Efficacy of Immune Checkpoint Blockade and Biomarkers of Response in Lymphoma: A Narrative Review
Abstract
:1. Introduction
2. Clinical Efficacy of ICB in Lymphomas
2.1. Classical Hodgkin Lymphoma (cHL)
2.1.1. PD-1/PD-L1 ICB as Monotherapy
2.1.2. PD-1/PD-L1 ICB in Combination with Chemotherapy
Frontline Setting
Relapsed/Refractory Setting
2.1.3. PD-1/PD-L1 ICB Combined with Other Agents
2.2. Non-Hodgkin Lymphoma (NHL)
2.2.1. PD-1/PD-L1 ICB as Monotherapy
Aggressive NHL
Indolent B NHL
2.2.2. PD-1/PD-L1 ICB in Combination with Other Agents
Aggressive NHL
- Frontline setting
- Relapse/refractory setting
Indolent B NHL
- Frontline setting
- Relapse/refractory setting
3. Predictive Biomarkers of Response to ICB in Lymphoma
3.1. Tissue Expression and Plasma Levels of PD-Ls
3.1.1. PD-L1 Expression
3.1.2. PD-L2 Expression
3.2. Gene Alterations to 9p24.1
3.3. Epstein–Barr Virus (EBV) and JAK/STAT Signaling Pathway
3.4. Tissue Tumor Mutational Burden (TMB) and Plasma Tumor Mutational Burden (pTMB)
3.5. MSI and d-MMR
3.6. MHC Expression
3.7. Intratumoral CD8+ T Lymphocyte Infiltrate Density
3.8. MicroRNAs
3.9. Gut Microbiome
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Goodman, A.M.; Kato, S.; Bazhenova, L.; Patel, S.P.; Frampton, G.M.; Miller, V.; Stephens, P.J.; Daniels, G.A.; Kurzrock, R. Tumor Mutational Burden as an Independent Predictor of Response to Immunotherapy in Diverse Cancers. Mol. Cancer Ther. 2017, 16, 2598–2608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arneth, B. Tumor Microenvironment. Medicina 2019, 56, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armengol, M.; Santos, J.C.; Fernández-Serrano, M.; Profitós-Pelejà, N.; Ribeiro, M.L.; Roué, G. Immune-Checkpoint Inhibitors in B-Cell Lymphoma. Cancers 2021, 13, 214. [Google Scholar] [CrossRef]
- Petitprez, F.; Meylan, M.; de Reyniès, A.; Sautès-Fridman, C.; Fridman, W.H. The Tumor Microenvironment in the Response to Immune Checkpoint Blockade Therapies. Front. Immunol. 2020, 11, 784. [Google Scholar] [CrossRef] [PubMed]
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef] [Green Version]
- Kyi, C.; Postow, M.A. Immune checkpoint inhibitor combinations in solid tumors: Opportunities and challenges. Immunotherapy 2016, 8, 821–837. [Google Scholar] [CrossRef] [Green Version]
- Gravelle, P.; Burroni, B.; Péricart, S.; Rossi, C.; Bezombes, C.; Tosolini, M.; Laurent, C. Mechanisms of PD-1/PD-L1 expression and prognostic relevance in non-Hodgkin lymphoma: A summary of immunohistochemical studies. Oncotarget 2017, 8, 44960. [Google Scholar] [CrossRef] [Green Version]
- Keir, M.E.; Butte, M.J.; Freeman, G.J.; Sharpe, A.H. PD-1 and Its Ligands in Tolerance and Immunity. Annu. Rev. Immunol. 2008, 26, 677–704. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.; Medeiros, L.J.; Li, S.; Yin, C.C.; Khoury, J.D.; Xu, J. PD-1/PD-L1 Pathway and Its Blockade in Patients with Classic Hodgkin Lymphoma and Non-Hodgkin Large-Cell Lymphomas. Curr. Hematol. Malig. Rep. 2020, 15, 372–381. [Google Scholar] [CrossRef]
- Younes, A.; Santoro, A.; Shipp, M.; Zinzani, P.L.; Timmerman, J.M.; Ansell, S.; Armand, P.; Fanale, M.; Ratanatharathorn, V.; Kuruvilla, J.; et al. Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: A multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol. 2016, 17, 1283–1294. [Google Scholar] [CrossRef] [Green Version]
- Ansell, S.; Armand, P.; Timmerman, J.M.; Shipp, M.A.; Bradley Garelik, M.B.; Zhu, L.; Lesokhin, A.M. Nivolumab in Patients (Pts) with Relapsed or Refractory Classical Hodgkin Lymphoma (R/R cHL): Clinical Outcomes from Extended Follow-up of a Phase 1 Study (CA209-039). Blood 2015, 126, 583. [Google Scholar] [CrossRef]
- Chen, R.; Zinzani, P.L.; Fanale, M.A.; Armand, P.; Johnson, N.A.; Brice, P.; Radford, J.; Ribrag, V.; Molin, D.; Vassilakopoulos, T.P.; et al. Phase II Study of the Efficacy and Safety of Pembrolizumab for Relapsed/Refractory Classic Hodgkin Lymphoma. J. Clin. Oncol. 2017, 35, 2125–2132. [Google Scholar] [CrossRef]
- Ok, C.Y.; Young, K.H. Targeting the programmed death-1 pathway in lymphoid neoplasms. Cancer Treat. Rev. 2017, 54, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Armand, P.; Rodig, S.; Melnichenko, V.; Thieblemont, C.; Bouabdallah, K.; Tumyan, G.; Özcan, M.; Portino, S.; Fogliatto, L.; Caballero, M.D.; et al. Pembrolizumab in Relapsed or Refractory Primary Mediastinal Large B-Cell Lymphoma. J. Clin. Oncol. 2019, 37, 3291–3299. [Google Scholar] [CrossRef]
- Nayak, L.; Iwamoto, F.M.; LaCasce, A.; Mukundan, S.; Roemer, M.G.M.; Chapuy, B.; Armand, P.; Rodig, S.J.; Shipp, M.A. PD-1 blockade with nivolumab in relapsed/refractory primary central nervous system and testicular lymphoma. Blood 2017, 129, 3071–3073. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Xu-Monette, Z.Y.; Xiao, L.; Strati, P.; Hagemeister, F.B.; He, Y.; Chen, H.; Li, Y.; Manyam, G.C.; Li, Y.; et al. Prognostic factors, therapeutic approaches, and distinct immunobiologic features in patients with primary mediastinal large B-cell lymphoma on long-term follow-up. Blood Cancer J. 2020, 10, 49. [Google Scholar] [CrossRef]
- Riemersma, S.A.; Oudejans, J.J.; Vonk, M.J.; Dreef, E.J.; Prins, F.A.; Jansen, P.M.; Vermeer, M.H.; Blok, P.; Kibbelaar, R.E.; Muris, J.J.; et al. High numbers of tumour-infiltrating activated cytotoxic T lymphocytes, and frequent loss of HLA class I and II expression, are features of aggressive B cell lymphomas of the brain and testis. J. Pathol. 2005, 206, 328–336. [Google Scholar] [CrossRef]
- Chen, X.; Song, X.; Li, K.; Zhang, T. FcγR-Binding Is an Important Functional Attribute for Immune Checkpoint Antibodies in Cancer Immunotherapy. Front. Immunol. 2019, 10, 292. [Google Scholar] [CrossRef]
- Ansell, S.; Gutierrez, M.E.; Shipp, M.A.; Gladstone, D.; Moskowitz, A.; Borello, I.; Popa-Mckiver, M.; Farsaci, B.; Zhu, L.; Lesokhin, A.M.; et al. A Phase 1 Study of Nivolumab in Combination with Ipilimumab for Relapsed or Refractory Hematologic Malignancies (CheckMate 039). Blood 2016, 128, 183. [Google Scholar] [CrossRef]
- Armand, P.; Engert, A.; Younes, A.; Fanale, M.; Santoro, A.; Zinzani, P.L.; Timmerman, J.M.; Collins, G.P.; Ramchandren, R.; Cohen, J.B.; et al. Nivolumab for Relapsed/Refractory Classic Hodgkin Lymphoma after Failure of Autologous Hematopoietic Cell Transplantation: Extended Follow-Up of the Multicohort Single-Arm Phase II CheckMate 205 Trial. J. Clin. Oncol. 2018, 36, 1428–1439. [Google Scholar] [CrossRef]
- Armand, P.; Shipp, M.A.; Ribrag, V.; Michot, J.-M.; Zinzani, P.L.; Kuruvilla, J.; Snyder, E.S.; Ricart, A.D.; Balakumaran, A.; Rose, S.; et al. Programmed Death-1 Blockade with Pembrolizumab in Patients with Classical Hodgkin Lymphoma after Brentuximab Vedotin Failure. J. Clin. Oncol. 2016, 34, 3733–3739. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Zinzani, P.L.; Lee, H.J.; Armand, P.; Johnson, N.A.; Brice, P.; Radford, J.; Ribrag, V.; Molin, D.; Vassilakopoulos, T.P.; et al. Pembrolizumab in relapsed or refractory Hodgkin lymphoma: 2-year follow-up of KEYNOTE-087. Blood 2019, 134, 1144–1153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michot, J.-M.; Armand, P.; Ding, W.; Ribrag, V.; Christian, B.; Marinello, P.; Chlosta, S.; Zhang, Y.; Shipp, M.; Zinzani, P.L. KEYNOTE-170: Phase 2 study of pembrolizumab in patients with relapsed/refractory primary mediastinal large B-cell lymphoma (rrPMBCL) or relapsed or refractory Richter syndrome (rrRS). Ann. Oncol. 2016, 27, viii15. [Google Scholar] [CrossRef]
- Song, Y.; Gao, Q.; Zhang, H.; Fan, L.; Zhou, J.; Zou, D.; Li, W.; Yang, H.; Liu, T.; Wang, Q.; et al. Treatment of relapsed or refractory classical Hodgkin lymphoma with the anti-PD-1, tislelizumab: Results of a phase 2, single-arm, multicenter study. Leukemia 2020, 34, 533–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Wu, J.; Chen, X.; Lin, T.; Cao, J.; Liu, Y.; Zhao, Y.; Jin, J.; Huang, H.; Hu, J.; et al. A Single-Arm, Multicenter, Phase II Study of Camrelizumab in Relapsed or Refractory Classical Hodgkin Lymphoma. Clin. Cancer Res. 2019, 25, 7363–7369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.; Su, H.; Song, Y.; Jiang, W.; Sun, X.; Qian, W.; Zhang, W.; Gao, Y.; Jin, Z.; Zhou, J.; et al. Safety and activity of sintilimab in patients with relapsed or refractory classical Hodgkin lymphoma (ORIENT-1): A multicentre, single-arm, phase 2 trial. Lancet Haematol. 2019, 6, e12–e19. [Google Scholar] [CrossRef]
- Lin, N.; Zhang, M.; Bai, H.; Liu, H.; Cui, J.; Ke, X.; Zhang, H.; Liu, L.; Yan, D.; Jiang, Y.; et al. Efficacy and safety of GLS-010 (zimberelimab) in patients with relapsed or refractory classical Hodgkin lymphoma: A multicenter, single-arm, phase II study. Eur. J. Cancer 2022, 164, 117–126. [Google Scholar] [CrossRef]
- Song, Y.; Zhou, K.; Jin, C.; Qian, Z.; Hou, M.; Fan, L.; Li, F.; Ding, K.; Zhou, H.; Li, X.; et al. Penpulimab for Relapsed or Refractory Classical Hodgkin Lymphoma: A Multicenter, Single-Arm, Pivotal Phase I/II Trial (AK105-201). Front. Oncol. 2022, 12, 925236. [Google Scholar] [CrossRef]
- Ansell, S.M.; Lesokhin, A.M.; Borrello, I.; Halwani, A.; Scott, E.C.; Gutierrez, M.; Schuster, S.J.; Millenson, M.M.; Cattry, D.; Freeman, G.J.; et al. PD-1 Blockade with Nivolumab in Relapsed or Refractory Hodgkin’s Lymphoma. N. Engl. J. Med. 2015, 372, 311–319. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, D.; Hatake, K.; Kinoshita, T.; Fukuhara, N.; Choi, I.; Taniwaki, M.; Ando, K.; Terui, Y.; Higuchi, Y.; Onishi, Y.; et al. Multicenter phase II study of nivolumab in Japanese patients with relapsed or refractory classical Hodgkin lymphoma. Cancer Sci. 2017, 108, 1007–1012. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, D.; Terui, Y.; Yamamoto, K.; Fukuhara, N.; Choi, I.; Kuroda, J.; Ando, K.; Hattori, A.; Tobinai, K. Final results of a phase II study of nivolumab in Japanese patients with relapsed or refractory classical Hodgkin lymphoma. Jpn. J. Clin. Oncol. 2020, 50, 1265–1273. [Google Scholar] [CrossRef]
- Armand, P.; Kuruvilla, J.; Michot, J.-M.; Ribrag, V.; Zinzani, P.L.; Zhu, Y.; Marinello, P.; Nahar, A.; Moskowitz, C.H. KEYNOTE-013 4-year follow-up of pembrolizumab in classical Hodgkin lymphoma after brentuximab vedotin failure. Blood Adv. 2020, 4, 2617–2622. [Google Scholar] [CrossRef]
- Zinzani, P.L.; Chen, R.; Armand, P.; Johnson, N.A.; Brice, P.; Radford, J.; Ribrag, V.; Molin, D.; Vassilakopoulos, T.P.; Tomita, A.; et al. Pembrolizumab monotherapy in patients with primary refractory classical hodgkin lymphoma who relapsed after salvage autologous stem cell transplantation and/or brentuximab vedotin therapy: KEYNOTE-087 subgroup analysis. Leuk. Lymphoma 2020, 61, 950–954. [Google Scholar] [CrossRef]
- Vaddepally, R.K.; Kharel, P.; Pandey, R.; Garje, R.; Chandra, A.B. Review of Indications of FDA-Approved Immune Checkpoint Inhibitors per NCCN Guidelines with the Level of Evidence. Cancers 2020, 12, 738. [Google Scholar] [CrossRef] [Green Version]
