Causal Associations between Functional/Structural Connectivity and Stroke: A Bidirectional Mendelian Randomization Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Selection of Genetic Variants
2.3. Statistical Analysis
3. Results
3.1. The Causal Effects of FC and SC Levels on Stroke
3.2. The Causal Effects of Stroke on FC and SC Levels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD. 2019 Diseases and Injuries Collaborators Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lu, J.; Wang, J.; Deng, P.; Meng, C.; Tang, H. Inflammatory Cytokines and Risk of Ischemic Stroke: A Mendelian Randomization Study. Front. Pharmacol. 2021, 12, 779899. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-Y.; Chen, S.-D.; Leng, X.-Y.; Kuo, K.; Wang, Z.-T.; Cui, M.; Tan, L.; Wang, K.; Dong, Q.; Yu, J.-T. Post-Stroke Cognitive Impairment: Epidemiology, Risk Factors, and Management. J. Alzheimer’s Dis. 2022, 86, 983–999. [Google Scholar] [CrossRef]
- Delavaran, H.; Jönsson, A.-C.; Lövkvist, H.; Iwarsson, S.; Elmståhl, S.; Norrving, B.; Lindgren, A. Cognitive Function in Stroke Survivors: A 10-Year Follow-up Study. Acta Neurol. Scand. 2017, 136, 187–194. [Google Scholar] [CrossRef]
- Tissink, E.; Werme, J.; de Lange, S.C.; Savage, J.E.; Wei, Y.; de Leeuw, C.A.; Nagel, M.; Posthuma, D.; van den Heuvel, M.P. The Genetic Architectures of Functional and Structural Connectivity Properties within Cerebral Resting-State Networks. Eneuro 2023, 10, ENEURO.0242-22.2023. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Ren, C.; Fang, H.; Li, Z.; Chen, P.; Yang, J.; Wang, T. Exploring the Functional Connectivity Characteristics of Brain Networks in Post-Stroke Patients with Global Aphasia: A Healthy Control Based Resting-State FMRI Study. Ann. Palliat. Med. 2021, 10, 12113–12128. [Google Scholar] [CrossRef]
- Baldassarre, A.; Ramsey, L.E.; Siegel, J.S.; Shulman, G.L.; Corbetta, M. Brain Connectivity and Neurological Disorders after Stroke. Curr. Opin. Neurol. 2016, 29, 706–713. [Google Scholar] [CrossRef]
- Yue, X.; Li, Z.; Li, Y.; Gao, J.; Han, H.; Zhang, G.; Li, X.; Shen, Y.; Wei, W.; Bai, Y.; et al. Altered Static and Dynamic Functional Network Connectivity in Post-Stroke Cognitive Impairment. Neurosci. Lett. 2023, 799, 137097. [Google Scholar] [CrossRef]
- Geng, W.; Zhang, J.; Shang, S.; Chen, H.; Shi, M.; Jiang, L.; Yin, X.; Chen, Y.-C. Reduced Functional Network Connectivity Is Associated with Upper Limb Dysfunction in Acute Ischemic Brainstem Stroke. Brain Imaging Behav. 2022, 16, 802–810. [Google Scholar] [CrossRef]
- Lim, J.-S.; Lee, J.-J.; Woo, C.-W. Post-Stroke Cognitive Impairment: Pathophysiological Insights into Brain Disconnectome from Advanced Neuroimaging Analysis Techniques. J. Stroke 2021, 23, 297–311. [Google Scholar] [CrossRef]
- Hopewell, J.C.; Clarke, R. Emerging Risk Factors for Stroke: What Have We Learned From Mendelian Randomization Studies? Stroke 2016, 47, 1673–1678. [Google Scholar] [CrossRef] [PubMed]
- Harshfield, E.L.; Georgakis, M.K.; Malik, R.; Dichgans, M.; Markus, H.S. Modifiable Lifestyle Factors and Risk of Stroke: A Mendelian Randomization Analysis. Stroke 2021, 52, 931–936. [Google Scholar] [CrossRef] [PubMed]
- Kalkonde, Y.V.; Alladi, S.; Kaul, S.; Hachinski, V. Stroke Prevention Strategies in the Developing World. Stroke 2018, 49, 3092–3097. [Google Scholar] [CrossRef]
