SARS-CoV-2 Breakthrough Infections According to the Immune Response Elicited after mRNA Third Dose Vaccination in COVID-19-Naïve Hospital Personnel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting and Patient Selection
2.2. Laboratory
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 10 April 2023).
- World Health Organization. Weekly Epidemiological Update on COVID-19—6 March 2023. Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---16-march-2023 (accessed on 10 April 2023).
- Centers for Disease Control and Prevention. Estimated COVID-19 Burden. 2022. Available online: https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/burden.html (accessed on 10 April 2023).
- World Health Organization. Tracking SARS-CoV-2 Variants. Available online: https://www.who.int/activities/tracking-SARS-CoV-2-variants (accessed on 10 April 2023).
- Araf, Y.; Akter, F.; Tang, Y.; Fatemi, R.; Alam Parvez, S.; Zheng, C.; Hossain, G. Omicron variant of SARS-CoV-2: Genomics, transmissibility, and responses to current COVID-19 vaccines. J. Med. Virol. 2022, 94, 1825–1832. [Google Scholar] [CrossRef]
- University of Oxford. Our World in Data. Coronavirus (COVID-19) Vaccinations. Available online: https://ourworldindata.org/covid-vaccinations (accessed on 10 April 2023).
- Buchan, S.A.; Chung, H.; Brown, K.A.; Austin, P.C.; Fell, D.B.; Gubbay, J.B.; Nasreen, S.; Schwartz, K.L.; Sundaram, M.E.; Tadrous, M.; et al. Estimated Effectiveness of COVID-19 Vaccines Against Omicron or Delta Symptomatic Infection and Severe Outcomes. JAMA Netw. Open 2022, 5, e2232760. [Google Scholar] [CrossRef]
- Andrews, N.; Stowe, J.; Kirsebom, F.; Toffa, S.; Rickeard, T.; Gallagher, E.; Gower, C.; Kall, M.; Groves, N.; O’connell, A.-M.; et al. COVID-19 vaccine effectiveness against the omicron (B.1.1.529) variant. N. Engl. J. Med. 2022, 386, 1532–1546. [Google Scholar] [CrossRef]
- Barouch, D.H. COVID-19 Vaccines—Immunity, Variants, Boosters. N. Engl. J. Med. 2022, 387, 1011–1020. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Safety of COVID-19 Vaccines. 2023. Available online: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/safety-of-vaccines.html (accessed on 10 April 2023).
- European Medicines Agency (EMA). Safety of COVID-19 Vaccines. Available online: https://www.ema.europa.eu/en/human-regulatory/overview/public-health-threats/coronavirus-disease-covid-19/treatments-vaccines/vaccines-covid-19/safety-covid-19-vaccines (accessed on 10 April 2023).
- Rosenblum, H.G.; Gee, J.; Liu, R.; Marquez, P.L.; Zhang, B.; Strid, P.; Abara, W.E.; McNeil, M.M.; Myers, T.R.; Hause, A.M.; et al. Safety of mRNA vaccines administered during the initial 6 months of the US COVID-19 vaccination programme: An observational study of reports to the Vaccine Adverse Event Reporting System and v-safe. Lancet Infect. Dis. 2022, 22, 802–812. [Google Scholar] [CrossRef] [PubMed]
- SAGE Updates COVID-19 Vaccination Guidance. Available online: https://www.who.int/news/item/28-03-2023-sage-updates-covid-19-vaccination-guidance (accessed on 10 April 2023).