- Kuruvilla, J.; Ramchandren, R.; Santoro, A.; Paszkiewicz-Kozik, E.; Gasiorowski, R.; Johnson, N.A.; Fogliatto, L.M.; Goncalves, I.; de Oliveira, J.S.R.; Buccheri, V.; et al. Pembrolizumab versus brentuximab vedotin in relapsed or refractory classical Hodgkin lymphoma (KEYNOTE-204): An interim analysis of a multicentre, randomised, open-label, phase 3 study. Lancet Oncol. 2021, 22, 512–524. [Google Scholar] [CrossRef]
- Armand, P.; Engert, A.; Younes, A.; Lee, H.J.; Santoro, A.; Zinzani, P.L.; Timmerman, J.M.; Collins, G.P.; Ramchandren, R.; Cohen, J.B.; et al. Nivolumab for Relapsed or Refractory Classical Hodgkin Lymphoma (cHL) after Autologous Hematopoietic Cell Transplantation (auto-HCT): Extended Follow-up of the Phase 2 Single-Arm CheckMate 205 Study. Blood 2018, 132, 2897. [Google Scholar] [CrossRef]
- Ansell, S.; Bröckelmann, P.; von Keudell, G.; Lee, H.J.; Santoro, A.; Zinzani, P.L.; Collins, G.; Cohen, J.; De Boer, J.P.; Kuruvilla, J.; et al. HL-398: Five-Year Overall Survival from the CheckMate 205 Study of Nivolumab for Relapsed or Refractory (R/R) Classical Hodgkin Lymphoma (cHL). Clin. Lymphoma Myeloma Leuk. 2021, 21, S373–S374. [Google Scholar] [CrossRef]
- Armand, P.; Zinzani, P.L.L.; Lee, H.J.; Johnson, N.; Brice, P.; Radford, J.; Ribrag, V.; Molin, D.; Vassilakopoulos, T.P.; Tomita, A.; et al. Five-Year Follow-up of Keynote-087: Pembrolizumab Monotherapy in Relapsed/Refractory Classical Hodgkin Lymphoma (R/R cHL). Blood 2021, 138, 1366. [Google Scholar] [CrossRef]
- Herrera, A.F.; Burton, C.; Radford, J.; Miall, F.; Townsend, W.; Santoro, A.; Zinzani, P.L.; Lewis, D.; Fowst, C.; Brar, S.; et al. Avelumab in relapsed/refractory classical Hodgkin lymphoma: Phase 1b results from the JAVELIN Hodgkins trial. Blood Adv. 2021, 5, 3387–3396. [Google Scholar] [CrossRef]
- Song, Y.; Gao, Q.; Zhang, H.; Fan, L.; Zhou, J.; Zou, D.; Li, W.; Yang, H.; Liu, T.; Wang, Q.; et al. Tislelizumab for Relapsed/Refractory Classical Hodgkin Lymphoma: 3-Year Follow-up and Correlative Biomarker Analysis. Clin. Cancer Res. 2022, 28, 1147–1156. [Google Scholar] [CrossRef]
- Wu, J.; Song, Y.; Chen, X.; Lin, T.; Cao, J.; Liu, Y.; Zhao, Y.; Jin, J.; Huang, H.; Hu, J.; et al. Camrelizumab for relapsed or refractory classical Hodgkin lymphoma: Extended follow-up of the multicenter, single-arm, Phase 2 study. Int. J. Cancer 2022, 150, 984–992. [Google Scholar] [CrossRef] [PubMed]
- Nie, J.; Wang, C.; Liu, Y.; Yang, Q.; Mei, Q.; Dong, L.; Li, X.; Liu, J.; Ku, W.; Zhang, Y.; et al. Addition of Low-Dose Decitabine to Anti–PD-1 Antibody Camrelizumab in Relapsed/Refractory Classical Hodgkin Lymphoma. J. Clin. Oncol. 2019, 37, 1479–1489. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, C.; Li, X.; Dong, L.; Yang, Q.; Chen, M.; Shi, F.; Brock, M.; Liu, M.; Mei, Q.; et al. Improved clinical outcome in a randomized phase II study of anti-PD-1 camrelizumab plus decitabine in relapsed/refractory Hodgkin lymphoma. J. Immunother. Cancer 2021, 9, e002347. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Song, Y.; Jiang, W.; Sun, X.; Qian, W.; Zhang, W.; Gao, Y.; Jin, Z.; Zhou, J.; Jin, C.; et al. Sintilimab for relapsed/refractory classical Hodgkin’s lymphoma: Long-term follow-up on the multicenter, single-arm phase II ORIENT-1 study. J. Clin. Oncol. 2020, 38, 8034. [Google Scholar] [CrossRef]
- Armand, P.; Chen, Y.-B.; Redd, R.A.; Joyce, R.M.; Bsat, J.; Jeter, E.; Merryman, R.W.; Coleman, K.C.; Dahi, P.B.; Nieto, Y.; et al. PD-1 blockade with pembrolizumab for classical Hodgkin lymphoma after autologous stem cell transplantation. Blood 2019, 134, 22–29. [Google Scholar] [CrossRef]
- Barraclough, A.; Chong, G.; Gilbertson, M.; Grigg, A.; Churilov, L.; Fancourt, T.; Ritchie, D.; Koldej, R.; Agarwal, R.; Manos, K.; et al. Immune Priming with Single-Agent Nivolumab Followed by Combined Nivolumab & Rituximab Is Safe and Efficacious for First-Line Treatment of Follicular Lymphoma; Interim Analysis of the “1st FLOR” Study. Blood 2019, 134, 1523. [Google Scholar] [CrossRef]
- Hawkes, E.A.; Lee, S.T.; Chong, G.; Gilbertson, M.; Grigg, A.; Churilov, L.; Fancourt, T.; Keane, C.; Ritchie, D.; Koldej, R.; et al. Immune priming with nivolumab followed by nivolumab and rituximab in first-line treatment of follicular lymphoma: The phase 21st FLOR study. J. Clin. Oncol. 2021, 39, 7560. [Google Scholar] [CrossRef]
- Armand, P.; Janssens, A.; Gritti, G.; Radford, J.; Timmerman, J.; Pinto, A.; Mercadal Vilchez, S.; Johnson, P.; Cunningham, D.; Leonard, J.P.; et al. Efficacy and safety results from CheckMate 140, a phase 2 study of nivolumab for relapsed/refractory follicular lymphoma. Blood 2021, 137, 637–645. [Google Scholar] [CrossRef]
- Ansell, S.M.; Minnema, M.C.; Johnson, P.; Timmerman, J.M.; Armand, P.; Shipp, M.A.; Rodig, S.J.; Ligon, A.H.; Roemer, M.G.M.; Reddy, N.; et al. Nivolumab for Relapsed/Refractory Diffuse Large B-Cell Lymphoma in Patients Ineligible for or Having Failed Autologous Transplantation: A Single-Arm, Phase II Study. J. Clin. Oncol. 2019, 37, 481–489. [Google Scholar] [CrossRef]
- Zinzani, P.L.; Ribrag, V.; Moskowitz, C.H.; Michot, J.-M.; Kuruvilla, J.; Balakumaran, A.; Zhang, Y.; Chlosta, S.; Shipp, M.A.; Armand, P. Safety and tolerability of pembrolizumab in patients with relapsed/refractory primary mediastinal large B-cell lymphoma. Blood 2017, 130, 267–270. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Lim, J.Q.; Laurensia, Y.; Cho, J.; Yoon, S.E.; Lee, J.Y.; Ryu, K.J.; Ko, Y.H.; Koh, Y.; Cho, D.; et al. Avelumab for the treatment of relapsed or refractory extranodal NK/T-cell lymphoma: An open-label phase 2 study. Blood 2020, 136, 2754–2763. [Google Scholar] [CrossRef]
- Tao, R.; Fan, L.; Song, Y.; Hu, Y.; Zhang, W.; Wang, Y.; Xu, W.; Li, J. Sintilimab for relapsed/refractory extranodal NK/T cell lymphoma: A multicenter, single-arm, phase 2 trial (ORIENT-4). Signal Transduct. Target. Ther. 2021, 6, 365. [Google Scholar] [CrossRef]
- Lesokhin, A.M.; Ansell, S.M.; Armand, P.; Scott, E.C.; Halwani, A.; Gutierrez, M.; Millenson, M.M.; Cohen, A.D.; Schuster, S.J.; Lebovic, D.; et al. Nivolumab in Patients with Relapsed or Refractory Hematologic Malignancy: Preliminary Results of a Phase Ib Study. J. Clin. Oncol. 2016, 34, 2698–2704. [Google Scholar] [CrossRef] [Green Version]
- Frigault, M.J.; Armand, P.; Redd, R.A.; Jeter, E.; Merryman, R.W.; Coleman, K.C.; Herrera, A.F.; Dahi, P.; Nieto, Y.; LaCasce, A.S.; et al. PD-1 blockade for diffuse large B-cell lymphoma after autologous stem cell transplantation. Blood Adv. 2020, 4, 122–126. [Google Scholar] [CrossRef] [Green Version]
- Davids, M.S.; Kim, H.T.; Costello, C.; Herrera, A.F.; Locke, F.L.; Maegawa, R.O.; Savell, A.; Mazzeo, M.; Anderson, A.; Boardman, A.P.; et al. A multicenter phase 1 study of nivolumab for relapsed hematologic malignancies after allogeneic transplantation. Blood 2020, 135, 2182–2191. [Google Scholar] [CrossRef]
- Ding, W.; LaPlant, B.R.; Call, T.G.; Parikh, S.A.; Leis, J.F.; He, R.; Shanafelt, T.D.; Sinha, S.; Le-Rademacher, J.; Feldman, A.L.; et al. Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL. Blood 2017, 129, 3419–3427. [Google Scholar] [CrossRef]
- Khodadoust, M.S.; Rook, A.H.; Porcu, P.; Foss, F.; Moskowitz, A.J.; Shustov, A.; Shanbhag, S.; Sokol, L.; Fling, S.P.; Ramchurren, N.; et al. Pembrolizumab in Relapsed and Refractory Mycosis Fungoides and Sézary Syndrome: A Multicenter Phase II Study. J. Clin. Oncol. 2020, 38, 20–28. [Google Scholar] [CrossRef]
- Chong, E.A.; Svoboda, J.; Dwivedy Nasta, S.; Landsburg, D.J.; Winchell, N.; Napier, E.; Mato, A.R.; Melenhorst, J.J.; Ruella, M.; Lacey, S.F.; et al. Sequential Anti-CD19 Directed Chimeric Antigen Receptor Modified T-Cell Therapy (CART19) and PD-1 Blockade with Pembrolizumab in Patients with Relapsed or Refractory B-Cell Non-Hodgkin Lymphomas. Blood 2018, 132, 4198. [Google Scholar] [CrossRef]
- Geoerger, B.; Zwaan, C.M.; Marshall, L.V.; Michon, J.; Bourdeaut, F.; Casanova, M.; Corradini, N.; Rossato, G.; Farid-Kapadia, M.; Shemesh, C.S.; et al. Atezolizumab for children and young adults with previously treated solid tumours, non-Hodgkin lymphoma, and Hodgkin lymphoma (iMATRIX): A multicentre phase 1–2 study. Lancet Oncol. 2020, 21, 134–144. [Google Scholar] [CrossRef]
- Casulo, C.; Santoro, A.; Cartron, G.; Ando, K.; Munoz, J.; Le Gouill, S.; Izutsu, K.; Rule, S.; Lugtenburg, P.; Ruan, J.; et al. Durvalumab as monotherapy and in combination therapy in patients with lymphoma or chronic lymphocytic leukemia: The FUSION NHL 001 trial. Cancer Rep. 2023, 6, e1662. [Google Scholar] [CrossRef]
- Ramchandren, R.; Domingo-Domènech, E.; Rueda, A.; Trněný, M.; Feldman, T.A.; Lee, H.J.; Provencio, M.; Sillaber, C.; Cohen, J.B.; Savage, K.J.; et al. Nivolumab for Newly Diagnosed Advanced-Stage Classic Hodgkin Lymphoma: Safety and Efficacy in the Phase II CheckMate 205 Study. J. Clin. Oncol. 2019, 37, 1997–2007. [Google Scholar] [CrossRef] [PubMed]
- Bröckelmann, P.J.; Goergen, H.; Keller, U.; Meissner, J.; Ordemann, R.; Halbsguth, T.V.; Sasse, S.; Sökler, M.; Kerkhoff, A.; Mathas, S.; et al. Efficacy of Nivolumab and AVD in Early-Stage Unfavorable Classic Hodgkin Lymphoma: The Randomized Phase 2 German Hodgkin Study Group NIVAHL Trial. JAMA Oncol. 2020, 6, 872. [Google Scholar] [CrossRef] [PubMed]
- Allen, P.B.; Savas, H.; Evens, A.M.; Advani, R.H.; Palmer, B.; Pro, B.; Karmali, R.; Mou, E.; Bearden, J.; Dillehay, G.; et al. Pembrolizumab followed by AVD in untreated early unfavorable and advanced-stage classical Hodgkin lymphoma. Blood 2021, 137, 1318–1326. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.; Federico, M.; Kirkwood, A.; Fosså, A.; Berkahn, L.; Carella, A.; d’Amore, F.; Enblad, G.; Franceschetto, A.; Fulham, M.; et al. Adapted Treatment Guided by Interim PET-CT Scan in Advanced Hodgkin’s Lymphoma. N. Engl. J. Med. 2016, 374, 2419–2429. [Google Scholar] [CrossRef] [PubMed]
- Evens, A.M.; Carter, J.; Loh, K.P.; David, K.A. Management of older Hodgkin lymphoma patients. Hematology 2019, 2019, 233–242. [Google Scholar] [CrossRef]
- Moccia, A.A.; Aeppli, S.; Güsewell, S.; Bargetzi, M.; Caspar, C.; Brülisauer, D.; Ebnöther, M.; Fehr, M.; Fischer, N.; Ghilardi, G.; et al. Clinical characteristics and outcome of patients over 60 years with Hodgkin lymphoma treated in Switzerland. Hematol. Oncol. 2021, 39, 196–204. [Google Scholar] [CrossRef]
- Cheson, B.D.; Bartlett, N.L.; LaPlant, B.; Lee, H.J.; Advani, R.J.; Christian, B.; Diefenbach, C.S.; Feldman, T.A.; Ansell, S.M. Brentuximab vedotin plus nivolumab as first-line therapy in older or chemotherapy-ineligible patients with Hodgkin lymphoma (ACCRU): A multicentre, single-arm, phase 2 trial. Lancet Haematol. 2020, 7, e808–e815. [Google Scholar] [CrossRef]
