Study of Liquid-Based Cytology Using Next-Generation Sequencing as a Liquid Biopsy Application in Patients with Advanced Oncological Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Cohort
2.2. Liquid-Based Cytology
2.3. Liquid-Based Cytology Processing for Next-Generation Sequencing
2.4. Statistical Analysis
3. Results
3.1. Clinical Findings
3.2. Cytological Findings
3.3. Next-Generation Sequence Findings (NGS)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pinzani, P.; D’Argenio, V.; Del Re, M.; Pellegrini, C.; Cucchiara, F.; Salvianti, F.; Galbiati, S. Updates on liquid biopsy: Current trends and future perspectives for clinical application in solid tumors. Clin. Chem. Lab. Med. 2021, 5, 1181–1200. [Google Scholar] [CrossRef] [PubMed]
- Ignatiadis, M.; Sledge, G.W.; Jeffrey, S.S. Liquid biopsy enters the clinic—Implementation issues and future challenges. Nat. Rev. Clin. Oncol. 2021, 18, 297–312. [Google Scholar] [CrossRef] [PubMed]
- De Mattos-Arruda, L.; Siravegna, G. How to use liquid biopsies to treat patients with cancer. ESMO Open 2021, 6, 100060. [Google Scholar] [CrossRef]
- Siravegna, G.; Mussolin, B.; Venesio, T.; Marsoni, S.; Seoane, J.; Dive, C.; Papadopoulos, N.; Kopetz, S.; Corcoran, R.B.; Siu, L.L.; et al. How liquid biopsies can change clinical practice in oncology. Ann. Oncol. 2019, 30, 1580–1590. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, H. Next-generation sequencing in liquid biopsy: Cancer screening and early detection. Hum. Genom. 2019, 13, 34. [Google Scholar] [CrossRef]
- Siravegna, G.; Marsoni, S.; Siena, S.; Bardelli, A. Integrating liquid biopsies into the management of cancer. Nat. Rev. Clin. Oncol. 2017, 14, 531–548. [Google Scholar] [CrossRef]
- Alix-Panabières, C.; Pantel, K. Liquid Biopsy: From Discovery to Clinical Application. Cancer Discov. 2021, 11, 858–873. [Google Scholar] [CrossRef]
- Hentschel, A.E.; van der Toom, E.E.; Vis, A.N.; Ket, J.C.F.; Bosschieter, J.; Heymans, M.W.; van Moorselaar, R.J.A.; Steenbergen, R.D.M.; Nieuwenhuijzen, J.A. A systematic review on mutation markers for bladder cancer diagnosis in urine. BJU Int. 2021, 127, 12–27. [Google Scholar] [CrossRef]
- Witjes, J.A. Follow-up in non-muscle invasive bladder cancer: Facts and future. World J. Urol. 2021, 39, 4047–4053. [Google Scholar] [CrossRef] [PubMed]
- Peña, K.B.; Riu, F.; Hernandez, A.; Guilarte, C.; Badia, J.; Parada, D. Usefulness of the Urine Methylation Test (Bladder EpiCheck®) in Follow-Up Patients with Non-Muscle Invasive Bladder Cancer and Cytological Diagnosis of Atypical Urothelial Cells—An Institutional Study. J. Clin. Med. 2022, 11, 3855. [Google Scholar] [CrossRef] [PubMed]
- Bunda, S.; Zuccato, J.A.; Voisin, M.R.; Wang, J.Z.; Nassiri, F.; Patil, V.; Mansouri, S.; Zadeh, G. Liquid Biomarkers for Improved Diagnosis and Classification of CNS Tumors. Int. J. Mol. Sci. 2021, 22, 4548. [Google Scholar] [CrossRef] [PubMed]
- Pagès, J. Analyse factorielle de données mixtes. Rev. Stat. Appliquée 2004, 52, 93–111. [Google Scholar]
