in COVID-19 survivors among non-vaccinated population: A retrospective cohort study from the TriNetX US collaborative networks. EClinicalMedicine 2022, 53, 101619. [Google Scholar] [CrossRef] [PubMed]
- Knight, R.; Walker, V.; Ip, S.; Cooper, J.A.; Bolton, T.; Keene, S.; Denholm, R.; Akbari, A.; Abbasizanjani, H.; Torabi, F.; et al. CVD-COVID-UK/COVID-IMPACT Consortium and the Longitudinal Health and Wellbeing COVID-19 National Core Study. Association of COVID-19 with major arterial and venous thrombotic diseases: A population-wide cohort study of 48 million adults in England and Wales. Circulation 2022, 146, 892–906. [Google Scholar] [CrossRef] [PubMed]
- Rezel-Potts, E.; Douiri, A.; Sun, X.; Chowienczyk, P.J.; Shah, A.M.; Gulliford, M.C. Cardiometabolic outcomes up to 12 months after COVID-19 infection. A matched cohort study in the UK. PLoS Med. 2022, 19, e1004052. [Google Scholar] [CrossRef]
- Task Force for the management of COVID-19 of the European Society of Cardiology. European Society of Cardiology guidance for the diagnosis and management of cardiovascular disease during the COVID-19 pandemic: Part 1-epidemiology, pathophysiology, and diagnosis. Eur. Heart J. 2022, 43, 1033–1058. [Google Scholar] [CrossRef]
- Task Force for the management of COVID-19 of the European Society of Cardiology. ESC guidance for the diagnosis and management of cardiovascular disease during the COVID-19 pandemic: Part 2-care pathways, treatment, and follow-up. Cardiovasc. Res. 2022, 118, 1618–1666. [Google Scholar] [CrossRef]
- Al-Ani, F.; Chehade, S.; Lazo-Langner, A. Thrombosis risk associated with COVID-19 infection. A scoping review. Thromb. Res. 2020, 192, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Abraham, S.; Nohria, A.; Neilan, T.G.; Asnani, A.; Saji, A.M.; Shah, J.; Lech, T.; Grossman, J.; Abraham, G.M.; McQuillen, D.P.; et al. Cardiovascular drug interactions with nirmatrelvir/ritonavir in patients with COVID-19: JACC review topic of the week. J. Am. Coll. Cardiol. 2022, 80, 1912–1924. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Karakiulakis, G.; Roth, M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir. Med. 2020, 8, e21. [Google Scholar] [CrossRef]
- Fu, L.; Liu, X.; Su, Y.; Ma, J.; Hong, K. Prevalence and impact of cardiac injury on COVID-19: A systematic review and meta-analysis. Clin. Cardiol. 2021, 44, 276–283. [Google Scholar] [CrossRef]
- Liu, Q.; Fu, W.; Zhu, C.J.; Ding, Z.H.; Dong, B.B.; Sun, B.Q.; Chen, R.C. Effect of continuing the use of renin-angiotensin system inhibitors on mortality in patients hospitalized for coronavirus disease 2019: A systematic review, meta-analysis, and meta-regression analysis. BMC Infect. Dis. 2023, 23, 53. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Chen, J.; Zhang, H.; Deng, A. Association of renin-angiotensin system inhibitors with severity or risk of death in patients with hypertension hospitalized for coronavirus disease 2019 (COVID-19) infection in Wuhan, China. JAMA Cardiol. 2020, 5, 825–830. [Google Scholar] [CrossRef] [PubMed]
- Mancia, G.; Rea, F.; Ludergnani, M.; Apolone, G.; Corrao, G. Renin-angiotensin-aldosterone system blockers and the risk of COVID-19. N. Engl. J. Med. 2020, 382, 2431–2440. [Google Scholar] [CrossRef]