- Herrera, A.F.; Chen, R.W.; Palmer, J.; Tsai, N.-C.; Mei, M.; Popplewell, L.L.; Nademanee, A.P.; Nikolaenko, L.; McBride, K.; Ortega, R.; et al. PET-Adapted Nivolumab or Nivolumab Plus ICE as First Salvage Therapy in Relapsed or Refractory Hodgkin Lymphoma. Blood 2019, 134, 239. [Google Scholar] [CrossRef]
- Mei, M.G.; Lee, H.J.; Palmer, J.M.; Chen, R.; Tsai, N.-C.; Chen, L.; McBride, K.; Smith, D.L.; Melgar, I.; Song, J.Y.; et al. Response-adapted anti-PD-1–based salvage therapy for Hodgkin lymphoma with nivolumab alone or in combination with ICE. Blood 2022, 139, 3605–3616. [Google Scholar] [CrossRef]
- Bryan, L.J.; Casulo, C.; Allen, P.; Smith, S.E.; Savas, H.; Karmali, R.; Winter, J.N. Pembrolizumab (PEM) Added to ICE Chemotherapy Results in High Complete Metabolic Response Rates in Relapsed/Refractory Classic Hodgkin Lymphoma (cHL): A Multi-Institutional Phase II Trial. Blood 2021, 138, 229. [Google Scholar] [CrossRef]
- Diefenbach, C.S.; Hong, F.; Ambinder, R.F.; Cohen, J.B.; Robertson, M.J.; David, K.A.; Advani, R.H.; Fenske, T.S.; Barta, S.K.; Palmisiano, N.D.; et al. Ipilimumab, nivolumab, and brentuximab vedotin combination therapies in patients with relapsed or refractory Hodgkin lymphoma: Phase 1 results of an open-label, multicentre, phase 1/2 trial. Lancet Haematol. 2020, 7, e660–e670. [Google Scholar] [CrossRef]
- Sermer, D.J.; Vardhana, S.A.; Ames, A.; Biggar, E.; Moskowitz, A.J.; Batlevi, C.L.; Caron, P.; Hamilton, A.M.; Moskowitz, C.H.; Matasar, M.J.; et al. Early data from a phase II trial investigating the combination of pembrolizumab (PEM) and entinostat (ENT) in relapsed and refractory (R/R) Hodgkin lymphoma (HL). J. Clin. Oncol. 2020, 38, e20018. [Google Scholar] [CrossRef]
- Sermer, D.J.; Vardhana, S.; Biggar, E.; Moskowitz, A.J.; Joffe, E.; Khan, N.; Straus, D.J.; Kumar, A.; Zelenetz, A.D.; Horwitz, S.M.; et al. Interim Efficacy Analysis of a Phase II Study Demonstrates Promising Activity of the Combination of Pembrolizumab (PEM) and Entinostat (ENT) in Relapsed and Refractory (R/R) Hodgkin Lymphoma (HL). Blood 2021, 138, 2447. [Google Scholar] [CrossRef]
- Lepik, K.V.; Mikhailova, N.B.; Kondakova, E.V.; Zalyalov, Y.R.; Fedorova, L.V.; Tsvetkova, L.A.; Kotselyabina, P.V.; Borzenkova, E.S.; Babenko, E.V.; Popova, M.O.; et al. A Study of Safety and Efficacy of Nivolumab and Bendamustine (NB) in Patients With Relapsed/Refractory Hodgkin Lymphoma after Nivolumab Monotherapy Failure. HemaSphere 2020, 4, e401. [Google Scholar] [CrossRef]
- Herrera, A.F.; Moskowitz, A.J.; Bartlett, N.L.; Vose, J.M.; Ramchandren, R.; Feldman, T.A.; LaCasce, A.S.; Ansell, S.M.; Moskowitz, C.H.; Fenton, K.; et al. Interim results of brentuximab vedotin in combination with nivolumab in patients with relapsed or refractory Hodgkin lymphoma. Blood 2018, 131, 1183–1194. [Google Scholar] [CrossRef] [Green Version]
- Advani, R.H.; Moskowitz, A.J.; Bartlett, N.L.; Vose, J.M.; Ramchandren, R.; Feldman, T.A.; LaCasce, A.S.; Christian, B.A.; Ansell, S.M.; Moskowitz, C.H.; et al. Brentuximab vedotin in combination with nivolumab in relapsed or refractory Hodgkin lymphoma: 3-year study results. Blood 2021, 138, 427–438. [Google Scholar] [CrossRef]
- Moskowitz, A.J.; Shah, G.; Schöder, H.; Ganesan, N.; Drill, E.; Hancock, H.; Davey, T.; Perez, L.; Ryu, S.; Sohail, S.; et al. Phase II Trial of Pembrolizumab Plus Gemcitabine, Vinorelbine, and Liposomal Doxorubicin as Second-Line Therapy for Relapsed or Refractory Classical Hodgkin Lymphoma. J. Clin. Oncol. 2021, 39, 3109–3117. [Google Scholar] [CrossRef]
- Ansell, S.M.; Bartlett, N.L.; Chen, R.W.; Herrera, A.; Domingo-Domenech, E.; Mehta, A.; Forero-Torres, A.; Garcia-Sanz, R.; Armand, P.; Devata, S.; et al. Investigating safety and preliminary efficacy of AFM13 plus pembrolizumab in patients with relapsed/refractory Hodgkin lymphoma after brentuximab vedotin failure. Hematol. Oncol. 2019, 37, 177–178. [Google Scholar] [CrossRef] [Green Version]
- Bartlett, N.L.; Herrera, A.F.; Domingo-Domenech, E.; Mehta, A.; Forero-Torres, A.; Garcia-Sanz, R.; Armand, P.; Devata, S.; Izquierdo, A.R.; Lossos, I.S.; et al. A phase 1b study of AFM13 in combination with pembrolizumab in patients with relapsed or refractory Hodgkin lymphoma. Blood 2020, 136, 2401–2409. [Google Scholar] [CrossRef]
- Dave, H.; Terpilowski, M.; Mai, M.; Toner, K.; Grant, M.; Stanojevic, M.; Lazarski, C.; Shibli, A.; Bien, S.A.; Maglo, P.; et al. Tumor-associated antigen–specific T cells with nivolumab are safe and persist in vivo in relapsed/refractory Hodgkin lymphoma. Blood Adv. 2022, 6, 473–485. [Google Scholar] [CrossRef]
- Armand, P.; Lesokhin, A.; Borrello, I.; Timmerman, J.; Gutierrez, M.; Zhu, L.; Popa McKiver, M.; Ansell, S.M. A phase 1b study of dual PD-1 and CTLA-4 or KIR blockade in patients with relapsed/refractory lymphoid malignancies. Leukemia 2021, 35, 777–786. [Google Scholar] [CrossRef] [PubMed]
- Timmerman, J.; Lavie, D.; Johnson, N.A.; Avigdor, A.; Borchmann, P.; Andreadis, C.; Bazargan, A.; Gregory, G.; Keane, C.; Inna, T.; et al. Favezelimab (anti–LAG-3) plus pembrolizumab in patients with relapsed or refractory (R/R) classical Hodgkin lymphoma (cHL) after anti–PD-1 treatment: An open-label phase 1/2 study. J. Clin. Oncol. 2022, 40, 7545. [Google Scholar] [CrossRef]
- Younes, A.; John, B.M.; Diefenbach, C.S.; Ferrari, S.; Kahn, C.; Sharman, J.P.; Tani, M.; Ujjani, C.S.; Vitolo, U.; Yuen, S.; et al. Safety and Efficacy of Atezolizumab in Combination with Obinutuzumab and Bendamustine in Patients with Previously Untreated Follicular Lymphoma: An Interim Analysis. Blood 2017, 130 (Suppl. S1), 481. [Google Scholar]
- Younes, A.; Burke, J.M.; Diefenbach, C.S.; Ferrari, S.; Khan, C.; Sharman, J.P.; Tani, M.; Ujjani, C.; Vitolo, U.; Yuen, S.L.S.; et al. Safety and efficacy of atezolizumab with obinutuzumab and bendamustine in previously untreated follicular lymphoma. Blood Adv. 2022, 6, 5659–5667. [Google Scholar] [CrossRef]
- Westin, J.R.; Chu, F.; Zhang, M.; Fayad, L.E.; Kwak, L.W.; Fowler, N.; Romaguera, J.; Hagemeister, F.; Fanale, M.; Samaniego, F.; et al. Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: A single group, open-label, phase 2 trial. Lancet Oncol. 2014, 15, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Nastoupil, L.J.; Westin, J.R.; Fowler, N.H.; Fanale, M.A.; Samaniego, F.; Oki, Y.; Obi, C.; Cao, J.; Cheng, X.; Ma, M.C.J.; et al. Response rates with pembrolizumab in combination with rituximab in patients with relapsed follicular lymphoma: Interim results of an on open-label, phase II study. J. Clin. Oncol. 2017, 35, 7519. [Google Scholar] [CrossRef]
- Nastoupil, L.J.; Chin, C.K.; Westin, J.R.; Fowler, N.H.; Samaniego, F.; Cheng, X.; Ma, M.C.J.; Wang, Z.; Chu, F.; Dsouza, L.; et al. Safety and activity of pembrolizumab in combination with rituximab in relapsed or refractory follicular lymphoma. Blood Adv. 2022, 6, 1143–1151. [Google Scholar] [CrossRef]
- Morschhauser, F.; Ghosh, N.; Lossos, I.S.; Palomba, M.L.; Mehta, A.; Casasnovas, O.; Stevens, D.; Katakam, S.; Knapp, A.; Nielsen, T.; et al. Obinutuzumab-atezolizumab-lenalidomide for the treatment of patients with relapsed/refractory follicular lymphoma: Final analysis of a Phase Ib/II trial. Blood Cancer J. 2021, 11, 147. [Google Scholar] [CrossRef]
- Younes, A.; Burke, J.M.; Cheson, B.; Diefenbach, C.; Ferrari, S.; Hahn, U.; Hawkes, E.; Khan, C.; Lossos, I.S.; Musuraka, G.; et al. Safety and Efficacy of Atezolizumab in Combination with Rituximab Plus CHOP in Previously Untreated Patients with Diffuse Large B-Cell Lymphoma (DLBCL): Primary Analysis of a Phase I/II Study. Blood 2018, 132, 2969. [Google Scholar] [CrossRef]
- Younes, A.; Burke, J.M.; Cheson, B.D.; Diefenbach, C.; Ferrari, S.; Hahn, U.H.; Hawkes, E.A.; Khan, C.; Lossos, I.S.; Musuraca, G.; et al. Safety and Efficacy of Atezolizumab in Combination with Rituximab Plus CHOP in Previously Untreated Patients with Diffuse Large B-Cell Lymphoma (DLBCL): Updated Analysis of a Phase I/II Study. Blood 2019, 134, 2874. [Google Scholar] [CrossRef]
- Smith, S.D.; Till, B.G.; Shadman, M.S.; Lynch, R.C.; Cowan, A.J.; Wu, Q.V.; Voutsinas, J.; Rasmussen, H.A.; Blue, K.; Ujjani, C.S.; et al. Pembrolizumab with R-CHOP in previously untreated diffuse large B-cell lymphoma: Potential for biomarker driven therapy. Br. J. Haematol. 2020, 189, 1119–1126. [Google Scholar] [CrossRef]
- Nowakowski, G.S.; Willenbacher, W.; Greil, R.; Larsen, T.S.; Patel, K.; Jäger, U.; Manges, R.F.; Trümper, L.; Everaus, H.; Kalakonda, N.; et al. Safety and efficacy of durvalumab with R-CHOP or R2-CHOP in untreated, high-risk DLBCL: A phase 2, open-label trial. Int. J. Hematol. 2022, 115, 222–232. [Google Scholar] [CrossRef]
- Palomba, M.L.; Cartron, G.; Popplewell, L.; Ribrag, V.; Westin, J.; Huw, L.-Y.; Agarwal, S.; Shivhare, M.; Hong, W.-J.; Raval, A.; et al. Combination of Atezolizumab and Tazemetostat in Patients with Relapsed/Refractory Diffuse Large B-Cell Lymphoma: Results From a Phase Ib Study. Clin. Lymphoma Myeloma Leuk. 2022, 22, 504–512. [Google Scholar] [CrossRef]
- Jacobson, C.A.; Westin, J.R.; Miklos, D.B.; Herrera, A.F.; Lee, J.; Seng, J.; Rossi, J.M.; Sun, J.; Dong, J.; Roberts, Z.J.; et al. Abstract CT055: Phase 1/2 primary analysis of ZUMA-6: Axicabtagene ciloleucel (Axi-Cel) in combination with atezolizumab (Atezo) for the treatment of patients (Pts) with refractory diffuse large B cell lymphoma (DLBCL). Cancer Res. 2020, 80 (Suppl. S16), CT055. [Google Scholar] [CrossRef]
- Jäger, U.; Worel, N.; McGuirk, J.; Riedell, P.A.; Fleury, I.; Borchmann, P.; Du, Y.; Abdelhady, A.M.; Han, X.; Martinez-Prieto, M.; et al. Safety and efficacy of tisagenlecleucel (tisa-cel) plus pembrolizumab (pembro) in patients (pts) with relapsed/refractory diffuse large B-cell lymphoma (r/r DLBCL): Updated analysis of the phase 1b PORTIA study. J. Clin. Oncol. 2021, 39, e19537. [Google Scholar] [CrossRef]
- Witzig, T.E.; Maddocks, K.J.; De Vos, S.; Lyons, R.M.; Edenfield, W.J.; Sharman, J.P.; Vose, J.; Yimer, H.A.; Wei, H.; Chan, E.M.; et al. Phase 1/2 trial of acalabrutinib plus pembrolizumab (Pem) in relapsed/refractory (r/r) diffuse large B-cell lymphoma (DLBCL). J. Clin. Oncol. 2019, 37, 7519. [Google Scholar] [CrossRef]
- Osborne, W.; Marzolini, M.; Tholouli, E.; Ramakrishnan, A.; Bachier, C.R.; McSweeney, P.A.; Irvine, D.; Zhang, M.; Al-Hajj, M.A.; Pule, M.; et al. Phase I Alexander study of AUTO3, the first CD19/22 dual targeting CAR T cell therapy, with pembrolizumab in patients with relapsed/refractory (r/r) DLBCL. J. Clin. Oncol. 2020, 38, 8001. [Google Scholar] [CrossRef]
- Zinzani, P.L.; Santoro, A.; Gritti, G.; Brice, P.; Barr, P.M.; Kuruvilla, J.; Cunningham, D.; Kline, J.; Johnson, N.A.; Mehta-Shah, N.; et al. Nivolumab Combined with Brentuximab Vedotin for Relapsed/Refractory Primary Mediastinal Large B-Cell Lymphoma: Efficacy and Safety from the Phase II CheckMate 436 Study. J. Clin. Oncol. 2019, 37, 3081–3089. [Google Scholar] [CrossRef]