- Akahane, T.; Kitazono, I.; Yanazume, S.; Kamio, M.; Togami, S.; Sakamoto, I.; Nohara, S.; Yokoyama, S.; Kobayashi, H.; Hiraki, T.; et al. Next-generation sequencing analysis of endometrial screening liquid-based cytology specimens: A comparative study to tissue specimens. BMC Med. Genom. 2020, 13, 101. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Akahane, T.; Harada, O.; Kato, Y.; Aimono, E.; Takei, H.; Tasaki, T.; Noguchi, H.; Nishihara, H.; Kamata, H.; et al. Next-generation sequencing in residual liquid-based cytology specimens for cancer genome analysis. Diagn. Cytopathol. 2020, 48, 965–971. [Google Scholar] [CrossRef]
- Akahane, T.; Yamaguchi, T.; Kato, Y.; Yokoyama, S.; Hamada, T.; Nishida, Y.; Higashi, M.; Nishihara, H.; Suzuki, S.; Ueno, S.; et al. Comprehensive validation of liquid-based cytology specimens for next-generation sequencing in cancer genome analysis. PLoS ONE 2019, 14, e0217724. [Google Scholar] [CrossRef]
- Reinhardt, K.; Stückrath, K.; Hartung, C.; Kaufhold, S.; Uleer, C.; Hanf, V.; Lantzsch, T.; Peschel, S.; John, J.; Pöhler, M.; et al. PIK3CA-mutations in breast cancer. Breast Cancer Res. Treat. 2022, 196, 483–493. [Google Scholar] [CrossRef]
- Martínez-Sáez, O.; Chic, N.; Pascual, T.; Adamo, B.; Vidal, M.; González-Farré, B.; Sanfeliu, E.; Schettini, F.; Conte, B.; Brasó-Maristany, F.; et al. Frequency and spectrum of PIK3CA somatic mutations in breast cancer. Breast Cancer Res. 2020, 22, 45. [Google Scholar] [CrossRef]
- André, F.; Ciruelos, E.; Rubovszky, G.; Campone, M.; Loibl, S.; Rugo, H.S.; Iwata, H.; Conte, P.; Mayer, I.A.; Kaufman, B.; et al. SOLAR-1 Study Group. Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast Cancer. N. Engl. J. Med. 2019, 380, 1929–1940. [Google Scholar] [CrossRef]
- André, F.; Ciruelos, E.M.; Juric, D.; Loibl, S.; Campone, M.; Mayer, I.A.; Rubovszky, G.; Yamashita, T.; Kaufman, B.; Lu, Y.S.; et al. Alpelisib plus fulvestrant for PIK3CA-mutated, hormone receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: Final overall survival results from SOLAR-1. Ann. Oncol. 2021, 32, 208–217. [Google Scholar] [CrossRef]
- Bello Roufai, D.; Gonçalves, A.; De La Motte Rouge, T.; Akla, S.; Blonz, C.; Grenier, J.; Gligorov, J.; Saghatchian, M.; Bailleux, C.; Simon, H.; et al. Alpelisib and fulvestrant in PIK3CA-mutated hormone receptor-positive HER2-negative advanced breast cancer included in the French early access program. Oncogene 2023. Erratum in: Oncogene 2023, 42, 1417. PMID: 36611120. [Google Scholar] [CrossRef] [PubMed]
- Dustin, D.; Gu, G.; Fuqua, S.A.W. ESR1 mutations in breast cancer. Cancer 2019, 125, 3714–3728. [Google Scholar] [CrossRef] [PubMed]
- Veluswamy, R.; Mack, P.C.; Houldsworth, J.; Elkhouly, E.; Hirsch, F.R. KRAS G12C-Mutant Non-Small Cell Lung Cancer: Biology, Developmental Therapeutics, and Molecular Testing. J. Mol. Diagn. 2021, 23, 507–520. [Google Scholar] [CrossRef] [PubMed]
- Surveillance, Epidemiology, and End Results Program. Cancer Stat Facts: Lung and Bronchus Cancer. Available online: https://seer.cancer.gov/statfacts/html/lungb.html (accessed on 3 March 2023).