- Xiuyun, W.; Qian, W.; Minjun, X.; Weidong, L.; Lizhen, L. Education and Stroke: Evidence from Epidemiology and Mendelian Randomization Study. Sci. Rep. 2020, 10, 21208. [Google Scholar] [CrossRef] [PubMed]
- Gill, D.; Efstathiadou, A.; Cawood, K.; Tzoulaki, I.; Dehghan, A. Education Protects against Coronary Heart Disease and Stroke Independently of Cognitive Function: Evidence from Mendelian Randomization. Int. J. Epidemiol. 2019, 48, 1468–1477. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Wang, K.; Ni, Q.-B.; Fan, H.; Zhao, L.; Huang, L.; Yang, M.; Li, H. Educational Attainment and Ischemic Stroke: A Mendelian Randomization Study. Front. Genet. 2021, 12, 794820. [Google Scholar] [CrossRef]
- Liang, J.; Cai, H.; Liang, G.; Liu, Z.; Fang, L.; Zhu, B.; Liu, B.; Zhang, H. Educational Attainment Protects against Type 2 Diabetes Independently of Cognitive Performance: A Mendelian Randomization Study. Acta Diabetol. 2021, 58, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ye, C.; Kong, L.; Zheng, J.; Xu, M.; Xu, Y.; Li, M.; Zhao, Z.; Lu, J.; Chen, Y.; et al. Independent Associations of Education, Intelligence, and Cognition with Hypertension and the Mediating Effects of Cardiometabolic Risk Factors: A Mendelian Randomization Study. Hypertension 2023, 80, 192–203. [Google Scholar] [CrossRef]
- Koren, D.; Slavkovska, M.; Vitkova, M.; Gdovinova, Z. Importance of Retesting for the Final Diagnosis of Post-Stroke Cognitive Impairment. Medicina 2023, 59, 637. [Google Scholar] [CrossRef]
- Li, J.; You, S.-J.; Xu, Y.-N.; Yuan, W.; Shen, Y.; Huang, J.-Y.; Xiong, K.-P.; Liu, C.-F. Cognitive Impairment and Sleep Disturbances after Minor Ischemic Stroke. Sleep Breath. 2019, 23, 455–462. [Google Scholar] [CrossRef]
- Mohd Zulkifly, M.F.; Ghazali, S.E.; Che Din, N.; Singh, D.K.A.; Subramaniam, P. A Review of Risk Factors for Cognitive Impairment in Stroke Survivors. Sci. World J. 2016, 2016, 3456943. [Google Scholar] [CrossRef] [PubMed]
- Savage, J.E.; Jansen, P.R.; Stringer, S.; Watanabe, K.; Bryois, J.; de Leeuw, C.A.; Nagel, M.; Awasthi, S.; Barr, P.B.; Coleman, J.R.I.; et al. Genome-Wide Association Meta-Analysis in 269,867 Individuals Identifies New Genetic and Functional Links to Intelligence. Nat. Genet. 2018, 50, 912–919. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.L.; Howe, L.D.; Wade, K.H.; Ben-Shlomo, Y.; Hill, W.D.; Deary, I.J.; Sanderson, E.C.; Zheng, J.; Korologou-Linden, R.; Stergiakouli, E.; et al. Education, Intelligence and Alzheimer’s Disease: Evidence from a Multivariable Two-Sample Mendelian Randomization Study. Int. J. Epidemiol. 2020, 49, 1163–1172. [Google Scholar] [CrossRef]
- Lee, J.J.; Wedow, R.; Okbay, A.; Kong, E.; Maghzian, O.; Zacher, M.; Nguyen-Viet, T.A.; Bowers, P.; Sidorenko, J.; Karlsson Linnér, R.; et al. Gene Discovery and Polygenic Prediction from a Genome-Wide Association Study of Educational Attainment in 1.1 Million Individuals. Nat. Genet. 2018, 50, 1112–1121. [Google Scholar] [CrossRef] [PubMed]
- Iadecola, C. The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron 2017, 96, 17–42. [Google Scholar] [CrossRef]
- Li, Y.; Yu, Z.; Wu, P.; Chen, J. Ability of an Altered Functional Coupling between Resting-State Networks to Predict Behavioral Outcomes in Subcortical Ischemic Stroke: A Longitudinal Study. Front. Aging Neurosci. 2022, 14, 933567. [Google Scholar] [CrossRef]