- Zinzani, P.L.; Santoro, A.; Gritti, G.; Brice, P.; Barr, P.M.; Kuruvilla, J.; Cunningham, D.; Kline, J.; Johnson, N.A.; Mehta-Shah, N.; et al. Nivolumab plus brentuximab vedotin for relapsed/refractory primary mediastinal large B-cell lymphoma: Extended follow-up from the phase 2 CheckMate 436 study. Hematol. Oncol. 2021, 39, 93–95. [Google Scholar] [CrossRef]
- Younes, A.; Brody, J.; Carpio, C.; Lopez-Guillermo, A.; Ben-Yehuda, D.; Ferhanoglu, B.; Nagler, A.; Ozcan, M.; Avivi, I.; Bosch, F.; et al. Safety and activity of ibrutinib in combination with nivolumab in patients with relapsed non-Hodgkin lymphoma or chronic lymphocytic leukaemia: A phase 1/2a study. Lancet Haematol. 2019, 6, e67–e78. [Google Scholar] [CrossRef]
- Palomba, M.L.; Till, B.G.; Park, S.I.; Morschhauser, F.; Cartron, G.; Marks, R.; Shivhare, M.; Hong, W.-J.; Raval, A.; Chang, A.C.; et al. Combination of Atezolizumab and Obinutuzumab in Patients with Relapsed/Refractory Follicular Lymphoma and Diffuse Large B-Cell Lymphoma: Results from a Phase 1b Study. Clin. Lymphoma Myeloma Leuk. 2022, 22, e443–e451. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.; Basu, S.; Thompson, P.A.; Ohanian, M.; Ferrajoli, A.; Pemmaraju, N.; Cortes, J.E.; Estrov, Z.; Burger, J.A.; Neelapu, S.S.; et al. Nivolumab Combined with Ibrutinib for CLL and Richter Transformation: A Phase II Trial. Blood 2016, 128, 59. [Google Scholar] [CrossRef]
- Jain, N.; Ferrajoli, A.; Basu, S.; Thompson, P.A.; Burger, J.A.; Kadia, T.M.; Estrov, Z.E.; Pemmaraju, N.; Lopez, W.; Thakral, B.; et al. A Phase II Trial of Nivolumab Combined with Ibrutinib for Patients with Richter Transformation. Blood 2018, 132, 296. [Google Scholar] [CrossRef]
- Herbaux, C.; Casasnovas, O.; Feugier, P.; Damaj, G.; Bouabdallah, R.; Guidez, S.; Ysebaert, L.; Tilly, H.; Le Gouill, S.; Fornecker, L.; et al. Atezolizumab + obinutuzumab + venetoclax in patients with relapsed or refractory diffuse large B-cell Lymphomas (R/R DLBCL): Primary analysis of a phase II trial from LYSA. J. Clin. Oncol. 2020, 38, 8053. [Google Scholar] [CrossRef]
- Herbaux, C.; Ghesquieres, H.; Bouabdallah, R.; Guidez, S.; Gyan, E.; Gressin, R.; Morineau, N.; Ysebaert, L.; Le Gouill, S.; Laurent, C.; et al. Atezolizumab + obinutuzumab + venetoclax in patients with relapsed or refractory indolent non-Hodgkin’s lymphoma (R/R iNHL): Primary analysis of a phase 2 trial from LYSA. J. Clin. Oncol. 2021, 39, 7544. [Google Scholar] [CrossRef]
- Hutchings, M.; Gritti, G.; Sureda, A.; Terol, M.J.; Dyer, M.J.; Iacoboni, G.; Townsend, W.; Bacac, M.; Bröske, A.-M.E.; Dimier, N.; et al. CD20-TCB, a Novel T-Cell-Engaging Bispecific Antibody, Can be Safely Combined with the Anti-PD-L1 Antibody Atezolizumab in Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma. Blood 2019, 134, 2871. [Google Scholar] [CrossRef]
- Gregory, G.P.; Kumar, S.; Wang, D.; Mahadevan, D.; Walker, P.; Wagner-Johnston, N.; Escobar, C.; Bannerji, R.; Bhutani, D.; Chang, J.; et al. Pembrolizumab plus dinaciclib in patients with hematologic malignancies: The phase 1b KEYNOTE-155 study. Blood Adv. 2022, 6, 1232–1242. [Google Scholar] [CrossRef]
- Herrera, A.F.; Goy, A.; Mehta, A.; Ramchandren, R.; Pagel, J.M.; Svoboda, J.; Guan, S.; Hill, J.S.; Kwei, K.; Liu, E.A.; et al. Safety and activity of ibrutinib in combination with durvalumab in patients with relapsed or refractory follicular lymphoma or diffuse large B-cell lymphoma. Am. J. Hematol. 2020, 95, 18–27. [Google Scholar] [CrossRef] [Green Version]
- Hirayama, A.V.; Gauthier, J.; Hay, K.A.; Sheih, A.; Cherian, S.; Chen, X.; Pender, B.S.; Hawkins, R.M.; Vakil, A.; Steinmetz, R.N.; et al. Efficacy and Toxicity of JCAR014 in Combination with Durvalumab for the Treatment of Patients with Relapsed/Refractory Aggressive B-Cell Non-Hodgkin Lymphoma. Blood 2018, 132, 1680. [Google Scholar] [CrossRef]
- Panayiotidis, P.; Tumyan, G.; Thieblemont, C.; Ptushkin, V.V.; Marin-Niebla, A.; García-Sanz, R.; Le Gouill, S.; Stathis, A.; Bottos, A.; Hamidi, H.; et al. A phase-II study of atezolizumab in combination with obinutuzumab or rituximab for relapsed or refractory mantle cell or marginal zone lymphoma or Waldenström’s macroglobulinemia. Leuk. Lymphoma 2022, 63, 1058–1069. [Google Scholar] [CrossRef]
- Sang, W.; Wang, X.; Geng, H.; Li, T.; Li, D.; Zhang, B.; Zhou, Y.; Song, X.; Sun, C.; Yan, D.; et al. Anti-PD-1 Therapy Enhances the Efficacy of CD30-Directed Chimeric Antigen Receptor T Cell Therapy in Patients with Relapsed/Refractory CD30+ Lymphoma. Front. Immunol. 2022, 13, 858021. [Google Scholar] [CrossRef]
- Crump, M. Management of Hodgkin Lymphoma in Relapse after Autologous Stem Cell Transplant. Hematology 2008, 2008, 326–333. [Google Scholar] [CrossRef] [Green Version]
- Moskowitz, C.H.; Nademanee, A.; Masszi, T.; Agura, E.; Holowiecki, J.; Abidi, M.H.; Chen, A.I.; Stiff, P.; Gianni, A.M.; Carella, A.; et al. Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin’s lymphoma at risk of relapse or progression (AETHERA): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2015, 385, 1853–1862. [Google Scholar] [CrossRef]
- Schmitz, N.; Pfistner, B.; Sextro, M.; Sieber, M.; Carella, A.M.; Haenel, M.; Boissevain, F.; Zschaber, R.; Müller, P.; Kirchner, H.; et al. Aggressive conventional chemotherapy compared with high-dose chemotherapy with autologous haemopoietic stem-cell transplantation for relapsed chemosensitive Hodgkin’s disease: A randomised trial. Lancet 2002, 359, 2065–2071. [Google Scholar] [CrossRef]
- Wang, H.; Kaur, G.; Sankin, A.I.; Chen, F.; Guan, F.; Zang, X. Immune checkpoint blockade and CAR-T cell therapy in hematologic malignancies. J. Hematol. Oncol. J. Hematol. Oncol. 2019, 12, 59. [Google Scholar] [CrossRef]
- Li, A.M.; Hucks, G.E.; Dinofia, A.M.; Seif, A.E.; Teachey, D.T.; Baniewicz, D.; Callahan, C.; Fasano, C.; McBride, B.; Gonzalez, V.; et al. Checkpoint Inhibitors Augment CD19-Directed Chimeric Antigen Receptor (CAR) T Cell Therapy in Relapsed B-Cell Acute Lymphoblastic Leukemia. Blood 2018, 132, 556. [Google Scholar] [CrossRef]
- Zinzani, P.L.L.; Thieblemont, C.; Melnichenko, V.; Bouabdallah, K.; Waleswski, J.; Majlis, A.; Fogliatto, L.; Martin Garcia-Sancho, A.; Christian, B.; Gulbas, Z.; et al. Final Analysis of Keynote-170: Pembrolizumab in Relapsed or Refractory Primary Mediastinal Large B-Cell Lymphoma (PMBCL). Blood 2021, 138, 306. [Google Scholar] [CrossRef]
- Kwong, Y.-L.; Chan, T.S.Y.; Tan, D.; Kim, S.J.; Poon, L.-M.; Mow, B.; Khong, P.-L.; Loong, F.; Au-Yeung, R.; Iqbal, J.; et al. PD1 blockade with pembrolizumab is highly effective in relapsed or refractory NK/T-cell lymphoma failing l-asparaginase. Blood 2017, 129, 2437–2442. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Liu, P.; Huang, H.; Li, Y.; Ma, S.; Zhou, H.; Tian, X.; Zhang, Y.; Gao, Y.; Xia, Y.; et al. Combination of anti-PD-1 antibody with P-GEMOX as a potentially effective immunochemotherapy for advanced natural killer/T cell lymphoma. Signal Transduct. Target. Ther. 2020, 5, 289. [Google Scholar] [CrossRef]
- Jeong, A.-R.; Ball, E.D.; Goodman, A.M. Predicting Responses to Checkpoint Inhibitors in Lymphoma: Are We Up to the Standards of Solid Tumors? Clin. Med. Insights Oncol. 2020, 14, 1–13. [Google Scholar] [CrossRef]
- Garcia-Diaz, A.; Shin, D.S.; Moreno, B.H.; Saco, J.; Escuin-Ordinas, H.; Rodriguez, G.A.; Zaretsky, J.M.; Sun, L.; Hugo, W.; Wang, X.; et al. Interferon Receptor Signaling Pathways Regulating PD-L1 and PD-L2 Expression. Cell Rep. 2017, 19, 1189–1201. [Google Scholar] [CrossRef] [Green Version]
- Cha, J.-H.; Chan, L.-C.; Li, C.-W.; Hsu, J.L.; Hung, M.-C. Mechanisms Controlling PD-L1 Expression in Cancer. Mol. Cell 2019, 76, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, K.M.; Atkins, M.B. Prognostic and predictive markers for the new immunotherapies. Oncology 2014, 28 (Suppl. S3), 39–48. [Google Scholar]
- Guo, H.; Ding, Q.; Gong, Y.; Gilcrease, M.Z.; Zhao, M.; Zhao, J.; Sui, D.; Wu, Y.; Chen, H.; Liu, H.; et al. Comparison of three scoring methods using the FDA-approved 22C3 immunohistochemistry assay to evaluate PD-L1 expression in breast cancer and their association with clinicopathologic factors. Breast Cancer Res. 2020, 22, 69. [Google Scholar] [CrossRef] [PubMed]
- Kulangara, K.; Hanks, D.A.; Waldroup, S.; Peltz, L.; Shah, S.; Roach, C.; Juco, J.W.; Emancipator, K.; Stanforth, D. Development of the combined positive score (CPS) for the evaluation of PD-L1 in solid tumors with the immunohistochemistry assay PD-L1 IHC 22C3 pharmDx. J. Clin. Oncol. 2017, 35, e14589. [Google Scholar] [CrossRef]
- Mok, T.S.K.; Wu, Y.-L.; Kudaba, I.; Kowalski, D.M.; Cho, B.C.; Turna, H.Z.; Castro, G.; Srimuninnimit, V.; Laktionov, K.K.; Bondarenko, I.; et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): A randomised, open-label, controlled, phase 3 trial. Lancet 2019, 393, 1819–1830. [Google Scholar] [CrossRef]
- Chen, C.; Liu, S.; Jiang, X.; Huang, L.; Chen, F.; Wei, X.; Guo, H.; Shao, Y.; Li, Y.; Li, W. Tumor mutation burden estimated by a 69-gene-panel is associated with overall survival in patients with diffuse large B-cell lymphoma. Exp. Hematol. Oncol. 2021, 10, 20. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, M.; Zhang, Y.; Meng, H.; Wang, Y.; Liu, Y.; Zhang, Q. The prognostic value of programmed cell death ligand 1 expression in non-Hodgkin lymphoma: A meta-analysis. Cancer Biol. Med. 2018, 15, 290. [Google Scholar] [CrossRef]
- Qiu, L.; Zheng, H.; Zhao, X. The prognostic and clinicopathological significance of PD-L1 expression in patients with diffuse large B-cell lymphoma: A meta-analysis. BMC Cancer 2019, 19, 273. [Google Scholar] [CrossRef] [Green Version]
- Veldman, J.; Alsada, Z.N.D.; Berg, A.; Plattel, W.J.; Diepstra, A.; Visser, L. Soluble PD-L1 is a promising disease biomarker but does not reflect tissue expression in classic Hodgkin lymphoma. Br. J. Haematol. 2021, 193, 506–514. [Google Scholar] [CrossRef]
- Shen, H.; Ji, Y.; Zhou, D.; Zhang, Y.; Wang, W.; Sun, J.; Zhang, W. Soluble programmed death-ligand 1 are highly expressed in peripheral T-cell lymphoma: A biomarker for prognosis. Hematology 2019, 24, 392–398. [Google Scholar] [CrossRef] [Green Version]
- Cho, I.; Lee, H.; Yoon, S.E.; Ryu, K.J.; Ko, Y.H.; Kim, W.S.; Kim, S.J. Serum levels of soluble programmed death-ligand 1 (sPD-L1) in patients with primary central nervous system diffuse large B-cell lymphoma. BMC Cancer 2020, 20, 120. [Google Scholar] [CrossRef] [Green Version]
- Takamori, S.; Takada, K.; Azuma, K.; Jogo, T.; Shimokawa, M.; Toyokawa, G.; Hirai, F.; Tagawa, T.; Kawahara, A.; Akiba, J.; et al. Prognostic Impact of Programmed Death-Ligand 2 Expression in Primary Lung Adenocarcinoma Patients. Ann. Surg. Oncol. 2019, 26, 1916–1924. [Google Scholar] [CrossRef]