- Roy-Chowdhuri, S. Molecular Pathology of Lung Cancer. Surg. Pathol. Clin. 2021, 14, 369–377. [Google Scholar] [CrossRef]
- Kerr, K.M.; Bibeau, F.; Thunnissen, E.; Botling, J.; Ryška, A.; Wolf, J.; Öhrling, K.; Burdon, P.; Malapelle, U.; Büttner, R. The evolving landscape of biomarker testing for non-small cell lung cancer in Europe. Lung Cancer 2021, 154, 161–175. [Google Scholar] [CrossRef] [PubMed]
- Horn, L.; Spigel, D.R.; Vokes, E.E.; Holgado, E.; Ready, N.; Steins, M.; Poddubskaya, E.; Borghaei, H.; Felip, E.; Paz-Ares, L.; et al. Nivolumab versus docaxel in previously treated patients with advanced non-small-cell lung cancer: Two year outcomes from two randomized, open-label, phase III trials (CheckMate 017 and CheckMate 057). J. Clin. Oncol. 2017, 35, 3924–3933. [Google Scholar] [CrossRef] [PubMed]
- Uras, I.Z.; Moll, H.P.; Casanova, E. Targeting KRAS Mutant Non-Small-Cell Lung Cancer: Past, Present and Future. Int. J. Mol. Sci. 2020, 21, 4325. [Google Scholar] [CrossRef] [PubMed]
- Gkountakos, A.; Centonze, G.; Vita, E.; Belluomini, L.; Milella, M.; Bria, E.; Milione, M.; Scarpa, A.; Simbolo, M. Identification of Targetable Liabilities in the Dynamic Metabolic Profile of EGFR-Mutant Lung Adenocarcinoma: Thinking beyond Genomics for Overcoming EGFR TKI Resistance. Biomedicines 2022, 10, 277. [Google Scholar] [CrossRef]
- Tsai, M.F.; Chang, T.H.; Wu, S.G.; Yang, H.Y.; Hsu, Y.C.; Yang, P.C.; Shih, J.Y. EGFR-L858R mutant enhances lung adenocarcinoma cell invasive ability and promotes malignant pleural effusion formation through activation of the CXCL12-CXCR4 pathway. Sci. Rep. 2015, 5, 13574. [Google Scholar] [CrossRef]
Total (N = 28 Patients) | |
---|---|
Age, median (range) | 63.75 (39–83) |
Sex, n (%) | |
Male | 11 (39.29%) |
Female | 17 (60.71%) |
Stage, n (%) | |
III | 7 (25%) |
IV | 21 (75%) |
Tumor location, n (%) | |
Lymph node | 13 (46.3%) |
Pleural effusion | 9 (32.5%) |
Bone | 3 (10.71%) |
Lung | 3 (10.71%) |
Primary tumor, n (%) | |
Lung | 22 (78.57%) |
Breast | 6 (21.43%) |
Follow-up time (years) | |
<1 | 7 (25%) |
1–3 | 14 (50%) |
>3–5 | 3 (10.71%) |
>5 | 4 (14.29%) |
Evolution | |
Died | 11 (39.9%) |
Survived | 17 (60.71%) |
Patient | Primary Tumor | Cytological Location | Actionable Gen | Other Alterations | Unknown Significant Variants |
---|---|---|---|---|---|
1 | BREAST | BONE | PIK3CA, BRCA1, BRCA2 | ATM, PDGFRA, ERBB2, PTEN, KRAS, NF1, NBN, MRE11, POLE, ATR, FANCI, TP53, ARID1A, SMARCA4, FLT3, CREBBP, RB1, CBL | NONE |
2 | BREAST | BONE | PIK3CA | TP53, MDM4, MYC, ARID, POLE, FANCA, ERBB2, NONE, NOTCH3, FGFR1, NOTCH2 | NONE |