- Soriano, J.B.; Murthy, S.; Marshall, J.C.; Relan, P.; Diaz, J.V. A clinical case definition of post-covid-19 condition by a Delphi consensus. Lancet Infect. Dis. 2022, 22, e102–e107. [Google Scholar] [CrossRef] [PubMed]
- Pelosi, P.; Tonelli, R.; Torregiani, C.; Baratella, E.; Confalonieri, M.; Battaglini, D.; Marchioni, A.; Confalonieri, P.; Clini, E.; Salton, F.; et al. Different Methods to Improve the Monitoring of Noninvasive Respiratory Support of Patients with Severe Pneumonia/ARDS Due to COVID-19: An Update. J. Clin. Med. 2022, 11, 1704. [Google Scholar] [CrossRef] [PubMed]
- Bhimraj, A.; Morgan, R.L.; Shumaker, A.H.; Baden, L.; Cheng, V.C.C.; Edwards, K.M.; Gallagher, J.C.; Gandhi, R.T.; Muller, W.J.; Nakamura, M.M.; et al. Infectious Diseases Society of America Guidelines on the Treatment and Management of Patients with COVID-19. Clin. Infect. Dis. 2022, ciac724. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Haupert, S.R.; Zimmermann, L.; Shi, X.; Fritsche, L.G.; Mukherjee, B. Global prevalence of post-coronavirus disease 2019 (COVID-19) condition or long covid: A meta-analysis and systematic review. J. Infect. Dis. 2022, 226, 1593–1607. [Google Scholar] [CrossRef]
- Ambrosino, P.; Lanzillo, A.; Maniscalco, M. COVID-19 and Post-Acute COVID-19 Syndrome: From Pathophysiology to Novel Translational Applications. Biomedicines 2022, 10, 47. [Google Scholar] [CrossRef]
- World Health Organization. Severity of Disease Associated with Omicron Variant as Compared with Delta Variant in Hospitalized Patients with Suspected or Confirmed SARS-CoV-2 Infection; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Accorsi, E.K.; Britton, A.; Fleming-Dutra, K.E.; Smith, Z.R.; Shang, N.; Derado, G.; Miller, J.; Schrag, S.J.; Verani, J.R. Association Between 3 Doses of mRNA COVID-19 Vaccine and Symptomatic Infection Caused by the SARS-CoV-2 Omicron and Delta Variants. JAMA 2022, 327, 639–651. [Google Scholar] [CrossRef]
- Ioannou, B.G.N.; Bohnert, A.S.; O’Hare, A.M.; Boyko, E.J.; Maciejewski, M.L.; Smith, D.V.A.; Bowling, C.B.; Viglianti, E.; Iwashyna, T.J.; Hynes, D.M.; et al. Effectiveness of mRNA COVID-19 Vaccine Boosters Against Infection, Hospitalization, and Death: A Target Trial Emulation in the Omicron (B.1.1.529) Variant Era. Ann. Intern. Med. 2022, 175, 1693–1706. [Google Scholar] [CrossRef]
- European Center for Disease Control. Interim Analysis of COVID-19 Vaccine Effectiveness against Severe Acute Respiratory Infection due to Laboratory Confirmed SARS-CoV-2 among Individuals Aged 20 Years and Older, ECDC Multi-Country Study—Fourth Update; ECDC: Stockholm, Sweden, 2023. [Google Scholar]
- Sette, A.; Crotty, S. Immunological memory to SARS-CoV-2 infection and COVID-19 vaccines. Immunol. Rev. 2022, 310, 27–46. [Google Scholar] [CrossRef]
- Perry, J.; Osman, S.; Wright, J.; Richard-Greenblatt, M.; Buchan, S.A.; Sadarangani, M.; Bolotin, S. Does a humoral correlate of protection exist for SARS-CoV-2? A systematic review. PLoS ONE 2022, 17, e0266852. [Google Scholar] [CrossRef] [PubMed]
- Khoury, D.S.; Cromer, D.; Reynaldi, A.; Schlub, T.E.; Wheatley, A.K.; Juno, J.A.; Subbarao, K.; Kent, S.J.; Triccas, J.A.; Davenport, M.P. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 2021, 27, 1205–1211. [Google Scholar] [CrossRef] [PubMed]
- Meschi, S.; Matusali, G.; Colavita, F.; Lapa, D.; Bordi, L.; Puro, V.; Leoni, B.D.; Galli, C.; Capobianchi, M.R.; Castilletti, C. Predicting the protective humoral response to a SARS-CoV-2 mRNA vaccine. Clin. Chem. Lab. Med. 2021, 59, 2010–2018. [Google Scholar] [CrossRef]