- Haroon, S.; Subramanian, A.; Cooper, J.; Anand, A.; Gokhale, K.; Byne, N.; Dhalla, S.; Acosta-Mena, D.; Taverner, T.; Okoth, K.; et al. Renin-angiotensin system inhibitors and susceptibility to COVID-19 in patients with hypertension: A propensity score-matched cohort study in primary care. BMC Infect. Dis. 2021, 21, 262. [Google Scholar] [CrossRef]
- Najmeddin, F.; Solhjoo, M.; Ashraf, H.; Salehi, M.; Rasooli, F.; Ghoghaei, M.; Soleimani, A.; Bahreini, M. Effects of renin-angiotensin-aldosterone inhibitors on early outcomes of hypertensive COVID-19 patients: A randomized triple-blind clinical trial. Am. J. Hypertens. 2021, 34, 1217–1226. [Google Scholar] [CrossRef] [PubMed]
- Puskarich, M.A.; Ingraham, N.E.; Merck, L.H.; Driver, B.E.; Wacker, D.A.; Black, L.P.; Jones, A.E.; Fletcher, C.V.; South, A.M.; Murray, T.A.; et al. Angiotensin Receptor Blocker Based Lung Protective Strategies for Inpatients with COVID-19 (ALPS-IP) Investigators. Efficacy of losartan in hospitalized patients with COVID-19-induced lung injury: A randomized clinical trial. JAMA Netw. Open 2022, 5, e222735. [Google Scholar] [CrossRef] [PubMed]
- Fichtenbaum, C.J.; Gerber, J.G. Interactions between antiretroviral drugs and drugs used for the therapy of the metabolic complications encountered during HIV infection. Clin. Pharmacokinet. 2002, 41, 1195–1211. [Google Scholar] [CrossRef]
- Hanna, I.; Alexander, N.; Crouthamel, M.H.; Davis, J.; Natrillo, A.; Tran, P.; Vapurcuyan, A.; Zhu, B. Transport properties of valsartan, sacubitril and its active metabolite (LBQ657) as determinants of disposition. Xenobiotica 2018, 48, 300–313. [Google Scholar] [CrossRef] [PubMed]
- Gnanenthiran, S.R.; Borghi, C.; Burger, D.; Caramelli, B.; Charchar, F.; Chirinos, J.A.; Cohen, J.B.; Cremer, A.; Di Tanna, G.L.; Duvignaud, A.; et al. Renin-angiotensin system inhibitors in patients with COVID-19: A meta-analysis of randomized controlled trials led by the International Society of Hypertension. J. Am. Heart Assoc. 2022, 11, e026143. [Google Scholar] [CrossRef]
- Huang, N.X.; Yuan, Q.; Fang, F.; Yan, B.P.; Sanderson, J.E. Systematic review and meta-analysis of the clinical outcomes of ACEI/ARB in East-Asian patients with COVID-19. PLoS ONE 2023, 18, e0280280. [Google Scholar] [CrossRef]
- Kurdi, A.; Mueller, T.; Weir, N. An umbrella review and meta-analysis of renin-angiotensin system drugs use and COVID-19 outcomes. Eur. J. Clin. Investig. 2023, 53, e13888. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.M.Y.; Docherty, K.F.; Sattar, N.; Mehta, N.; Kalra, A.; Nowacki, A.S.; Solomon, S.D.; Vaduganathan, M.; Petrie, M.C.; Jhund, P.S.; et al. Renin-angiotensin system blockers, risk of SARS-CoV-2 infection and outcomes from COVID-19: Systematic review and meta-analysis. Eur. Heart J. Cardiovasc. Pharmacother. 2022, 8, 165–178. [Google Scholar] [CrossRef]
- Adam, S.; Ho, J.H.; Bashir, B.; Iqbal, Z.; Ferdousi, M.; Syed, A.A.; Soran, H. The impact of atherosclerotic cardiovascular disease, dyslipidaemia and lipid lowering therapy on Coronavirus disease 2019 outcomes: An examination of the available evidence. Curr. Opin. Lipidol. 2021, 32, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Lala, A.; Johnson, K.W.; Januzzi, J.L.; Russak, A.J.; Paranjpe, I.; Richter, F.; Zhao, S.; Somani, S.; Van Vleck, T.; Vaid, A.; et al. Prevalence and impact of myocardial injury in patients hospitalized with COVID-19 infection. J. Am. Coll. Cardiol. 2020, 76, 533–546. [Google Scholar] [CrossRef]
