Towards Artificial Intelligence Applications in Next Generation Cytopathology
Abstract
:1. Introduction
From Cytology Automation to Artificial Intelligence
2. Applications of Computer Vision Models to Cytopathology
2.1. Data Acquisition and Availability
2.2. Current Challenges and Limitations
2.3. Improving Data Acquisition and Quality
3. Use Cases for Augmented and Virtual Reality in Cytopathology
4. Natural Language Processing in Cytopathology
Limits of LLM Models
5. Decentralized Technologies in Cytopathology
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Morrison, W.B.; DeNicola, D.B. Advantages and disadvantages of cytology and histopathology for the diagnosis of cancer. Semin. Vet. Med. Surg. (Small Anim.) 1993, 8, 222–227. [Google Scholar] [PubMed]
- Dey, P. Basic and Advanced Laboratory Techniques in Histopathology and Cytology, 1st ed.; Springer: Singapore, 2018; pp. 139–146. [Google Scholar]
- Gasparini, S. Histology versus cytology in the diagnosis of lung cancer: Is it a real advantage? J. Bronchol. Interv. Pulmonol. 2010, 17, 103–105. [Google Scholar] [CrossRef]
- Faquin, W.C.; Rossi, E.D.; Baldoch, Z. The Milan System for Reporting Salivary Gland Cytopathology, 1st ed.; Springer: Bazel, Switzerland, 2018. [Google Scholar]
- Rosenthal, D.L.; Wojcik, E.M.; Kurtycz, D.F.I. The Paris System for Reporting Urinary Cytology, 1st ed.; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Field, A.S.; Raymond, W.A.; Rickard, M.; Arnold, L.; Brachtel, E.F.; Chaiwun, B.; Chen, L.; Di Bonito, L.; Kurtycz, D.F.I.; Lee, A.H.S.; et al. The International Academy of Cytology Yokohama System for Reporting Breast Fine Needle Aspiration Biopsy Cytopathology. Acta Cytol. 2019, 63, 257–273. [Google Scholar] [CrossRef] [PubMed]
- Field, A.S.; Raymond, W.A.; Schmitt, F. The International Academy of Cytology Yokohama System for Reporting Breast Fine Needle Aspiration Biopsy Cytopathology, 1st ed.; Springer Nature: Cham, Switzerland, 2020. [Google Scholar]
- Pitman, M.B.; Layfield, L. The Papanicolaou Society of Cytopathology System for Reporting Pancreaticobiliary Cytology: Definitions Criteria and Explanatory Notes, 1st ed.; Springer Nature: Cham, Switzerland, 2015. [Google Scholar]
- Nayar, R.; Wilbur, D.C. The Bethesda System for Reporting Cervical Cytology: Definitions, Criteria and Explanatory Notes, 3rd ed.; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- De Vito, C.; Angeloni, C.; De Feo, E.; Marzuillo, C.; Lattanzi, A.; Ricciardi, W.; Villari, P.; Boccia, S. A large cross-sectional survey investigating the knowledge of cervical cancer risk etiology and the predictors of the adherence to cervical cancer screening related to mass media campaign. BioMed Res. Int. 2014, 2014, 304602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salto-Tellez, M.; Maxwell, P.; Hamilton, P. Artificial intelligence- the third revolution in pathology. Histopathology 2019, 74, 372–376. [Google Scholar] [CrossRef] [Green Version]
- Abels, E.; Pantanowitz, L.; Aeffner, F.; Zarella, M.D.; van der Laak, J.; Bui, M.M.; Vemuri, V.N.; Parwani, A.V.; Gibbs, J.; Agosto-Arroyo, E.; et al. Computational pathology definitions, best practices, and recommendations for regulatory guidance: A white paper from the Digital Pathology Association. J. Pathol. 2019, 249, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Zhou, Y.; Lin, Y.; Ronald, C.K.; Chan, R.; Jiang, C.K.; Liu, J.; Chen, H. Deep learning for computational cytology: A survey. Med. Image Anal. 2023, 84, 102691. [Google Scholar] [CrossRef]