- Fan, Y.-T.; Wu, C.-Y.; Liu, H.-L.; Lin, K.-C.; Wai, Y.-Y.; Chen, Y.-L. Neuroplastic Changes in Resting-State Functional Connectivity after Stroke Rehabilitation. Front. Hum. Neurosci. 2015, 9, 546. [Google Scholar] [CrossRef]
- Pantoni, L.; Salvadori, E. Location of Infarcts and Post-Stroke Cognitive Impairment. Lancet Neurol. 2021, 20, 413–414. [Google Scholar] [CrossRef]
- Kalaria, R.N.; Akinyemi, R.; Ihara, M. Stroke Injury, Cognitive Impairment and Vascular Dementia. Biochim. Biophys. Acta 2016, 1862, 915–925. [Google Scholar] [CrossRef]
- Kramer, J.H.; Reed, B.R.; Mungas, D.; Weiner, M.W.; Chui, H.C. Executive Dysfunction in Subcortical Ischaemic Vascular Disease. J. Neurol. Neurosurg. Psychiatry 2002, 72, 217–220. [Google Scholar] [CrossRef]
- Park, C.; Chang, W.H.; Ohn, S.H.; Kim, S.T.; Bang, O.Y.; Pascual-Leone, A.; Kim, Y.-H. Longitudinal Changes of Resting-State Functional Connectivity during Motor Recovery after Stroke. Stroke 2011, 42, 1357–1362. [Google Scholar] [CrossRef] [PubMed]
- Golestani, A.-M.; Tymchuk, S.; Demchuk, A.; Goodyear, B.G.; VISION-2 Study Group. Longitudinal Evaluation of Resting-State FMRI after Acute Stroke with Hemiparesis. Neurorehabil. Neural Repair. 2013, 27, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wang, C.; Wu, J.; Zhang, S. A Systematic Review of the Predictive Value of Plasma D-Dimer Levels for Predicting Stroke Outcome. Front. Neurol. 2021, 12, 693524. [Google Scholar] [CrossRef]
- Woodruff, T.M.; Thundyil, J.; Tang, S.-C.; Sobey, C.G.; Taylor, S.M.; Arumugam, T.V. Pathophysiology, Treatment, and Animal and Cellular Models of Human Ischemic Stroke. Mol. Neurodegener. 2011, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Chi, X.; Wang, L.; Liu, H.; Zhang, Y.; Shen, W. Post-Stroke Cognitive Impairment and Synaptic Plasticity: A Review about the Mechanisms and Chinese Herbal Drugs Strategies. Front. Neurosci. 2023, 17, 1123817. [Google Scholar] [CrossRef] [PubMed]
- Joy, M.T.; Carmichael, S.T. Encouraging an Excitable Brain State: Mechanisms of Brain Repair in Stroke. Nat. Rev. Neurosci. 2021, 22, 38–53. [Google Scholar] [CrossRef] [PubMed]
- Siegel, J.S.; Ramsey, L.E.; Snyder, A.Z.; Metcalf, N.V.; Chacko, R.V.; Weinberger, K.; Baldassarre, A.; Hacker, C.D.; Shulman, G.L.; Corbetta, M. Disruptions of Network Connectivity Predict Impairment in Multiple Behavioral Domains after Stroke. Proc. Natl. Acad. Sci. USA 2016, 113, E4367–E4376. [Google Scholar] [CrossRef]
Functional/Structural Connectivity (Exposure) | Stroke Type (Outcome) | MR Method | No. SNP | F | β (95% CI) | p-Value |
---|---|---|---|---|---|---|
Global mean FC | AIS | IVW(MRE) | 8 | 25.52 | −20.549 (−40.059, −1.039) | 0.03899 |
MR Egger | 8 | −59.964 (−109.570, −10.357) | ||||
Weighted median | 8 | −24.254 (−55.788, 7.279) | ||||
Simple mode | 8 | −28.694 (−76.351, 18.964) | ||||
Weighted mode | 8 | −28.132 (77.790, 21.525) | ||||
Limbic network FC | SVS | IVW (MRE) | 10 | 22.63 | −33.048 (−56.856, −9.240) | 0.00652 |
MR Egger | 10 | −22.480 (−164.960, 120.000) | ||||
Weighted median | 10 | −43.583 (−89.394, 2.229) | ||||
Simple mode | 10 | −53.689 (−126.947, 19.568) | ||||
Weighted mode | 10 | −50.592 (−114.007, 12.823) | ||||
Ventral attention network FC | SVS | IVW (MRE) | 4 | 21.63 | 122.976 (57.513, 188.438) | 0.00023 |