- Permana, H.; Huang, I.; Purwiga, A.; Kusumawardhani, N.Y.; Sihite, T.A.; Martanto, E.; Wisaksana, R.; Soetedjo, N.N.M. In-hospital use of statins is associated with a reduced risk of mortality in coronavirus-2019 (COVID-19): Systematic review and meta-analysis. Pharmacol. Rep. 2021, 73, 769–780. [Google Scholar] [CrossRef] [PubMed]
- Lao, U.S.; Law, C.F.; Baptista-Hon, D.T.; Tomlinson, B. Systematic review and meta-analysis of statin use and mortality, intensive care unit admission and requirement for mechanical ventilation in COVID-19 patients. J. Clin. Med. 2022, 11, 5454. [Google Scholar] [CrossRef] [PubMed]
- Pal, R.; Banerjee, M.; Yadav, U.; Bhattacharjee, S. Statin use and clinical outcomes in patients with COVID-19: An updated systematic review and meta-analysis. Postgrad. Med. J. 2022, 98, 354–359. [Google Scholar] [CrossRef]
- Onorato, D.; Pucci, M.; Carpene, G.; Henry, B.M.; Sanchis-Gomar, F.; Lippi, G. Protective effects of statins administration in European and North American patients infected with COVID-19: A meta-analysis. Semin. Thromb. Hemost. 2021, 47, 392–399. [Google Scholar] [CrossRef]
- Scheen, A.J. Statins and clinical outcomes with COVID-19: Meta-analyses of observational studies. Diabetes Metab. 2021, 47, 101220. [Google Scholar] [CrossRef]
- Kollias, A.; Kyriakoulis, K.G.; Kyriakoulis, I.G.; Nitsotolis, T.; Poulakou, G.; Stergiou, G.S.; Syrigos, K. Statin use and mortality in COVID-19 patients: Updated systematic review and meta-analysis. Atherosclerosis 2021, 330, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Vahedian-Azimi, A.; Mohammadi, S.M.; Banach, M.; Beni, F.H.; Guest, P.C.; Al-Rasadi, K.; Jamialahmadi, T.; Sahebkar, A. Improved COVID-19 outcomes following statin therapy: An updated systematic review and meta-analysis. BioMed Res. Int. 2021, 2021, 1901772. [Google Scholar] [CrossRef] [PubMed]
- Torres-Peña, J.D.; Katsiki, N.; Perez-Martinez, P. Could statin therapy be useful in patients with coronavirus disease 2019 (COVID-19)? Front. Cardiovasc. Med. 2021, 8, 775749. [Google Scholar] [CrossRef]
- Santosa, A.; Franzén, S.; Nåtman, J.; Wettermark, B.; Parmryd, I.; Nyberg, F. Protective effects of statins on COVID-19 risk, severity and fatal outcome: A nationwide Swedish cohort study. Sci. Rep. 2022, 12, 12047. [Google Scholar] [CrossRef]
- Andrews, L.; Goldin, L.; Shen, Y.; Korwek, K.; Kleja, K.; Poland, R.E.; Guy, J.; Sands, K.E.; Perlin, J.B. Discontinuation of atorvastatin use in hospital is associated with increased risk of mortality in COVID-19 patients. J. Hosp. Med. 2022, 17, 169–175. [Google Scholar] [CrossRef]
- Ghati, N.; Bhatnagar, S.; Mahendran, M.; Thakur, A.; Prasad, K.; Kumar, D.; Dwivedi, T.; Mani, K.; Tiwari, P.; Gupta, R.; et al. Statin and aspirin as adjuvant therapy in hospitalised patients with SARS-CoV-2 infection: A randomised clinical trial (RESIST trial). BMC Infect. Dis. 2022, 22, 606. [Google Scholar] [CrossRef] [PubMed]