- Mellors, R.C.; Glassman, A.; Papanicolaou, G.N. A microfluorometric scanning method for the detection of cancer cells in smears of exfoliated cells. Cancer 1952, 5, 458–468. [Google Scholar] [CrossRef]
- Wied, G.L.; Bartels, P.H.; Bahr, G.F.; Oldfield, D.G. Taxonomic intra-cellular analytic system TICAS for cell identification. Acta Cytol. 1968, 12, 180. [Google Scholar]
- Zahniser, D.J.; Oud, P.S.; Raaijmakers, M.C.T.; Vooijs, G.P.; van drer Walle, P.T. BIOPER: A system for the automatic prescreening of cervical smears. J. Histochem. Cytochem. 1979, 27, 635. [Google Scholar] [CrossRef] [Green Version]
- Ploem, J.S.; van Driel-Kuller, A.M.; Ploem-Zaaijer, J.J. Automated cell analysis for DNA studies of large cell populations using the LEYTAS image cytometry system. Pathol.-Res. Pract. 1989, 185, 671–675. [Google Scholar] [CrossRef]
- Carothers, A.; NcGoogan, E.; Vooijs, P.; Bird, C.; Colquhoun, M.; Eason, P.; McKie, M.; Nieuwenhuis, F.; Pitt, P.; Rutowitz, D. A collaborative trial of a semi-automatic system for slide preparation and screening in cervical cytopathology. Anal. Cell. Pathol. 1994, 7, 261–274. [Google Scholar] [PubMed]
- Garner, D.; Harrison, A.; MacAulay, C.; Palcic, B. Cyto-Savant and its use in automated screening of cervical smears. In Compendium on the Computerized Cytology and Histology Laboratory; Wied, G.L., Bartels, P.H., Rosenthal, D.L., Schenck, U., Eds.; Tutorials of Cytology: Chicago, IL, USA, 1994. [Google Scholar]
- Husain, O.A.N.; Butler, E.B.; Nayagam, M.; Mango, L.; Alonzo, A. An analysis of the variation of human interpretation: Papnet a mini-challenge. Anal. Cell. Pathol. 1994, 6, 157–163. [Google Scholar] [PubMed]
- Koss, L.G.; Lin, E.; Schreiber, K.; Elgert, P.; Mango, L. Evaluation of the Papnet cytologic screening system for quality control of cervical smears. Am. J. Clin. Pathol. 1994, 101, 220–229. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Thien Huynh, T.; Pham, Q.V.; Pham, X.Q.; Nguyen, T.T.; Han, Z.; Dong-Seong, K. Artificial intelligence for the metaverse: A survey. Eng. Appl. Artif. Intell. 2023, 117, 105581. [Google Scholar] [CrossRef]
- Ciregan, D.; Meier, U.; Schmidhuber, J. Multi-column deep neural networks for image classification. arXiv 2012, arXiv:1202.2745. [Google Scholar]
- Gedefaw, L.; Liu, C.-F.; Ip, R.K.L.; Tse, H.-F.; Yeung, M.H.Y.; Yip, S.P.; Huang, C.-L. Artificial Intelligence-Assisted Diagnostic Cytology and Genomic Testing for Hematologic Disorders. Cells 2023, 12, 1755. [Google Scholar] [CrossRef]
- Hanna, M.G.; Hanna, M.H. Current applications and challenges of artificial intelligence in pathology. Hum. Pathol. Rep. 2022, 27, 300596. [Google Scholar] [CrossRef]
- Shelhamer, J.L.; Long, T.D. Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.H.; Mao, Z.H.; Huang, C.; Huang, W.X. CNN-RNN: A unified framework for multi-label image classification. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVRP), Computer Society, Los Alamitos, CA, USA, 27–30 June 2016. [Google Scholar]
- Chen, Z.; Wang, G.; Li, L.L. Recurrent attentional reinforcement learning for multi-label image recognition. arXiv 2017, arXiv:1712.07465. [Google Scholar] [CrossRef]
- Alsubaie, N.; Trahearn, N.; Raza, S.E.A.; Snead, D.; Rajpoot, N.M. Stain deconvolution using statistical analysis of multi resolution stain colour representation. PLoS ONE 2017, 12, e0169875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Z.; Shiao, S.L.; Yoshida, E.J.; Swartwood, S.; Huang, F.; Doche, M.E.; Chung, A.P.; Knudsen, B.S.; Gertych, A. Data integration from pathology slides for quantitative imaging of multiple cell types within the tumor immune cell infiltrate. Diagn. Pathol. 2017, 12, 69. [Google Scholar] [CrossRef]