- Gilbert, P.B.; Montefiori, D.C.; McDermott, A.B.; Fong, Y.; Benkeser, D.; Deng, W.; Zhou, H.; Houchens, C.R.; Martins, K.; Jayashankar, L.; et al. Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial. Science 2022, 375, 43–50. [Google Scholar] [CrossRef]
- Möhlendick, B.; Čiučiulkaitė, I.; Elsner, C.; Anastasiou, O.E.; Trilling, M.; Wagner, B.; Zwanziger, D.; Jöckel, K.-H.; Dittmer, U.; Siffert, W. Individuals With Weaker Antibody Responses After Booster Immunization Are Prone to Omicron Breakthrough Infections. Front. Immunol. 2022, 13, 907343. [Google Scholar] [CrossRef]
- Vergori, A.; Lepri, A.C.; Cicalini, S.; Matusali, G.; Bordoni, V.; Lanini, S.; Meschi, S.; Iannazzo, R.; Mazzotta, V.; Colavita, F.; et al. Immunogenicity to COVID-19 mRNA vaccine third dose in people living with HIV. Nat. Commun. 2022, 13, 4922. [Google Scholar] [CrossRef] [PubMed]
- Aiello, A.; Coppola, A.; Ruggieri, S.; Farroni, C.; Altera, A.M.G.; Salmi, A.; Vanini, V.; Cuzzi, G.; Petrone, L.; Meschi, S.; et al. Longitudinal characterisation of B and T-cell immune responses after the booster dose of COVID-19 mRNA-vaccine in people with multiple sclerosis using different disease-modifying therapies. J. Neurol. Neurosurg. Psychiatry 2023, 94, 290–299. [Google Scholar] [CrossRef]
- Farroni, C.; Aiello, A.; Picchianti-Diamanti, A.; Laganà, B.; Petruccioli, E.; Agrati, C.; Garbuglia, A.R.; Meschi, S.; Lapa, D.; Cuzzi, G.; et al. Booster dose of SARS-CoV-2 messenger RNA vaccines strengthens the specific immune response of patients with rheumatoid arthritis: A prospective multicenter longitudinal study. Int. J. Infect Dis. 2022, 125, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Montalbano, M.; Piccolo, P.; Lionetti, R.; Visco-Comandini, U.; Agrati, C.; Grassi, G.; Meschi, S.; Matusali, G.; Conte, F.; Angelone, F.; et al. Third dose of SARS-CoV2 mRNA vaccination produces robust persistent cellular and humoral immune responses in liver transplant recipients. Liver Int. 2023. early view. [Google Scholar] [CrossRef]
- Puro, V.; Castilletti, C.; Agrati, C.; Goletti, D.; Leone, S.; Agresta, A.; Cimini, E.; Tartaglia, E.; Casetti, R.; Colavita, F.; et al. Impact of Prior Influenza and Pneumoccocal Vaccines on Humoral and Cellular Response to SARS-CoV-2 BNT162b2 Vaccination. Vaccines 2021, 9, 615. [Google Scholar] [CrossRef]
- Istituto Superiore di Sanità. Monitoraggio delle varianti del virus SARS-CoV-2 di interesse in sanità pubblica in Italia. Available online: https://www.epicentro.iss.it/coronavirus/sars-cov-2-monitoraggio-varianti-indagini-rapide (accessed on 10 April 2023).
- Matusali, G.; Colavita, F.; Lapa, D.; Meschi, S.; Bordi, L.; Piselli, P.; Gagliardini, R.; Corpolongo, A.; Nicastri, E.; Antinori, A.; et al. SARS-CoV-2 Serum Neutralization Assay: A Traditional Tool for a Brand-New Virus. Viruses 2021, 13, 655. [Google Scholar] [CrossRef]
- Agrati, C.; Castilletti, C.; Goletti, D.; Meschi, S.; Sacchi, A.; Matusali, G.; Bordoni, V.; Petrone, L.; Lapa, D.; Notari, S.; et al. Coordinate Induction of Humoral and Spike Specific T-Cell Response in a Cohort of Italian Health Care Workers Receiving BNT162b2 mRNA Vaccine. Microorganisms 2021, 9, 1315. [Google Scholar] [CrossRef] [PubMed]
- Gruell, H.; Vanshylla, K.; Tober-Lau, P.; Hillus, D.; Schommers, P.; Lehmann, C.; Kurth, F.; Sander, L.E.; Klein, F. mRNA booster immunization elicits potent neutralizing serum activity against the SARS-CoV-2 Omicron variant. Nat. Med. 2022, 28, 477–480. [Google Scholar] [CrossRef] [PubMed]