3 | BREAST | PLEURAL EFFUSION | ESR1 | NONE | NONE |
4 | BREAST | BONE | PIK3CA | NONE | NONE |
5 | LUNG | LYMPH NODE | KRAS G12C | NONE | NONE |
6 | LUNG | LYMPH NODE | NONE | KRAS G12A | NONE |
7 | LUNG | LYMPH NODE | NONE | NONE | NONE |
8 | LUNG | LYMPH NODE | KRAS G12C | ERBB3, TP53 | NONE |
9 | BREAST | LYMPH NODE | NONE | NOTCH1 | NONE |
10 | LUNG | LUNG | NONE | NONE | NONE |
11 | LUNG | LYMPH NODE | BRAF | NONE | NONE |
12 | LUNG | PLEURAL EFFUSION | EGFR | TP53 | NONE |
13 | LUNG | PLEURAL EFFUSION | NONE | KRAS G12D | NONE |
14 | LUNG | LUNG | NONE | IDH2 | NONE |
15 | LUNG | LYMPH NODE | NONE | KRAS G12F, TP53 | NONE |
16 | LUNG | PLEURAL EFFUSION | NONE | KRAS G12D | NONE |
17 | LUNG | LYMPH NODE | KRAS G12C | NONE | NONE |
18 | LUNG | LYMPH NODE | NONE | TP53 | NONE |
19 | LUNG | LYMPH NODE | NONE | TP53 | NONE |
20 | LUNG | LYMPH NODE | NONE | TP53, AR | NONE |
21 | LUNG | PLEURAL EFFUSION | NONE | NONE | NONE |
22 | LUNG | LYMPH NODE | KRAS G12C | NONE | NONE |
23 | LUNG | PLEURAL EFFUSION | NONE | BRAF | NONE |
24 | LUNG | LUNG | NONE | NONE | NONE |
25 | BREAST | PLEURAL EFFUSION | NONE | TP53 | PTEN (DELETION) |
26 | LUNG | LYMPH NODE | NONE | KRAS G12V | NONE |
27 | LUNG | PLEURAL EFFUSION | CCD6-RET (FUSION) | ALK (FUSION) | FGFR3 |
28 | LUNG | PLEURAL EFFUSION | NONE | ALK (FUSION) | NONE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peña, K.B.; Riu, F.; Hernandez, A.; Guilarte, C.; Elizalde-Horcada, M.; Parada, D. Study of Liquid-Based Cytology Using Next-Generation Sequencing as a Liquid Biopsy Application in Patients with Advanced Oncological Disease. Biomedicines 2023, 11, 1578. https://doi.org/10.3390/biomedicines11061578
Peña KB, Riu F, Hernandez A, Guilarte C, Elizalde-Horcada M, Parada D. Study of Liquid-Based Cytology Using Next-Generation Sequencing as a Liquid Biopsy Application in Patients with Advanced Oncological Disease. Biomedicines. 2023; 11(6):1578. https://doi.org/10.3390/biomedicines11061578
Chicago/Turabian StylePeña, Karla Beatríz, Francesc Riu, Anna Hernandez, Carmen Guilarte, Marcos Elizalde-Horcada, and David Parada. 2023. "Study of Liquid-Based Cytology Using Next-Generation Sequencing as a Liquid Biopsy Application in Patients with Advanced Oncological Disease" Biomedicines 11, no. 6: 1578. https://doi.org/10.3390/biomedicines11061578
APA StylePeña, K. B., Riu, F., Hernandez, A., Guilarte, C., Elizalde-Horcada, M., & Parada, D. (2023). Study of Liquid-Based Cytology Using Next-Generation Sequencing as a Liquid Biopsy Application in Patients with Advanced Oncological Disease. Biomedicines, 11(6), 1578. https://doi.org/10.3390/biomedicines11061578