- Shinchi, Y.; Komohara, Y.; Yonemitsu, K.; Sato, K.; Ohnishi, K.; Saito, Y.; Fujiwara, Y.; Mori, T.; Shiraishi, K.; Ikeda, K.; et al. Accurate expression of PD-L1/L2 in lung adenocarcinoma cells: A retrospective study by double immunohistochemistry. Cancer Sci. 2019, 110, 2711–2721. [Google Scholar] [CrossRef] [Green Version]
- Green, M.R.; Monti, S.; Rodig, S.J.; Juszczynski, P.; Currie, T.; O’Donnell, E.; Chapuy, B.; Takeyama, K.; Neuberg, D.; Golub, T.R.; et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 2010, 116, 3268–3277. [Google Scholar] [CrossRef] [Green Version]
- Tobin, J.W.D.; Keane, C.; Gunawardana, J.; Mollee, P.; Birch, S.; Hoang, T.; Lee, J.; Li, L.; Huang, L.; Murigneux, V.; et al. Progression of Disease within 24 Months in Follicular Lymphoma Is Associated with Reduced Intratumoral Immune Infiltration. J. Clin. Oncol. 2019, 37, 3300–3309. [Google Scholar] [CrossRef]
- Mottok, A.; Hung, S.S.; Chavez, E.A.; Woolcock, B.; Telenius, A.; Chong, L.C.; Meissner, B.; Nakamura, H.; Rushton, C.; Viganò, E.; et al. Integrative genomic analysis identifies key pathogenic mechanisms in primary mediastinal large B-cell lymphoma. Blood 2019, 134, 802–813. [Google Scholar] [CrossRef]
- Shi, M.; Roemer, M.G.M.; Chapuy, B.; Liao, X.; Sun, H.; Pinkus, G.S.; Shipp, M.A.; Freeman, G.J.; Rodig, S.J. Expression of Programmed Cell Death 1 Ligand 2 (PD-L2) Is a Distinguishing Feature of Primary Mediastinal (Thymic) Large B-cell Lymphoma and Associated with PDCD1LG2 Copy Gain. Am. J. Surg. Pathol. 2014, 38, 1715–1723. [Google Scholar] [CrossRef]
- Chapuy, B.; Roemer, M.G.M.; Stewart, C.; Tan, Y.; Abo, R.P.; Zhang, L.; Dunford, A.J.; Meredith, D.M.; Thorner, A.R.; Jordanova, E.S.; et al. Targetable genetic features of primary testicular and primary central nervous system lymphomas. Blood 2016, 127, 869–881. [Google Scholar] [CrossRef] [Green Version]
- Godfrey, J.; Tumuluru, S.; Bao, R.; Leukam, M.; Venkataraman, G.; Phillip, J.; Fitzpatrick, C.; McElherne, J.; MacNabb, B.W.; Orlowski, R.; et al. PD-L1 gene alterations identify a subset of diffuse large B-cell lymphoma harboring a T-cell–inflamed phenotype. Blood 2019, 133, 2279–2290. [Google Scholar] [CrossRef]
- Wang, Y.; Wenzl, K.; Manske, M.K.; Asmann, Y.W.; Sarangi, V.; Greipp, P.T.; Krull, J.E.; Hartert, K.; He, R.; Feldman, A.L.; et al. Amplification of 9p24.1 in diffuse large B-cell lymphoma identifies a unique subset of cases that resemble primary mediastinal large B-cell lymphoma. Blood Cancer J. 2019, 9, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Igarashi, T.; Teramoto, K.; Ishida, M.; Hanaoka, J.; Daigo, Y. Scoring of PD-L1 expression intensity on pulmonary adenocarcinomas and the correlations with clinicopathological factors. ESMO Open 2016, 1, e000083. [Google Scholar] [CrossRef] [Green Version]
- Roemer, M.G.M.; Advani, R.H.; Ligon, A.H.; Natkunam, Y.; Redd, R.A.; Homer, H.; Connelly, C.F.; Sun, H.H.; Daadi, S.E.; Freeman, G.J.; et al. PD-L1 and PD-L2 Genetic Alterations Define Classical Hodgkin Lymphoma and Predict Outcome. J. Clin. Oncol. 2016, 34, 2690–2697. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Hamrouni, A.; Wolowiec, D.; Coiteux, V.; Kuliczkowski, K.; Hetuin, D.; Saudemont, A.; Quesnel, B. Plasma cells from multiple myeloma patients express B7-H1 (PD-L1) and increase expression after stimulation with IFN-γ and TLR ligands via a MyD88-, TRAF6-, and MEK-dependent pathway. Blood 2007, 110, 296–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Y.; Liu, Y.; Wang, C.; Gan, R. Signaling pathways of EBV-induced oncogenesis. Cancer Cell Int. 2021, 21, 93. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-J.; Hyeon, J.; Cho, I.; Ko, Y.H.; Kim, W.S. Comparison of Efficacy of Pembrolizumab between Epstein-Barr Virus-Positive and -Negative Relapsed or Refractory Non-Hodgkin Lymphomas. Cancer Res. Treat. 2019, 51, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Biggi, A.F.B.; Elgui de Oliveira, D. The Epstein-Barr Virus Hacks Immune Checkpoints: Evidence and Consequences for Lymphoproliferative Disorders and Cancers. Biomolecules 2022, 12, 397. [Google Scholar] [CrossRef]
- Satou, A.; Nakamura, S. EBV-positive B-cell lymphomas and lymphoproliferative disorders: Review from the perspective of immune escape and immunodeficiency. Cancer Med. 2021, 10, 6777–6785. [Google Scholar] [CrossRef]
- Ligeti, K.; Müller, L.P.; Müller-Tidow, C.; Weber, T. Risk factors, diagnosis, and management of posttransplant lymphoproliferative disorder: Improving patient outcomes with a multidisciplinary treatment approach. Transpl. Res. Risk Manag. 2017, 9, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Steiner, R.E.; Kridel, R.; Giostra, E.; McKee, T.A.; Achermann, R.; Mueller, N.J.; Dietrich, P.Y. Low 5-year cumulative incidence of post-transplant lymphoproliferative disorders after solid organ transplantation in Switzerland. Swiss Med. Wkly. 2018, 148, w14596. [Google Scholar] [CrossRef] [Green Version]
- Tse, E.; Zhao, W.-L.; Xiong, J.; Kwong, Y.-L. How we treat NK/T-cell lymphomas. J. Hematol. Oncol. J. Hematol. Oncol. 2022, 15, 74. [Google Scholar] [CrossRef]
- Kiyasu, J.; Miyoshi, H.; Hirata, A.; Arakawa, F.; Ichikawa, A.; Niino, D.; Sugita, Y.; Yufu, Y.; Choi, I.; Abe, Y.; et al. Expression of programmed cell death ligand 1 is associated with poor overall survival in patients with diffuse large B-cell lymphoma. Blood 2015, 126, 2193–2201. [Google Scholar] [CrossRef] [Green Version]
- Strickler, J.H.; Hanks, B.A.; Khasraw, M. Tumor Mutational Burden as a Predictor of Immunotherapy Response: Is More Always Better? Clin. Cancer Res. 2021, 27, 1236–1241. [Google Scholar] [CrossRef]
- Snyder, A.; Makarov, V.; Merghoub, T.; Yuan, J.; Zaretsky, J.M.; Desrichard, A.; Walsh, L.A.; Postow, M.A.; Wong, P.; Ho, T.S.; et al. Genetic Basis for Clinical Response to CTLA-4 Blockade in Melanoma. N. Engl. J. Med. 2014, 371, 2189–2199. [Google Scholar] [CrossRef] [Green Version]
- Rizvi, N.A.; Hellmann, M.D.; Snyder, A.; Kvistborg, P.; Makarov, V.; Havel, J.J.; Lee, W.; Yuan, J.; Wong, P.; Ho, T.S.; et al. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science 2015, 348, 124–128. [Google Scholar] [CrossRef] [Green Version]
- Klempner, S.J.; Fabrizio, D.; Bane, S.; Reinhart, M.; Peoples, T.; Ali, S.M.; Sokol, E.S.; Frampton, G.; Schrock, A.B.; Anhorn, R.; et al. Tumor Mutational Burden as a Predictive Biomarker for Response to Immune Checkpoint Inhibitors: A Review of Current Evidence. Oncologist 2020, 25, e147–e159. [Google Scholar] [CrossRef] [Green Version]
- Galanina, N.; Bejar, R.; Choi, M.; Goodman, A.; Wieduwilt, M.; Mulroney, C.; Kim, L.; Yeerna, H.; Tamayo, P.; Vergilio, J.-A.; et al. Comprehensive Genomic Profiling Reveals Diverse but Actionable Molecular Portfolios across Hematologic Malignancies: Implications for Next Generation Clinical Trials. Cancers 2018, 11, 11. [Google Scholar] [CrossRef] [Green Version]
- Ricciuti, B.; Wang, X.; Alessi, J.V.; Rizvi, H.; Mahadevan, N.R.; Li, Y.Y.; Polio, A.; Lindsay, J.; Umeton, R.; Sinha, R.; et al. Association of High Tumor Mutation Burden in Non–Small Cell Lung Cancers with Increased Immune Infiltration and Improved Clinical Outcomes of PD-L1 Blockade Across PD-L1 Expression Levels. JAMA Oncol. 2022, 8, 1160–1168. [Google Scholar] [CrossRef]
- Chalmers, Z.R.; Connelly, C.F.; Fabrizio, D.; Gay, L.; Ali, S.M.; Ennis, R.; Schrock, A.; Campbell, B.; Shlien, A.; Chmielecki, J.; et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- Wienand, K.; Chapuy, B.; Stewart, C.; Dunford, A.J.; Wu, D.; Kim, J.; Kamburov, A.; Wood, T.R.; Cader, F.Z.; Ducar, M.D.; et al. Genomic analyses of flow-sorted Hodgkin Reed-Sternberg cells reveal complementary mechanisms of immune evasion. Blood Adv. 2019, 3, 4065–4080. [Google Scholar] [CrossRef] [Green Version]
- Chapuy, B.; Stewart, C.; Dunford, A.J.; Kim, J.; Wienand, K.; Kamburov, A.; Griffin, G.K.; Chen, P.-H.; Lako, A.; Redd, R.A.; et al. Genomic analyses of PMBL reveal new drivers and mechanisms of sensitivity to PD-1 blockade. Blood 2019, 134, 2369–2382. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Yoon, S.E.; Kim, S.J.; Ko, Y.H.; Kim, W.S. Comparison of tumor mutation burden of 300 various non-Hodgkin lymphomas using panel based massively parallel sequencing. BMC Cancer 2021, 21, 972. [Google Scholar] [CrossRef] [PubMed]
- Russano, M.; Napolitano, A.; Ribelli, G.; Iuliani, M.; Simonetti, S.; Citarella, F.; Pantano, F.; Dell’Aquila, E.; Anesi, C.; Silvestris, N.; et al. Liquid biopsy and tumor heterogeneity in metastatic solid tumors: The potentiality of blood samples. J. Exp. Clin. Cancer Res. 2020, 39, 95. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Guo, Y.A.; Ho, D.; Poon, P.; Poh, Z.W.; Wong, P.M.; Gan, A.; Chang, M.M.; Kleftogiannis, D.; Lau, Y.T.; et al. Tissue-specific cell-free DNA degradation quantifies circulating tumor DNA burden. Nat. Commun. 2021, 12, 2229. [Google Scholar] [CrossRef]
- Roschewski, M.; Dunleavy, K.; Pittaluga, S.; Moorhead, M.; Pepin, F.; Kong, K.; Shovlin, M.; Jaffe, E.S.; Staudt, L.M.; Lai, C.; et al. Circulating tumour DNA and CT monitoring in patients with untreated diffuse large B-cell lymphoma: A correlative biomarker study. Lancet Oncol. 2015, 16, 541–549. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Su, H.; Song, Y.; Jiang, W.; Sun, X.; Qian, W.; Zhang, W.; Gao, Y.; Jin, Z.; Zhou, J.; et al. Circulating tumor DNA predicts response in Chinese patients with relapsed or refractory classical hodgkin lymphoma treated with sintilimab. EBioMedicine 2020, 54, 102731. [Google Scholar] [CrossRef]
- Zhou, H.; Du, X.; Zhao, T.; Ouyang, Z.; Liu, W.; Deng, M.; He, Q.; Yi, Y.; Dai, L.; Yang, L.; et al. Distribution and influencing factors of tumor mutational burden in different lymphoma subtypes. J. Clin. Oncol. 2019, 37, e19053. [Google Scholar] [CrossRef]
- Marcus, L.; Fashoyin-Aje, L.A.; Donoghue, M.; Yuan, M.; Rodriguez, L.; Gallagher, P.S.; Philip, R.; Ghosh, S.; Theoret, M.R.; Beaver, J.A.; et al. FDA Approval Summary: Pembrolizumab for the Treatment of Tumor Mutational Burden–High Solid Tumors. Clin. Cancer Res. 2021, 27, 4685–4689. [Google Scholar] [CrossRef]
- Li, K.; Luo, H.; Huang, L.; Luo, H.; Zhu, X. Microsatellite instability: A review of what the oncologist should know. Cancer Cell Int. 2020, 20, 16. [Google Scholar] [CrossRef] [Green Version]
- Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017, 357, 409–413. [Google Scholar] [CrossRef] [Green Version]
- Center for Devices and Radiological Health. List of Cleared or Approved Companion Diagnostic Devices (In Vitro and Imaging Tools); FDA: Silver Spring, MD, USA, 2019. Available online: https://www.fda.gov/medical-devices/in-vitro-diagnostics/list-cleared-or-approved-companion-diagnostic-devices-in-vitro-and-imaging-tools (accessed on 6 June 2023).