- Planas, D.; Saunders, N.; Maes, P.; Guivel-Benhassine, F.; Planchais, C.; Buchrieser, J.; Bolland, W.H.; Porrot, F.; Staropoli, I.; Lemoine, F.; et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature 2022, 602, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.P.; Zeng, C.; Carlin, C.; Lozanski, G.; Saif, L.J.; Oltz, E.M.; Gumina, R.J.; Liu, S.-L. Neutralizing antibody responses elicited by SARS-CoV-2 mRNA vaccination wane over time and are boosted by breakthrough infection. Sci. Transl. Med. 2022, 14, eabn8057. [Google Scholar] [CrossRef]
- Ferrari, D.; Clementi, N.; Criscuolo, E.; Ambrosi, A.; Corea, F.; Di Resta, C.; Tomaiuolo, R.; Mancini, N.; Locatelli, M.; Plebani, M.; et al. Antibody Titer Kinetics and SARS-CoV-2 Infections Six Months after Administration with the BNT162b2 Vaccine. Vaccines 2021, 9, 1357. [Google Scholar] [CrossRef]
- Duarte, L.F.; Gálvez, N.M.S.; Iturriaga, C.; Melo-González, F.; Soto, J.A.; Schultz, B.M.; Urzúa, M.; González, L.A.; Vázquez, Y.; Ríos, M.; et al. Immune Profile and Clinical Outcome of Breakthrough Cases After Vaccination With an Inactivated SARS-CoV-2 Vaccine. Front. Immunol. 2021, 12, 742914. [Google Scholar] [CrossRef]
- Yang, S.L.; Ripen, A.M.; Leong, C.T.; Lee, J.V.; Yen, C.H.; Chand, A.K.; Koh, K.; Rahim, N.A.B.A.; Gokilavanan, V.; Mohamed, N.N.E.B.; et al. COVID-19 breakthrough infections and humoral immune response among BNT162b2 vaccinated healthcare workers in Malaysia. Emerg. Microbes Infect 2022, 11, 1262–1271. [Google Scholar] [CrossRef] [PubMed]
- Bergwerk, M.; Gonen, T.; Lustig, Y.; Amit, S.; Lipsitch, M.; Cohen, C.; Mandelboim, M.; Levin, E.G.; Rubin, C.; Indenbaum, V.; et al. COVID-19 Breakthrough Infections in Vaccinated Health Care Workers. N. Engl. J. Med. 2021, 385, 1474–1484. [Google Scholar] [CrossRef] [PubMed]
- McGee, C.; Shi, M.; House, J.; Drude, A.; Gonzalez, G.; Martin, N.; Chen, S.-H.; Rogers, H.; Njunge, A.; Hodge, X.; et al. Longitudinal Serological Surveillance for COVID-19 Antibodies after Infection and Vaccination. Microbiol. Spectr. 2022, 10, e0202622. [Google Scholar] [CrossRef] [PubMed]
- Mink, S.; List, W.; Hoefle, G.; Frick, M.; Suessenbacher, A.; Winder, T.; Fetz, C.; Boesl, A.; Saely, C.H.; Drexel, H.; et al. Evaluation of SARS-CoV-2 antibody levels on hospital admission as a correlate of protection against mortality. J. Intern. Med. 2023. early view. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Interim Guidelines for COVID-19 Antibody Testing in Clinical and Public Health Settings. 2022. Available online: https://www.cdc.gov/coronavirus/2019-ncov/hcp/testing/antibody-tests-guidelines.html (accessed on 10 April 2023).
- Vita, S.; Rosati, S.; Bartoli, T.A.; Beccacece, A.; D’abramo, A.; Mariano, A.; Scorzolini, L.; Goletti, D.; Nicastri, E. Monoclonal Antibodies for Pre- and Postexposure Prophylaxis of COVID-19: Review of the Literature. Pathogens 2022, 11, 882. [Google Scholar] [CrossRef] [PubMed]
Variable | SARS-CoV-2 Infected | Not Infected | Total | p-Value ** | |||
---|---|---|---|---|---|---|---|
Sex | Female | 158 | 42.1% | 217 | 57.9% | 375 | |
Male | 46 | 41.1% | 66 | 58.9% | 112 | 0.93 | |
Direct patient care | No | 47 | 39.5% | 72 | 60.5% | 119 | |
Yes | 157 | 42.7% | 211 | 57.3% | 368 | 0.62 | |
Booster dose vaccine | Spikevax | 79 | 37.8% | 130 | 62.2% | 209 | |
Comirnaty | 125 | 45.0% | 153 | 55.0% | 278 | 0.14 | |
Age at first dose vaccination (median, IQR) | 44 | (32–50) | 48 | (37–54) | 487 | 0.001 | |
Days from booster dose to sample (median, IQR) | 32 | (30–35) | 32 | (30–34) | 487 | 0.98 | |