- Ghafoori, M.; Saadati, H.; Taghavi, M.; Azimian, A.; Alesheikh, P.; Mohajerzadeh, M.S.; Behnamfar, M.; Pakzad, M.; Rameshrad, M. Survival of the hospitalized patients with COVID-19 receiving atorvastatin: A randomized clinical trial. J. Med. Virol. 2022, 94, 3160–3168. [Google Scholar] [CrossRef] [PubMed]
- Matli, K.; Al Kotob, A.; Jamaleddine, W.; Al Osta, S.; Salameh, P.; Tabbikha, R.; Chamoun, N.; Moussawi, A.; Saad, J.M.; Atwi, G.; et al. Managing endothelial dysfunction in COVID-19 with statins, beta blockers, nicorandil, and oral supplements: A pilot, double-blind, placebo-controlled, randomized clinical trial. Clin. Transl. Sci. 2022, 15, 2323–2330. [Google Scholar] [CrossRef] [PubMed]
- Hejazi, S.; Mircheraghi, F.; Elyasi, S.; Davoodian, N.; Salarbashi, D.; Mehrad-Majd, H. Atorvastatin efficacy in the management of mild to moderate hospitalized COVID-19: A pilot randomized triple-blind placebo- controlled clinical trial. Recent Adv. Antiinfect. Drug Discov. 2022, 17, 212–222. [Google Scholar] [CrossRef]
- Wiggins, B.S.; Lamprecht, D.G., Jr.; Page, R.L., 2nd; Saseen, J.J. Recommendations for managing drug-drug interactions with statins and HIV medications. Am. J. Cardiovasc. Drugs 2017, 17, 375–389. [Google Scholar] [CrossRef] [PubMed]
- Zein, A.F.M.Z.; Sulistiyana, C.S.; Khasanah, U.; Wibowo, A.; Lim, M.A.; Pranata, R. Statin and mortality in COVID-19: A systematic review and meta-analysis of pooled adjusted effect estimates from propensity-matched cohorts. Postgrad. Med. J. 2022, 98, 503–508. [Google Scholar] [CrossRef]
- Doyle, A.J.; Thomas, W.; Retter, A.; Besser, M.; MacDonald, S.; Breen, K.A.; Desborough, M.J.R.; Hunt, B.J. Updated hospital associated venous thromboembolism outcomes with 90-days follow-up after hospitalisation for severe COVID-19 in two UK critical care units. Thromb. Res. 2020, 196, 454–456. [Google Scholar] [CrossRef]
- Nadkarni, G.N.; Lala, A.; Bagiella, E.; Chang, H.L.; Moreno, P.R.; Pujadas, E.; Arvind, V.; Bose, S.; Charney, A.W.; Chen, M.D.; et al. Anticoagulation, bleeding, mortality, and pathology in hospitalized patients with COVID-19. J. Am. Coll. Cardiol. 2020, 76, 1815–1826. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, D.; García-Sanchez, A.; Rali, P.; Muriel, A.; Bikdeli, B.; Ruiz-Artacho, P.; Le Mao, R.; Rodríguez, C.; Hunt, B.J.; Monreal, M. Incidence of VTE and bleeding among hospitalized patients with coronavirus disease 2019: A systematic review and meta-analysis. Chest 2021, 159, 1182–1196. [Google Scholar] [CrossRef]
- Tan, J.Y.; Tan, C.W.; Wong, W.H.; Cheong, M.A.; Lee, L.H.; Kalimuddin, S.; Low, J.G.H.; Ng, H.J. Post-hospitalization venous thromboembolism in COVID-19 patients: Evidence against routine post-hospitalization prophylactic anticoagulation. Int. J. Lab. Hematol. 2022, 44, e4–e7. [Google Scholar] [CrossRef]
- Chow, J.H.; Khanna, A.K.; Kethireddy, S.; Yamane, D.; Levine, A.; Jackson, A.M.; McCurdy, M.T.; Tabatabai, A.; Kumar, G.; Park, P.; et al. Aspirin use is associated with decreased mechanical ventilation, intensive care unit admission, and in-hospital mortality in hospitalized patients with coronavirus disease 2019. Anesth. Analg. 2021, 132, 930–941. [Google Scholar] [CrossRef]