- Tian, T.; Li, J.; Xue, T.; Yu, B.; Li, X.; Zhou, X. Microsatellite instability and its associations with the clinicopathologic characteristics of diffuse large B-cell lymphoma. Cancer Med. 2020, 9, 2330–2342. [Google Scholar] [CrossRef]
- Wieczorek, M.; Abualrous, E.T.; Sticht, J.; Álvaro-Benito, M.; Stolzenberg, S.; Noé, F.; Freund, C. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation. Front. Immunol. 2017, 8, 292. [Google Scholar] [CrossRef] [Green Version]
- Hazini, A.; Fisher, K.; Seymour, L. Deregulation of HLA-I in cancer and its central importance for immunotherapy. J. Immunother. Cancer 2021, 9, e002899. [Google Scholar] [CrossRef]
- Rodig, S.J.; Gusenleitner, D.; Jackson, D.G.; Gjini, E.; Giobbie-Hurder, A.; Jin, C.; Chang, H.; Lovitch, S.B.; Horak, C.; Weber, J.S.; et al. MHC proteins confer differential sensitivity to CTLA-4 and PD-1 blockade in untreated metastatic melanoma. Sci. Transl. Med. 2018, 10, eaar3342. [Google Scholar] [CrossRef] [Green Version]
- Roemer, M.G.M.; Advani, R.H.; Redd, R.A.; Pinkus, G.S.; Natkunam, Y.; Ligon, A.H.; Connelly, C.F.; Pak, C.J.; Carey, C.D.; Daadi, S.E.; et al. Classical Hodgkin Lymphoma with Reduced β2 M/MHC Class I Expression Is Associated with Inferior Outcome Independent of 9p24.1 Status. Cancer Immunol. Res. 2016, 4, 910–916. [Google Scholar] [CrossRef] [Green Version]
- Weber, J.S.; Gibney, G.; Sullivan, R.J.; Sosman, J.A.; Slingluff, C.L.; Lawrence, D.P.; Logan, T.F.; Schuchter, L.M.; Nair, S.; Fecher, L.; et al. Sequential administration of nivolumab and ipilimumab with a planned switch in patients with advanced melanoma (CheckMate 064): An open-label, randomised, phase 2 trial. Lancet Oncol. 2016, 17, 943–955. [Google Scholar] [CrossRef] [Green Version]
- Autio, M.; Leivonen, S.-K.; Brück, O.; Mustjoki, S.; Jørgensen, J.M.; Karjalainen-Lindsberg, M.-L.; Beiske, K.; Holte, H.; Pellinen, T.; Leppä, S. Immune cell constitution in the tumor microenvironment predicts the outcome in diffuse large B-cell lymphoma. Haematologica 2020, 106, 718–729. [Google Scholar] [CrossRef] [Green Version]
- Leivonen, S.-K.; Pollari, M.; Brück, O.; Pellinen, T.; Autio, M.; Karjalainen-Lindsberg, M.-L.; Mannisto, S.; Kellokumpu-Lehtinen, P.-L.; Kallioniemi, O.; Mustjoki, S.; et al. T-cell inflamed tumor microenvironment predicts favorable prognosis in primary testicular lymphoma. Haematologica 2019, 104, 338–346. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Tang, X.; Kim, H.J.; Jalali, S.; Pritchett, J.C.; Villasboas, J.C.; Novak, A.J.; Yang, Z.-Z.; Ansell, S.M. Expression of KLRG1 and CD127 defines distinct CD8+ subsets that differentially impact patient outcome in follicular lymphoma. J. Immunother. Cancer 2021, 9, e002662. [Google Scholar] [CrossRef]
- Nygren, L.; Wasik, A.M.; Baumgartner-Wennerholm, S.; Jeppsson-Ahlberg, Å.; Klimkowska, M.; Andersson, P.; Buhrkuhl, D.; Christensson, B.; Kimby, E.; Wahlin, B.E.; et al. T-Cell Levels Are Prognostic in Mantle Cell Lymphoma. Clin. Cancer Res. 2014, 20, 6096–6104. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Álvarez, S.; Vidriales, M.B.; Caballero, M.D.; Blanco, O.; Puig, N.; Martin, A.; Peñarrubia, M.J.; Zato, E.; Galende, J.; Bárez, A.; et al. The number of tumor infiltrating T-cell subsets in lymph nodes from patients with Hodgkin lymphoma is associated with the outcome after first line ABVD therapy. Leuk. Lymphoma 2017, 58, 1144–1152. [Google Scholar] [CrossRef] [PubMed]
- Maimela, N.R.; Liu, S.; Zhang, Y. Fates of CD8+ T cells in Tumor Microenvironment. Comput. Struct. Biotechnol. J. 2019, 17, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Li, C.; Cai, X.; Xie, Z.; Zhou, L.; Cheng, B.; Zhong, R.; Xiong, S.; Li, J.; Chen, Z.; et al. The association between CD8+ tumor-infiltrating lymphocytes and the clinical outcome of cancer immunotherapy: A systematic review and meta-analysis. eClinicalMedicine 2021, 41, 101134. [Google Scholar] [CrossRef] [PubMed]
- Hammond, S.M. An overview of microRNAs. Adv. Drug Deliv. Rev. 2015, 87, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Fuertes, T.; Ramiro, A.R.; de Yebenes, V.G. miRNA-Based Therapies in B Cell Non-Hodgkin Lymphoma. Trends Immunol. 2020, 41, 932–947. [Google Scholar] [CrossRef]
- Volinia, S.; Calin, G.A.; Liu, C.-G.; Ambs, S.; Cimmino, A.; Petrocca, F.; Visone, R.; Iorio, M.; Roldo, C.; Ferracin, M.; et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. USA 2006, 103, 2257–2261. [Google Scholar] [CrossRef] [Green Version]
- Ji, Q.; Jiang, T.; Su, J.; Zhang, S.; Li, C.; Yang, X.; Wu, X.; Yao, J.; Yuan, D.; Wang, J. Serum miR-21 predicts the prognosis of patients with primary gastrointestinal diffuse large B-cell lymphoma. Acta Biochim. Pol. 2022, 69, 379–385. [Google Scholar] [CrossRef]
- Li, J.; Fu, R.; Yang, L.; Tu, W. miR-21 expression predicts prognosis in diffuse large B-cell lymphoma. Int. J. Clin. Exp. Pathol. 2015, 8, 15019–15024. [Google Scholar]
- Li, J.; Zhai, X.-W.; Wang, H.-S.; Qian, X.-W.; Miao, H.; Zhu, X.-H. Circulating MicroRNA-21, MicroRNA-23a, and MicroRNA-125b as Biomarkers for Diagnosis and Prognosis of Burkitt Lymphoma in Children. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2016, 22, 4992–5002. [Google Scholar] [CrossRef] [Green Version]
- Mao, X.; Sun, Y.; Tang, J. Serum miR-21 is a diagnostic and prognostic marker of primary central nervous system lymphoma. Neurol. Sci. 2014, 35, 233–238. [Google Scholar] [CrossRef]
- Xi, J.; Huang, Q.; Wang, L.; Ma, X.; Deng, Q.; Kumar, M.; Zhou, Z.; Li, L.; Zeng, Z.; Young, K.H.; et al. miR-21 depletion in macrophages promotes tumoricidal polarization and enhances PD-1 immunotherapy. Oncogene 2018, 37, 3151–3165. [Google Scholar] [CrossRef]
- Gopalakrishnan, V.; Spencer, C.N.; Nezi, L.; Reuben, A.; Andrews, M.C.; Karpinets, T.V.; Prieto, P.A.; Vicente, D.; Hoffman, K.; Wei, S.C.; et al. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science 2018, 359, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Matson, V.; Fessler, J.; Bao, R.; Chongsuwat, T.; Zha, Y.; Alegre, M.-L.; Luke, J.J.; Gajewski, T.F. The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients. Science 2018, 359, 104–108. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Chen, Y.; Zhang, S.; Dong, L. Gut microbiota-mediated immunomodulation in tumor. J. Exp. Clin. Cancer Res. 2021, 40, 221. [Google Scholar] [CrossRef]
- Hwang, S.R.; Higgins, A.; Castillo Almeida, N.E.; LaPlant, B.; Maurer, M.J.; Ansell, S.M.; Witzig, T.E.; Thanarajasingam, G.; Bennani, N.N. Effect of antibiotic use on outcomes in patients with Hodgkin lymphoma treated with immune checkpoint inhibitors. Leuk. Lymphoma 2021, 62, 247–251. [Google Scholar] [CrossRef]
- Casadei, B.; Guadagnuolo, S.; Barone, M.; Turroni, S.; Argnani, L.; Brigidi, P.; Zinzani, P.L. Gut Microbiota Role in Response to Checkpoint Inhibitor Treatment in Patients with Relapsed/Refractory B-Cell Hodgkin Lymphoma: The MICRO-Linf Study. Blood 2021, 138, 2957. [Google Scholar] [CrossRef]
Target | Name | Pharmaceutical Company | Isotype | Approval Status | Year Indication |
---|---|---|---|---|---|
PD-1 | Nivolumab (Opdivo®) | Bristol-Myers Squibb | IgG4 S228P | FDA/EMA [19,20] | 2018, cHL |
Pembrolizumab (Keytruda®) | Merck | IgG4 S228P | FDA/EMA [21,22,23] | 2018, cHL, PMBCL | |
Tislelizumab (BGB-A317) | BeiGene | IgG4mut, FcyR null | China NMPA [24] | 2019, cHL | |
Camrelizumab (AiRuiKa™) | Hengrui | IgG4 S228P | China NMPA [25] | 2019, cHL | |
Sintilimab (Tyvyt®) | Innovent Biologics, Eli Lilly | IgG4 κ | China NMPA [26] | 2018, cHL | |
Zimberelimab (AB122) | Gloria Biosciences, Arcus Biosciences, Taiho Pharmaceutical Co | IgG4 | China NMPA [27] | 2021, cHL | |
Penpulimab (AK105) | Akeso Biopharma | IgG1, FcyR null | China NMPA [28] | 2021, cHL |
Lymphoma Subtype | Studies | N | Study Population | Therapy | ORR (%) | CR (%) | Median PFS (Months) | Median OS (Months) | Median Follow-Up (Months) | Specificities |
---|---|---|---|---|---|---|---|---|---|---|
Classical Hodgkin lymphoma | Ansell 2015, [11,29], Phase 1 | 23 | R/R (prior ASCT or allo-SCT) | Nivolumab 3 mg/kg q2wks * | 87 | 17 | NR † (86% at 6 months) | NR † | 21.5 | |
Maruyama 2017, 2020, [30,31], Phase 2 | 17 | R/R (prior ASCT and BV) | Nivolumab 3 mg/kg q2wks * | 88 | 31 | 11.7 (60% at 6 months) | NR (80% at 3 years) | 38.8 | ||
KEYNOTE-013, Armand 2016, 2020 et al., [21,32], Phase 2B | 31 | R/R after BV failure | Pembrolizumab 10 mg/kg q2wks * | 58 | 19 | 11.4 (30% at 2 years) | NR (81% at 3 years) | 52.8 | ||
CheckMate 205, Younes 2016, Armand 2018, Ansell 2021, [10,20,36,37], Cohorts A, B, C, Phase 2 | 243 | R/R after: A. ASCT (n = 63) B. ASCT + BV (n = 80) C. BV + ASCT ± BV (n = 100) | Nivolumab 3 mg/kg q2wks * | 71 | 21 | 15 (18% at 5 years) | NR (71% at 5 years) | 58 | ||
KEYNOTE-087, Ansell 2017, Chen 2019, Chen 2021, [12,22,38], Phase 2 | 210 | R/R after: A. ASCT + BV (n = 69) B. Salvage chemo + BV (n = 89) (ineligibility for SCT owing to chemorefractory disease) C. ASCT (n = 60) | Pembrolizumab 200 mg q3wks * | 71 | 28 | 13.7 (14% at 5 years) | NR (71% at 5 years) | 62.9 | ||