- Gonzales, R.C.; Woods, R.E. Digital Image Processing; Pearson Education: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- McAlpine, E.D.; Michelow, P. The cytopathologist’s role in developing and evaluating artificial intelligence in cytopathology practice. Cytopathology 2020, 31, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.T.; Li, M.; Li, G.; Zhang, Y.; Sun, C.; Bai, N. Cervical Cell/Clumps Detection in Cytology Images Using Transfer Learning. Diagnostics 2022, 12, 2477. [Google Scholar] [CrossRef]
- Ullo, S.L.; Mohan, L.; Sebastianelli, A.; Ahamed, A.; Kumar, S.E.; Dwivedi, B.; Sinha, R.; Ganesh, R.S. A New Mask R-CNN-Based Method for Improved Landslide Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3799–3810. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; Chaudhuri, K., Salakhutdinov, R., Eds.; PMLR: Long Beach, CA, USA, 2019; Volume 97, pp. 6105–6114. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- Zbontar, J.; Jing, L.; Misra, I.; LeCun, Y.; Deny, S. Barlow twins: Self-supervised learning via redundancy reduction. arXiv 2021, arXiv:2103.03230. [Google Scholar]
- Ghesu, F.C.; Georgescu, B.; Mansoor, A.; Yoo, Y.; Neumann, D.; Patel, P.; Vishwanath, R.S.; Balter, J.M.; Cao, Y.; Grbic, S.; et al. Self-supervised Learning from 100 million Medical Images. arXiv 2022, arXiv:2201.01283. [Google Scholar]
- Che, Z.; Purushotham, S.; Khemani, R.; Liu, Y. Interpretable deep models for ICU outcome prediction. AMIA Annu. Symp. Proc. 2016, 2016, 371–380. [Google Scholar]
- Lilli, L.; Giarnieri, E.; Scardapane, S. A Calibrated Multiexit Neural Network for Detecting Urothelial Cancer Cells. Comput. Math. Methods Med. 2021, 13, 5569458. [Google Scholar] [CrossRef] [PubMed]
- Aljuaid, H.; Alturki, N.; Alsubaie, N.; Cavallaro, L.; Liotta, A. Computer-aided diagnosis for breast cancer classification using deep neural networks and transfer learning. Comput. Methods Programs Biomed. 2022, 223, 106951. [Google Scholar] [CrossRef] [PubMed]
- Krishna, S.; Han, T.; Gu, A.; Pombra, J.; Jabbari, S.; Wu, S.; Lakkaraju, H. The Disagreement Problem in Explainable Machine Learning: A Practitioner’s Perspective. arXiv 2022, arXiv:2202.01602. [Google Scholar]
- Zhang, Z.; Fu, X.; Liu, J.; Huang, Z.; Liu, N.; Fang, F.; Rao, J. Developing a Machine Learning Algorithm for Identifying Abnormal Urothelial Cells: A Feasibility Study. Acta Cytol. 2021, 65, 335–341. [Google Scholar] [CrossRef]
- Ogura, M.; Kiyuna, T.; Yoshida, H. Impact of blurs on machine-learning aided digital pathology image analysis. Artif. Intell. Cancer 2020, 1, 31–38. [Google Scholar] [CrossRef]
- Hu, B.; Li, G.; Brown, J.Q. Enhanced resolution 3D digital cytology and pathology with dual view inverted selective plane illumination microscopy. Biomed. Opt. Express 2019, 10, 3833–3846. [Google Scholar] [CrossRef] [PubMed]
- Geng, X.; Liu, X.; Cheng, S.; Zeng, S. Cervical cytopathology image refocusing via multi-scale attention features and domain normalization. Med. Image Anal. 2022, 81, 102566. [Google Scholar] [CrossRef]
- Wang, A.; Wang, J.; Liu, J.; Gu, N. AIPNet: Image-to image single image dehazing with atmospheric illumination prior. IEEE Trans. Image Process. 2019, 28, 381–393. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Iqbal, M.Z.; Bobkov, D.; Zou, W.; Li, X.; Steinbach, E. A flexible deep CNN framework for image restoration. IEEE Trans. Multimed. 2020, 22, 1055–1068. [Google Scholar] [CrossRef]