anti-S/RBD * (BAU/mL geometric mean, IQR) | 3752 | (2380–5318) | 4070 | (2176–5662) | 486 | 0.49 | |
nAbs titer * (geometric mean, IQR) | 320 | (160–640) | 320 | (160–640) | 197 | 0.40 | |
Omicron nAbs titer * (geometric mean, IQR) | 80 | (40–160) | 80 | (80–160) | 159 | 0.58 | |
T-cell specific response measured by IFN-γ * (pg/mL; geometric mean, IQR) | 321 | (170–688) | 442 | (198–852) | 127 | 0.21 | |
Total | 204 | 41.9% | 283 | 58.1% | 487 |
Times | Sex | Age | Estimated Geometric Mean BAU/mL | 95% CI | |
---|---|---|---|---|---|
One month after booster dose | Male | ≤45 years | 3843 | 3285 | 4497 |
Male | >45 years | 3353 | 2883 | 3899 | |
Female | ≤45 years | 3752 | 3408 | 4130 | |
Female | >45 years | 3273 | 2967 | 3609 |
Model 1 | Model 2 | Model 3 | Model 4 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | HR | 95% CI | p-Value | HR | 95% CI | p-Value | ||
anti-S/RBD (BAU/mL) | <2500 | reference | reference | reference | reference | ||||||||
2500–4000 | 1.45 | 1.00–2.10 | 0.05 | 1.45 | 1.00–2.10 | 0.05 | 1.44 | 1.00–2.10 | 0.05 | 1.45 | 1.00–2.10 | 0.05 | |
4001–5500 | 1.05 | 0.70–1.57 | 0.81 | 1.05 | 0.70–1.57 | 0.81 | 1.05 | 0.70–1.56 | 0.82 | 1.04 | 0.70–1.55 | 0.84 | |
>5500 | 1.01 | 0.67–1.51 | 0.98 | 1.01 | 0.67–1.51 | 0.98 | 1.00 | 0.67–1.51 | 0.99 | 0.99 | 0.67–1.48 | 0.97 | |
Age | ≤45 | reference | reference | reference | reference | ||||||||
>45 | 0.59 | 0.44–0.78 | <0.01 | 0.59 | 0.44–0.78 | <0.01 | 0.59 | 0.45–0.78 | <0.01 | 0.59 | 0.45–0.78 | <0.01 | |
Vaccine used as booster dose | Comirnaty | reference | reference | reference | - | - | - | ||||||
Spikevax | 0.96 | 0.71–1.28 | 0.77 | 0.96 | 0.72–1.28 | 0.77 | 0.96 | 0.72–1.28 | 0.77 | - | - | - | |
Direct patient care | Yes | reference | reference | - | - | - | - | - | - | ||||
No | 1.03 | 0.74–1.44 | 0.86 | 1.03 | 0.74–1.44 | 0.86 | - | - | - | - | - | - | |
Sex | Male | reference | - | - | - | - | - | - | - | - | - | ||
Female | 0.99 | 0.71–1.39 | 0.97 | - | - | - | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santoro, A.; Capri, A.; Petrone, D.; Colavita, F.; Meschi, S.; Matusali, G.; Mizzoni, K.; Notari, S.; Agrati, C.; Goletti, D.; et al. SARS-CoV-2 Breakthrough Infections According to the Immune Response Elicited after mRNA Third Dose Vaccination in COVID-19-Naïve Hospital Personnel. Biomedicines 2023, 11, 1247. https://doi.org/10.3390/biomedicines11051247
Santoro A, Capri A, Petrone D, Colavita F, Meschi S, Matusali G, Mizzoni K, Notari S, Agrati C, Goletti D, et al. SARS-CoV-2 Breakthrough Infections According to the Immune Response Elicited after mRNA Third Dose Vaccination in COVID-19-Naïve Hospital Personnel. Biomedicines. 2023; 11(5):1247. https://doi.org/10.3390/biomedicines11051247
Chicago/Turabian StyleSantoro, Annapaola, Andrea Capri, Daniele Petrone, Francesca Colavita, Silvia Meschi, Giulia Matusali, Klizia Mizzoni, Stefania Notari, Chiara Agrati, Delia Goletti, and et al. 2023. "SARS-CoV-2 Breakthrough Infections According to the Immune Response Elicited after mRNA Third Dose Vaccination in COVID-19-Naïve Hospital Personnel" Biomedicines 11, no. 5: 1247. https://doi.org/10.3390/biomedicines11051247
APA StyleSantoro, A., Capri, A., Petrone, D., Colavita, F., Meschi, S., Matusali, G., Mizzoni, K., Notari, S., Agrati, C., Goletti, D., Pezzotti, P., & Puro, V. (2023). SARS-CoV-2 Breakthrough Infections According to the Immune Response Elicited after mRNA Third Dose Vaccination in COVID-19-Naïve Hospital Personnel. Biomedicines, 11(5), 1247. https://doi.org/10.3390/biomedicines11051247