MR Egger | 4 | 129.368 (−145.057, 403.792) | ||||
Weighted median | 4 | 103.820 (−33.168, 240.808) | ||||
Simple mode | 4 | 66.841 (−107.596, 241.278) | ||||
Weighted mode | 4 | 171.079 (−6.787, 348.945) | ||||
Default mode network SC | LAS | IVW (MRE) | 14 | 21.06 | 37.737 (5.786, 69.687) | 0.02062 |
MR Egger | 14 | 85.152 (−2.216, 172.521) | ||||
Weighted median | 14 | 53.524 (5.341, 101.706) | ||||
Simple mode | 14 | 67.920 (−15.131, 150.971) | ||||
Weighted mode | 14 | 66.506 (−6.566, 139.577) | ||||
/ | ||||||
Stroke Type (Exposure) | Functional/Structural Connectivity (Outcome) | MR Method | No. SNP | F | β (95% CI) | p-Value |
AS | Dorsal attention network FC | IVW (MRE) | 47 | 48.41 | 2.938 × 10−4 (1.420 × 10−5, 5.732 × 10−4) | 0.03946 |
MR Egger | 47 | 6.562 × 10−4 (−2.428 × 10−4, 1.555 × 10−3) | ||||
Weighted median | 47 | 2.888 × 10−4 (1.086 × 10−4, 6.862 × 10−4) | ||||
Simple mode | 47 | 3.669 × 10−4 (−5.547 × 10−4, 1.288 × 10−3) | ||||
Weighted mode | 47 | 3.669 × 10−4 (5.267 × 10−4, 1.261 × 10−3) | ||||
LAS | Somatomotor network FC | IVW (MRE) | 34 | 29.97 | −5.079 × 10−4 (−1.010 × 10−3, −5.617 × 10−6) | 0.04749 |
MR Egger | 34 | −2.450 × 10−6 (−1.420 × 10−3, 1.414 × 10−3) | ||||
Weighted median | 34 | −5.920 × 10−4 (−1.538 × 10−3, 3.539 × 10−4) | ||||
Simple mode | 34 | −5.828 × 10−4 (−2.644 × 10−3, 1.478 × 10−3) | ||||
Weighted mode | 34 | −6.024 × 10−4 (−2.333 × 10−3, 1.129 × 10−3) |
Functional/Structural Connectivity (Exposure) | Stroke Type (Outcome) | No. SNP | Pleiotropy | Heterogeneity | ||
---|---|---|---|---|---|---|
MR-PRESSO Global p-Value | MR-Egger p-Value | IVW Test p-Value | MR-Egger p-Value | |||
Global mean FC | AIS | 8 | 0.7266 | 0.1244 | 0.9700 | 0.7185 |
Limbic network FC | SVS | 10 | 0.9065 | 0.8845 | 0.9010 | 0.8451 |
Ventral attention network FC | SVS | 4 | 0.7768 | 0.9648 | 0.7821 | 0.5837 |
Default mode net-work SC | LAS | 14 | 0.7342 | 0.2649 | 0.6894 | 0.7293 |
/ | ||||||
Stroke Type (Exposure) | Functional/Structural Connectivity (Outcome) | No. SNP | Pleiotropy | Heterogeneity | ||
MR-PRESSO Global p-Value | MR-Egger p-Value | IVW Test p-Value | MR-Egger p-Value | |||
AS | Dorsal attention network FC | 47 | 0.4479 | 0.4099 | 0.4484 | 0.4357 |
LAS | Somatomotor network FC | 34 | 0.9920 | 0.4279 | 0.9894 | 0.9890 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yang, L.; Liu, J. Causal Associations between Functional/Structural Connectivity and Stroke: A Bidirectional Mendelian Randomization Study. Biomedicines 2023, 11, 1575. https://doi.org/10.3390/biomedicines11061575
Wang Y, Yang L, Liu J. Causal Associations between Functional/Structural Connectivity and Stroke: A Bidirectional Mendelian Randomization Study. Biomedicines. 2023; 11(6):1575. https://doi.org/10.3390/biomedicines11061575
Chicago/Turabian StyleWang, Yisong, Longtao Yang, and Jun Liu. 2023. "Causal Associations between Functional/Structural Connectivity and Stroke: A Bidirectional Mendelian Randomization Study" Biomedicines 11, no. 6: 1575. https://doi.org/10.3390/biomedicines11061575
APA StyleWang, Y., Yang, L., & Liu, J. (2023). Causal Associations between Functional/Structural Connectivity and Stroke: A Bidirectional Mendelian Randomization Study. Biomedicines, 11(6), 1575. https://doi.org/10.3390/biomedicines11061575