- Abdelwahab, H.W.; Shaltout, S.W.; Sayed Ahmed, H.A.; Fouad, A.M.; Merrell, E.; Riley, J.B.; Salama, R.; Abdelrahman, A.G.; Darling, E.; Fadel, G.; et al. Acetylsalicylic acid compared with enoxaparin for the prevention of thrombosis and mechanical ventilation in COVID-19 patients: A retrospective cohort study. Clin. Drug Investig. 2021, 41, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Osborne, T.F.; Veigulis, Z.P.; Arreola, D.M.; Mahajan, S.M.; Röösli, E.; Curtin, C.M. Association of mortality and aspirin prescription for COVID-19 patients at the Veterans Health Administration. PLoS ONE 2021, 16, e0246825. [Google Scholar] [CrossRef]
- Meizlish, M.L.; Goshua, G.; Liu, Y.; Fine, R.; Amin, K.; Chang, E.; DeFilippo, N.; Keating, C.; Liu, Y.; Mankbadi, M.; et al. Intermediate-dose anticoagulation, aspirin, and in-hospital mortality in COVID-19: A propensity score-matched analysis. Am. J. Hematol. 2021, 96, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Martha, J.W.; Pranata, R.; Lim, M.A.; Wibowo, A.; Akbar, M.R. Active prescription of low-dose aspirin during or prior to hospitalization and mortality in COVID-19: A systematic review and meta-analysis of adjusted effect estimates. Int. J. Infect. Dis. 2021, 108, 6–12. [Google Scholar] [CrossRef]
- Wijaya, I.; Andhika, R.; Huang, I.; Purwiga, A.; Budiman, K.Y. The effects of aspirin on the outcome of COVID-19: A systematic review and meta-analysis. Clin. Epidemiol. Glob. Health 2021, 12, 100883. [Google Scholar] [CrossRef] [PubMed]
- RECOVERY Collaborative Group. Aspirin in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet 2022, 399, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Long, B.; Chavez, S.; Carius, B.M.; Brady, W.J.; Liang, S.Y.; Koyfman, A.; Gottlieb, M. Clinical update on COVID-19 for the emergency and critical care clinician: Medical management. Am. J. Emerg. Med. 2022, 56, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Liverpool Drug Interactions Group. Interactions with Essential Medicines and Nirmatrelvir/Ritonavir. Available online: https://www.covid19-druginteractions.org/ (accessed on 12 March 2023).
- Reis, S.; Popp, M.; Schießer, S.; Metzendorf, M.I.; Kranke, P.; Meybohm, P.; Weibel, S. Anticoagulation in COVID-19 patients—An updated systematic review and meta-analysis. Thromb. Res. 2022, 219, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Liu, F.; Wang, Y.; Gao, M.; Nasr, B.; Lu, C.; Zhang, Q. The effect of previous oral anticoagulant use on clinical outcomes in COVID-19: A systematic review and meta-analysis. Am. J. Emerg. Med. 2022, 54, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Kow, C.S.; Hasan, S.S. Use of antiplatelet drugs and the risk of mortality in patients with COVID-19: A meta-analysis. J. Thromb. Thrombolysis 2021, 52, 124–129. [Google Scholar] [CrossRef]
- Salah, H.M.; Mehta, J.L. Meta-analysis of the effect of aspirin on mortality in COVID-19. Am. J. Cardiol. 2021, 142, 158–159. [Google Scholar] [CrossRef]
- Srivastava, R.; Kumar, A. Use of aspirin in reduction of mortality of COVID-19 patients: A meta-analysis. Int. J. Clin. Pract. 2021, 75, e14515. [Google Scholar] [CrossRef]
Pellicori [31] | Yang [47] | Emami [48] | |