KEYNOTE-204, Kuruvilla 2021, [35], Phase 3 | 304 | R/R (ineligible or relapsed after ASCT) | Pembrolizumab 200 mg q3wks versus BV 1.8 mg/kg q3wks * | Pembrolizumab: 66 BV: 54 | Pembrolizumab: 25 BV: 24 | 13.2 (for pembrolizumab) 8.3 (for BV) | NA | 25.7 | ||
JAVELIN Hodgkin trial, Herrera 2021, [39], Phase 1B | 31 | R/R (ineligible or relapsed after ASCT) | Avelumab with four dose levels and two dosing schedules (q2wks or q3wks) | 42 | 19 | 5.7 (18% at 1 year) | NA | NA | Dose levels/schedules: 70, 350 and 500 mg q2wks; 500 mg q3wks; 10 mg/kg q2wks | |
Song 2019, Song 2022, [24,40], Phase 2 | 70 | R/R (ineligible or relapsed after ASCT) | Tislelizumab 200 mg q3wks * | 87 | 67 | 31.5 (41% at 3 years) | NR (85% at 3 years) | 33.8 | ||
Song 2019, Wu 2021, [25,41], Phase 2 | 75 | R/R (ineligible or relapsed after ASCT) | Camrelizumab 200 mg q2wks * | 76 | 28 | 22.5 (67% at 1 year) | NR (83% at 3 years) | 36.2 | ||
Nie 2019, Liu 2021, [42,43], Cohort 1, Phase 2 | 19 | R/R after more than 2 therapy lines, anti-PD-1 naïve | Camrelizumab 200 mg q3wks monotherapy * | 90 | 32 | 15.5 (42% at 2 years) | NR (63% at 2 years) | 34.5 | ||
ORIENT-1, Shi 2019, Su 2020, [26,44], Phase 2 | 96 | R/R after more than 2 therapy lines (including ASCT) | Sintilimab 200 mg q2wks * | 80 | 29 | 18.6 (78% at 6 months) | NR (96% at 2 years) | 26.7 | ||
Armand 2019, [45], Phase 2 | 30 | R/R after ASCT | Pembrolizumab 200 mg q3wks × 8 cycles as maintenance after ASCT | NA | NA | NR (82% at 18 months) | NR (100% at 18 months) | NA | ||
Song 2022, [28], Phase 1/2 | 85 | R/R (including ASCT) | Penpulimab 200 mg q2wks * (maximum of 24 months) | 89 | 47 | NR (72% at 1 year) | NR (100% at 18 months) | 15.8 | ||
Lin 2022, [27], Phase 2 | 85 | R/R (including ASCT) | Zimberelimab (GLS-010) q2wks * (maximum of 24 months) | 91 | 33 | NR (78% at 1 year) | NR (99% at 1 year) | 15.8 | ||
Follicular lymphoma | Barraclough 2019, Hawkes 2021, [46,47], Phase 2 | 39 | Newly diagnosed, stage III-IV, grade 1-3a FL | Nivolumab 240 mg 2-weekly × 4 cycles If CR: N 240 mg monotherapy × 4 cycles, maintenance N 480 mg 4-weekly × 12 cycles If < CR: N 240 mg + rituximab 375mg/m2 2-weekly × 4 cycles, maintenance N+R (N 480 mg 4 weekly ×12 cycles; R 12 weekly × 8 cycles). | 92 | 54 | NR (72% at 1 year) | NR (96% at 1 year) | 17.5 | |
CheckMate 140, Armand 2021, [48], Phase 2 R/R | 92 | R/R (after failure of at least 2 prior lines of therapy) | Nivolumab 3 mg/kg q2wks * | 4 | 1 | 2.2 | NA | NA | 12-months minimal follow-up | |
Diffuse large B-cell lymphoma | Ansell 2019, [49], Phase 2 | 121 | R/R (ineligible or relapsed after ASCT) | Nivolumab 3 mg/kg q2wks * | 10 (all groups) ‡ | 3 (all groups) § | ASCT failed (n = 87): 1.9 ASCT ineligible (n = 34): 1.4 | ASCT failed (n = 87): 12.2 ASCT ineligible (n = 34): 5.8 | ASCT failed: 9 ASCT ineligible: 6 | |
Primary mediastinal B-cell lymphoma | KEYNOTE-013, Zinzani 2017, Armand 2019, [14,50] Phase 1B | 21 | R/R PMBCL | Pembrolizumab 10 mg/kg (n = 11) 200 mg (n = 10) q3wks * | 48 | 33 | 10.4 | 31.4 | 29.1 | |
KEYNOTE-170, Armand 2019, [14] Phase 2 | 53 | R/R PMBCL | Pembrolizumab 200 mg q3wks * | 45 | 13 | 5.5 | NR | 12.5 | ||
Extranodal natural killer/T-cell lymphomas | Kim 2020, [51], Phase 2 | 21 | R/R ENKTL | Avelumab 10 mg/kg q2wks * | 38 | 24 | 2.7 | NR | 15.7 | Response significantly associated with the expression of PD-L1 by tumor tissue |
ORIENT-4, Tao 2021, [52], Phase 2 | 28 | R/R ENKTL | Sintilimab 200 mg q3wks * | 75 | 21 | NA | NR (79% at 2 years) | 30.4 | ||
Hematologic malignancies | Lesokhin 2016, [53], Phase 1 | 81 | R/R B-cell lymphoma, TCL, MM (inclusive after ASCT) | Nivolumab 1 or 3 mg/kg q2wks * | FL (n = 10): 40 DLBCL (n = 11): 36 TCL (n = 23): 17 MM (n = 27): 4 | FL (n = 10): 10 DLBCL (n = 11): 18 TCL (n = 23): 0 MM (n = 27): 4 | FL (n = 10): NR DLBCL (n = 11): 7 TCL (n = 23): 10 MM (n = 27): 10 | NA | 16.7 | |
Frigault 2020, [54], Phase 2 | 29 | R/R DLBCL + PMBCL after ASCT as maintenance | Pembrolizumab 200 mg q3wks × 8 cycles | N/A | 59% at 18 months | NR (59% at 18 months) | NR (93% at 18 months) | NA | ||
Davids 2020, [55], Phase 1 | 28 | Relapsed hematologic malignancies after allo-SCT | Nivolumab 0.5–3 mg/kg q2wks * | 29 | 4 | 3.7 | 21.4 | 11 | ||
Ding 2017, [56], Phase 2 | 25 | Relapsed or progressive CLL (n = 16) + CLL with RT (n = 9) | Pembrolizumab 200 mg q3wks * | CLL: 0 RT: 44 | CLL: 0 RT: 11 | CLL: 2.4 RT: 5.4 | CLL: 4.3 RT: NR | 11 | ||
Khodadoust 2020, [57], Phase 2 | 24 | R/R MF (n = 9) and SS (n = 15) | Pembrolizumab 2 mg/kg q3 wks # | MF: 56 SS: 27 | MF: 0 SS: 7 | MF: 12 SS: 12 | MF: NR SS: NR | NA | ||
Chong 2018, [58], Phase 1/2 | 12 | R/R B-cell NHL after CAR T-cell therapy | Pembrolizumab 200 mg q3wks * | 27 | 9 | NA | NA | NA | ||
iMATRIX, Geoerger 2020, [59], Phase 1/2 | 90 (n = 18 between 18–29 years) | R/R solid tumors, HL (n = 9), NHL (n = 3) | Atezolizumab 15 mg/kg (<18 years) or 1200 mg (18–29 years) q3wks * | 4.6 | NA | 1.3 | 7.4 | 6.8 | Patients < 30 years | |
FUSION NHL 001 trial, Casulo 2023, [60], Arm D, Phase 1 | 27 | R/R CLL/SLL (n = 2), FL (n = 5), DLBCL (n = 10), MCL (n = 5), HL (n = 5) | Durvalumab 1500 mg q4wks | NR | NR | CLL/SLL: 2.8 FL: 1.7 DLBCL: 1.2 MCL: 2.3 HL: 2.7 | CLL/SLL: NR FL: 2.9 DLBCL: 1.6 MCL: 13.6 HL: 23.8 | 23.3 |
Lymphoma Subtype | Studies | N | Study Population | Therapy | ORR (%) | CR (%) | Median PFS (Months) | Median OS (Months) | Median Follow-up (Months) | Specificities |
---|---|---|---|---|---|---|---|---|---|---|
Classical Hodgkin lymphoma | CheckMate 205, Ramchandren 2019, [61] Cohort D, Phase 2 | 51 | Untreated advanced-stage | Nivolumab 240 mg q2wks × 4 doses followed by nivolumab-AVD × 6 cycles | 84 | 67 | NR (92% at 9 months) | NR (98% at 9 months) | 11.1 | |
NIVAHL Trial, Bröckelmann 2022, [62], Phase 2 | 109 | Untreated early-stage and unfavorable | Group 1: nivolumab 240 mg q2wks + AVD × 4 cycles Group 2: nivolumab × 4 cycles monotherapy, nivolumab-AVD × 2 cycles, AVD only × 2 cycles, followed by 30 Gy involved-site radiotherapy | 96 | 87 | NA 1: 100% at 1 year 2: 98% at 1 year | NA 1: 100% at 1 year 2: 100% at 1 year | 13 | ||
Cheson 2020, [67] Phase 2 | 46 | Untreated, >60 years old or younger and ineligible for chemotherapy | Nivolumab 3 mg/kg + BV 1.8 mg/kg q3wks × 8 cycles | 61 | 48 | 18.3 | NR | 21.2 | ||
Allen 2021, [63], Phase 2 | 30 | Untreated early unfavorable and advanced-stage | Pembrolizumab 200 mg q3wks for 3 cycles, AVD × 4–6 cycles | 100 | NA | NR | NR | 22.5 | ||
Nie 2019, Liu 2021 et al., [42,43], Cohort 1 combination, Phase 2 | 67 | R/R after more than 2 therapy lines | Cohort 1 combination; anti-PD-1 naïve: (n = 42): decitabine (10 mg/d, days 1 to 5) plus camrelizumab 200mg q3wks * Cohort 2 (n = 25); anti-PD-1 resistant: decitabine plus camrelizumab * | 1: 95 2: 52 | 1: 71 2: 28 | 1: 89% at 1 year 2: 59% at 1 year | 1: 63% at 2 years2: NA | 34.5 | ||
Herrera 2019, Mei 2022, [68,69], Phase 2 | 43 | R/R first salvage therapy and bridge to ASCT | Nivolumab 3 mg/kg q2wks × 6 cycles +/− ICE. PET-CT after C3 and C6. After C6, pts in CR: ASCT, not in CR: N-ICE for 2 cycles | 93 | 91 | NA (72% at 2 years) | NA (95% at 2 years) | NA | Among 9 patients who received N-ICE: ORR 100%, CR 89% | |
Bryan 2021, [70], Phase 2 | 42 | R/R prior to ASCT | Pembrolizumab 200mg q2wks + ICE × 2 cycles, stem cell mobilization/collection, pembrolizumab 200 mg × 1 cycle | 97 | NA | 26.9 (88% at 2 years) | NR (95% at 2 years) | 27 | ||
Diefenbach 2020, [71], Phase 1/2 | 64 | R/R | BV 1.8 mg/kg + ipilimumab 3 mg/kg or nivolumab 3 mg/kg or nivolumab 3 mg/kg and ipilimumab 1 mg/kg * | BV + Ipi76 BV + Nivo89 BV + Ipi/Nivo82 | BV + Ipi57BV + Nivo61BV + Ipi/Nivo73 | BV + Ipi14.4 (61% at 1 year)BV + NivoNR (70% at 1 year)BV + Ipi/NivoNR (80% at 1 year) | NR | BV + Ipi: 31.2 BV + Nivo: 28.8 BV + Ipi/Nivo: 20.4 | ||
Sermer 2020, Sermer 2021, [72,73], Phase 2 | 22 | R/R (heavily pretreated, previous ICB therapy accepted) | Entinostat 5–7 mg orally q1wks + pembrolizumab 200mg q3wks | 86 | 45 | NA (72% at 1 year) | NA | 8.4 | ||
Lepik 2020, [74], Phase 2 | 30 | R/R after nivolumab monotherapy | Nivolumab 3 mg/kg on D1, 14 + bendamustine (90 mg/m2) on D1, 2 of a 28-day cycle for up to 3 cycles | 87 | 57 | 10.2 (23% at 2 years) | NA (97% at 2 years) | 25 | ||
Herrera 2018, Advani 2021, [75,76] Phase 1/2 | 62 | R/R in initial salvage therapy before ASCT | BV + nivolumab 3 mg/kg q3wks × 4 cycles | 82 | 61 | NR (77% at 3 years) | NR (93% at 3 years) | 34.3 | ||
Moskowitz 2021, [77], Phase 2 | 38 | R/R after first-line therapy, prior to ASCT | Pembrolizumab 200 mg + GVD q3wks × 2–4 cycles | 100 | 95 | NA | NA | 13.5 | ||
Ansell 2019, Bartlett 2020, [78,79], Phase 1B | 24 | R/R, CD30-positive, 3–7 prior lines of therapy including BV | Pembrolizumab 200 mg q3wks + AFM13 dose escalation schedules | 83 | 37 | NA (77% at 6 months) | NA | NA | ||
Dave 2022, [80], Phase 1 | 10 | R/R inclusive after ASCT, allo-SCT, BV, prior ICB) (n = 8 active disease, n = 2 adjuvant after ASCT) | TAA-Ts + nivolumab in 6 patients * | 1 CR 7 SD at 3 months | 41 (adjuvant arm) and 12.6 (active disease arm) | Nivolumab priming impacted TAA-T recognition and persistence. | ||||
CheckMate 039, Ansell 2016, Armand 2021, [19,81], Phase 1B | 52 | R/R after ≥2 prior lines of therapy, independent of ASCT | Nivolumab 3 mg/kg + ipilimumab 1 mg/kg q3wks or nivolumab 3 mg/kg + lirilumab 3 mg/kg q4wks * | Nivo/Ipi: (n = 31) 74 Nivo/Liri (n = 21): 76 | Nivo/Ipi: (n = 31) 23 Nivo/Liri: (n = 21):24 | Nivo/Ipi: NR Nivo/Liri: NR | NA | Nivo/Ipi: 18 Nivo/Liri: 11 | ||
Timmerman 2022, [82], Phase I/II (cohort 2) | 29 | R/R after anti-PD-1 therapy | Favezelimab 800mg q3wks + pembrolizumab 20mmg q3wks for up to 35 cycles | 31 | 7 | 9 (39% at 1 year) | 26 (91% at 1 year) | N/A | ||
Follicular lymphoma | Younes 2017, Younes 2022, [83,84] Phase 1/2 | 40 | FL grade 1, 2 or 3a disease requiring therapy | Obinutuzumab 1000 mg on days 1, 8 and 15 of cycle 1 and day 1 of cycles 2–6, bendamustine 90 mg/m2 on days 1 and 2 of cycles 1–6 and atezolizumab 840 mg on days 1 and 15 of cycles 2–6 (28-day cycles). Maintenance in pts with CR or PR consisted of obinu 1000 mg on day 1 of every other month and atezo 840 mg on days 1 and 2 of each month * | NA | 75% | NA (81% at 3 years) | NA (89% at 3 years) | 40.4 | Grade 5 (fatal) adverse events reported in five patients |
Westin 2014, [85], Phase 2 | 30 | Relapsed FL rituximab sensible | Rituximab 375 mg/m2 weekly for 1 cycle + pidilizumab 3 mg/kg q4wks for 12 doses | 66 | 52 | 18.8 | NA | 15.4 | ||
Nastoupil 2017, Nastoupil 2022, [86,87], Phase 2 | 30 | Relapsed FL rituximab sensible | Pembrolizumab 200 mg q3wks for up to 16 cycles + rituximab 375 mg/m2 weekly for 1 cycle | 67 | 50 | 12.6 | NR (97% at 3 years) | 35 | ||
Morschhauser 2021, [88], Phase 1B/2 | 32 | R/R FL (grade 1–3a) | Obinutuzumab 1000 mg + atezolizumab 840 mg + lenalidomide 15mg (in the expansion phase) or 20 mg × 6 cycles, if CR/PR/SD maintenance* | 78 (at the end of the induction) | 72 (at the end of the induction) | NA (68% at 3 years) | NA (90% at 3 years) | 30 (lenalidomide 15 mg) 14.2 (lenalidomide 20 mg) | ||
Diffuse large B-cell lymphoma | Younes 2018, Younes 2019, [89,90], Phase 1/2 | 40 | Untreated advanced DLBCL | Atezolizumab 1200mg q3wks + R-CHOP × 8 cycles | NA | 78 | NA (75% at 2 years) | NA (86% at 2 years) | 21.3 | |
Smith 2020, [91], Phase 1 | 30 | Untreated DLBCL or grade 3b FL | Pembrolizumab 200 mg + R-CHOP q3wks × 6 cycles | 90 | 77 | NA (83% at 2 years) | NA (84% at 2 years) | 25.5 | ||
Nowakowski 2022, [92], Phase 2 | 37 | High-risk DLBCL (IPI ≥ 3/NCCN-IPI ≥ 4) | Durvalumab 1125mg q3wks+ R-CHOP × 6–8 cycles, then durvalumab consolidation * | 97 | 68 | NA (68% at 1 year) | NA | NA | ||
Palomba 2022, [93], Phase 1B | 43 | R/R DLBCL | Atezolizumab 1200 mg + tazemetostat 800 mg orally twice daily q3wks | 16 | 7 | 2 | 13 | 23.7 | ||
ZUMA 6, Jacobson 2020, [94], Phase 1/2 | 28 | R/R DLBCL | Atezolizumab 1200mg + KTE-C19 (axi-cel) | 75 | 46 | NR | NR | 10.2 | ||
PORTIA trial, Jäger 2021, [95], Phase 1B | 12 | R/R DLBCL | Pembrolizumab q3wks for up to 6 doses either days +15, +8 or –1 of tisagenlecleucel | Days + 15: 50 Days + 825 Days-1 25 | Days + 15: 0 Days + 8 25 Days-1 25 | NA | NA | 4 | ||
Witzig 2019, [96], Phase 1/2 | 61 | R/R DLBCL | Pembrolizumab 200 mg q3wks + acalabrutinib 100 mg BID * | 26 | 7 | 1.9 | NA | NA | ||
Alexander trial, Osborne 2020, [97], Phase 1 | 29 | R/R DLBCL | Pembrolizumab 200 mg q3wks + AUTO3 (bispecific CAR T targeting CD19/22) | 69 | 52 | NA | NA | NA | ||
Primary mediastinal B-cell lymphoma | CheckMate 436, Zinzani 2019, Zinzani 2021, [98,99], Phase 2 | 30 | R/R PMBCL | Nivolumab 240 mg and BV 1.8 mg/kg q3wks * | 73 | 37 | 26 (56% at 1 and 2 years) | NR (76% at 2 years) | 11.1 | |
Multiple hematologic malignancies | CheckMate 039, Ansell 2016, Armand 2021, [19,81], Phase 1B | 78 | R/R hematologic malignancies (≥2 prior lines of therapy) independent of ASCT | Nivolumab 3 mg/kg + ipilimumab 1 mg/kg q3wks or nivolumab 3 mg/kg + lirilumab 3 mg/kg q4wks * | N/I: B-NHL (n = 16) 19 T-NHL (n = 11): 9 N/L B-NHL (n = 32): 13 T-NHL (n = 11): 22 | N/I: B-NHL(n = 16)6 T-NHL (n = 11): 0 N/L B-NHL (n = 32):3 T-NHL (n = 11): 0 | N/I: B-NHL(n = 16) 1 T-NHL (n = 11): 2 N/L B-NHL (n = 32): 1 T-NHL (n = 11): 6 | NA | N/I: 18 N/L: 11 | |
Younes 2019, [100], Phase 1/2A | 141 | R/R CLL, SLL, FL, DLBCL | Ibrutinib + nivolumab 3 mg/kg q2wks * | CLL/SLL (n = 36):61, FL (n = 40):33, DLBCL (n = 45):36RT (n = 20):65 | CLL/SLL (n = 36):0 FL (n = 40):10DLBCL (n = 45):16 RT (n = 20): 10 | CLL/SLL (n = 36): NR FL (n = 40):9.1 DLBCL (n = 45):2.6RT (n = 20): 5.0 | CLL/SLL (n = 36): NR FL (n = 40):NR DLBCL (n = 45):13.5RT (n = 20): 10.3 | 19.7 | ||
Palomba 2022, [101], Phase 1B | 49 | R/R FL + R/R DLBCL | Atezolizumab 1200 mg + obinutuzumab 1000 mg | FL (n = 26): 54 DLBCL (n = 23): 17 | FL (n = 26): 23 DLBCL (n = 23): 4 | FL (n = 26): 9 DLBCL (n = 23): 3 | FL (n = 26): NA DLBCL (n = 23): 9 | NA | ||
Jain 2016, Jain 2018, [102,103], Cohort 1, Phase 2 | 28 | R/R FL + RT | Nivolumab 3 mg/kg q2wks × 24 cycles + ibrutinib 420 mg * | FL (n = 5): 60 RT (n = 23): 43 | FL (n = 5): 0 RT (n = 23): 35 | FL (n = 5): NR RT (n = 23): NA | FL (n = 5): NR RT (n = 23): 13.8 | NA | ||
LYSA trial, Herbaux 2020, Herbaux 2021, [104,105], Phase 2 | 136 | R/R DLBCL (cohort 1) and R/R iNHL (FL + MZL) (cohort 2) | Obinutuzumab 1 g × 8 cycles + atezolizumab 1.2 g q3wks × 24 cycles + venetoclax 800 mg/day (on D8) × 24 cycles | DLBCL (n = 58): 24 FL (n = 58): 54 MZL (n = 20): 67 | DLBCL (n = 58): 18 FL (n = 58): 30 MZL (n = 20): 17 | NA | NA | DLBCL: 9FL: 14.5 MZL: 11.9 | ||
Hutchings 2019, [106], Phase 1B | 36 | R/R B- NHL (DLBCL, transformed FL, MCL, PMBCL, LPL, iNHL) | Atezolizumab 1200 mg + CD-20-TCB antibody (RG6026) q3wks | 36 | 17 | NA | NA | NA | Ongoing trial | |
KEYNOTE-155, Gregory 2022, [107], Phase 1B | 72 | R/R hematologic malignancies | Pembrolizumab 200 q3wks + dinaciclib (dose escalation) * | CLL (n = 17): 29 DLBCL (n = 38): 21 MM (n = 17): 0 | CLL (n = 17): 0 DLBCL (n = 38): 11MM (n = 17): 0 | CLL (n = 17): 5.2 DLBCL (n = 38): 2.1 MM (n = 17): 1.6 | CLL (n = 17): 21.7 DLBCL (n = 38): 7.9 MM (n = 17): 10.5 | NA | Dinaciclib dose levels (7 mg/m2, 10 mg/m2, 14mg/m2) | |
Herrera 2020, [108], Phase 1/2 | 61 | R/R FL + R/R DLBCL | Durvalumab 10 mg/kg q2wks + ibrutinib 560 mg once daily (dosing according to phase 1B) * | FL (n = 29): 26 Non-GCB DLBCL (n = 16): 38 GCB-DLBCL (n = 16): 13 | FL (n = 29): 4 Non-GCB DLBCL (n = 16): 31 GCB-DLBCL (n = 16): 6 | FL (n = 29): 10.2 Non-GCB DLBCL (n = 16): 4.1 GCB-DLBCL (n = 16): 2.9 | FL (n = 29): NR Non-GCB DLBCL (n = 16): 7.3 GCB-DLBCL (n = 16): 5.5 | FL: 17 DLBCL: 17.5 | ||
Hirayama 2020, [109], Phase 1 | 13 | R/R B-cell NHL | Durvalumab dose escalation up to 10 doses + JCAR014 (CD19-specific 4-1BB-costimulated CAR T cells) | 50 | 42 | NA | NA | NA | Durvalumab dose escalation ongoing | |
Panayiotidis 2022, [110], Phase 2 | 55 | R/R MCL, WM, MZL | Atezolizumab + obinutuzumab (MCL + WM) or rituximab (MZL) | MCL (n = 30): 17 WM (n = 4): 0 MZL (n = 21): 43 | NA | NA | NA | NA | ||
Sang 2022, [111], Phase 2 | 12 | R/R CD30+ lymphoma (9 cHL, 1 angioimmunoblastic T-cell lymphoma (AITL), 2 gray zone lymphoma) | Cohort 1: 106/kg of CD30 CAR Ts Cohort 2: 107/kg of CD30 CAR Ts Cohort 3: 107/kg of CD30 CAR Ts + anti-PD-1 antibody q3wks starting 14 days after CAR T-cell infusion † | 92 (Cohorts 1 and 2: 86%; Cohort 3: 100%) | 70 (Cohorts 1 and 2: 27%; Cohort 3: 80%) | 45 | 70 | 21.5 | Anti-PD-1 treatment not mentioned | |
FUSION NHL 001 trial, Casulo 2023, [60], Arm A, B, C, Phase 1/2 | 34 | Arm A: B-cell NHL (n = 14) Arm B: B-cell NHL/CLL (n = 7) Arm C: B-cell NHL/CLL (n = 13) | Durvalumab 1500mg q4wks + Arm A: Len 20mg, Len 20 or 10 mg +/− R Arm B: Ibr 420 (CLL/SLL) or 560mg (MCL) Arm C: Ben 70mg + R (FL, DLBCL, CLL/SLL) | Arm A: 66.7, 66.7, 80 Arm B: 100, 70 Arm C: 88.9, 30, 50 | Arm A: 33.3, 33.3, 20 Arm B: 0, 30 Arm C: 44.4, 10, 25 | Arm A: 8.4, NA, NA Arm B: CLL/SLL: NA MCL: NA Arm C: FL: 14.7 DLBCL 2.1 CLL/SLL: NA | Arm A: NA, NA, NA Arm B: CLL/SLL: NA MCL: NA Arm C:FL: NA DLBCL 5.1 CLL/SLL: NA | Arm A: 23Arm B: 23.3 Arm C: 14.8 | Arm A: no dose-confirmation cohort |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perdikis-Prati, S.; Sheikh, S.; Bouroumeau, A.; Lang, N. Efficacy of Immune Checkpoint Blockade and Biomarkers of Response in Lymphoma: A Narrative Review. Biomedicines 2023, 11, 1720. https://doi.org/10.3390/biomedicines11061720
Perdikis-Prati S, Sheikh S, Bouroumeau A, Lang N. Efficacy of Immune Checkpoint Blockade and Biomarkers of Response in Lymphoma: A Narrative Review. Biomedicines. 2023; 11(6):1720. https://doi.org/10.3390/biomedicines11061720
Chicago/Turabian StylePerdikis-Prati, Sarah, Semira Sheikh, Antonin Bouroumeau, and Noémie Lang. 2023. "Efficacy of Immune Checkpoint Blockade and Biomarkers of Response in Lymphoma: A Narrative Review" Biomedicines 11, no. 6: 1720. https://doi.org/10.3390/biomedicines11061720
APA StylePerdikis-Prati, S., Sheikh, S., Bouroumeau, A., & Lang, N. (2023). Efficacy of Immune Checkpoint Blockade and Biomarkers of Response in Lymphoma: A Narrative Review. Biomedicines, 11(6), 1720. https://doi.org/10.3390/biomedicines11061720