---|---|---|---|
Cardiovascular risk factors | |||
Hypertension | 36.1% (4.5% to 100%) | 21.1% (13.0% to 27.2%) | 16.4% (10.2% to 23.7%) |
Obesity | 21.6% (0.2% to 57.6%) | -- | -- |
Diabetes | 22.1% (0.0% to 100%) | 9.7% (7.2% to 12.2%) | 7.9% (6.6% to 9.3%) |
CVDs | |||
Ischemic heart disease | 22.1% (0.0% to 100%) | -- | -- |
Cardiovascular disease | 23.5% (0.7% to 68.7%) | 8.4% (3.8% to 13.8%) | 12.1% (4.4% to 22.8%) |
Heart failure | 6.5% (0.0% to 28.0%) | -- | -- |
Cerebrovascular accident | 5.1% (0.5% to 19.6%) | -- | -- |
Atrial fibrillation | 11.1% (1.0% to 22.8%) | -- | -- |
Valve disease | 3.7% (1.8% to 6.8%) | -- | -- |
Pellicori [31] | Kunutsor [8] | |
---|---|---|
Myocardial infarction/Acute Coronary syndrome | 1.7% (0.0% to 3.6%) | 6.2% (1.8% to 12.3%) |
Stroke | 1.2% (0.0% to 9.6%) | 1.6% (0.6% to 4.7%) |
Heart failure | 6.8% (0.0% to 24.0%) | 17.6% (14.2% to 21.2%) |
Venous thromboembolism | 7.4% (0.0% to 46.2%) | 1.6% (0.6% to 4.7%) |
Coagulopathy | 8.0% (0.5% to 38.0%) | -- |
Arrythmia | 9.3% (0.0% to 30.3%) | 9.3% (5.1% to 14.6%) |
Mortality | Severity * | |
---|---|---|
Gnanenthiran [71] | 0.95 (0.69 to 1.30) | 1.00 (0.77 to 1.30) |
Huang [72] | 0.61 (0.52 to 0.70) | 0.99 (0.83 to 1.17) |
Kurdi [73] | 0.80 (0.75 to 0.86) | 0.86 (0.78 to 0.95) |
Lee [74] | 0.75 (0.61 to 0.92) | 0.80 (0.58 to 1.10) |
Liu [63] | 0.80 (0.41 to 1.57) | 0.62 (0.44 to 0.88) |
Mortality | Severity * | |
---|---|---|
Lao [78] | 0.72 (0.67 to 0.77) | 0.94 (0.89 to 0.99) |
Pal [79] | 0.51 (0.41 to 0.63) | 1.02 (0.69 to 1.50) |
Zein [92] | 0.72 (0.55 to 0.95) | -- |
Anticoagulants | Mortality | Severity * |
---|---|---|
Reis [106] | 1.03 (0.86 to 1.24) | -- |
Zeng [107] | 1.08 (0.90 to 1.30) | 1.50 (0.72 to 3.12) |
Aspirin | ||
Kow [108] | 0.50 (0.32 to 0.77) | -- |
Martha [101] | 0.46 (0.35 to 0.61) | -- |
Salah [109] | 1.12 (0.84 to 1.50) | -- |
Srivastava [110] | 0.70 (0.63 to 0.77) | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilaplana-Carnerero, C.; Giner-Soriano, M.; Dominguez, À.; Morros, R.; Pericas, C.; Álamo-Junquera, D.; Toledo, D.; Gallego, C.; Redondo, A.; Grau, M. Atherosclerosis, Cardiovascular Disease, and COVID-19: A Narrative Review. Biomedicines 2023, 11, 1206. https://doi.org/10.3390/biomedicines11041206
Vilaplana-Carnerero C, Giner-Soriano M, Dominguez À, Morros R, Pericas C, Álamo-Junquera D, Toledo D, Gallego C, Redondo A, Grau M. Atherosclerosis, Cardiovascular Disease, and COVID-19: A Narrative Review. Biomedicines. 2023; 11(4):1206. https://doi.org/10.3390/biomedicines11041206
Chicago/Turabian StyleVilaplana-Carnerero, Carles, Maria Giner-Soriano, Àngela Dominguez, Rosa Morros, Carles Pericas, Dolores Álamo-Junquera, Diana Toledo, Carmen Gallego, Ana Redondo, and María Grau. 2023. "Atherosclerosis, Cardiovascular Disease, and COVID-19: A Narrative Review" Biomedicines 11, no. 4: 1206. https://doi.org/10.3390/biomedicines11041206
APA StyleVilaplana-Carnerero, C., Giner-Soriano, M., Dominguez, À., Morros, R., Pericas, C., Álamo-Junquera, D., Toledo, D., Gallego, C., Redondo, A., & Grau, M. (2023). Atherosclerosis, Cardiovascular Disease, and COVID-19: A Narrative Review. Biomedicines, 11(4), 1206. https://doi.org/10.3390/biomedicines11041206