- Zang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual dense network for image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 2480–2495. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Chau, K.Y.; Chan, H.S.; Wan, Y. A visualization analysis using the VOS viewer of literature on virtual reality technology application in healthcare. In Cases on Virtual Reality Modeling in Healthcare; IGI-Global: Pennsylvania, PA, USA, 2022; pp. 1–20. [Google Scholar]
- Farahani, N.; Post, R.; Duboy, J.; Ahmed, I.; Kolowitz, B.J.; Krinchai, T.; Monaco, S.E.; Fine, J.L.; Hartman, D.J.; Pantanowitz, L. Exploring virtual reality technology and the Oculus Rift for the examination of digital pathology slides. J. Pathol. Inform. 2016, 7, 22. [Google Scholar] [CrossRef]
- Lunz, S.; Li, Y.; Fitzgibbon, A.; Kushman, N. Inverse Graphics GAN: Learning to Generate 3D Shapes from Unstructured 2D Data. arXiv 2020, arXiv:2002.12674. [Google Scholar]
- White, P.J.; Ahmad, B.; Zahra, M. Effect of Viewing Mode on Pathfinding in Immersive Virtual Reality. In Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25 August 2015. [Google Scholar]
- Chowdhary, K.R. Natural Language Processing. In Fundamentals of Artificial Intelligence, 1st ed.; Springer: New Delhi, India, 2020; pp. 603–649. [Google Scholar]
- Zhou, C.; Liu, P.; Xu, P.; Iyer, S.; Sun, J.; Mao, Y.; Ma, X.; Efrat, A.; Yu, P.; Yu, L.; et al. LIMA: Less Is More for Alignment. arXiv 2023, arXiv:2305.11206. [Google Scholar]
- Sallam, M. ChatGPT Utility in Healthcare Education, Research, and Practice: Systematic Review on the Promising Perspectives and Valid Concerns. Healthcare 2023, 11, 887. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, K.; Erkan, M.; Erkan, E. Will ChatGPT get you caught? Rethinking of Plagiarism Detection. arXiv 2023, arXiv:2302.04335. [Google Scholar]
- Gates, B. Will ChatGPT transform healthcare? Nat. Med. 2023, 29, 505–506. [Google Scholar]
- Stefanini, M.; Baraldi, L.; Cascianelli, S.; Fiameni, G.; Cucchiara, R. From Show to Tell: A Survey on Deep Learning-Based Image Captioning. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 539–559. [Google Scholar] [CrossRef]
- Gadekallu, T.R.; Pham, Q.-V.; Nguyen, D.G.; Maddikunta, P.K.R.N.; Deepa, B.; Prabadevi, P.N.; Pathirana, J.; Hwang, Z.; Hwang, W.-J. Blockchain for edge of things: Applications, opportunities, and challenges. IEEE Internet Things J. 2022, 9, 964–988. [Google Scholar] [CrossRef]
- Ziegler, D.M.; Stiennon, N.; Wu, J.; Brown, T.B.; Radford, A.; Amodei, D.; Christiano, P.; Irving, G. Fine-Tuning Language Models from Human Preferences. arXiv 2020, arXiv:1909.08593. [Google Scholar]
- Peng, C.; Yang, X.; Chen, A.; Smith, K.E.; PourNejatian, N.; Costa, A.B.; Martin, C.; Flores, M.G.; Zhang, Y.; Magoc, T.; et al. A Study of Generative Large Language Model for Medical Research and Healthcare. arXiv 2023, arXiv:2305.13523. [Google Scholar]
- Liu, Y.; Yu, F.R.; Li, X.; Ji, H.; Leung, V.C.M. Blockchain and machine learning for communications and networking systems. IEEE Commun. Surv. Tutor. 2020, 22, 1392–1431. [Google Scholar] [CrossRef]
- Weng, J.; Weng, J.; Zhang, M.; Li, Y.; Luo, Z.; Luo, W. DeepChain: Auditable and privacy-preserving deep learning with blockchain-based incentive. IEEE Trans. Dependable Secur. Comput. 2021, 18, 2438–2455. [Google Scholar] [CrossRef]
- Park, Y.R.; Lee, E.; Na, W.; Park, S.; Lee, Y.; Lee, J. Is blockchain technology suitable for managing personal health records? Mixed-methods study to test feasibility. J. Med. Internet Res. 2019, 21, e12533. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, M.; Maron, R.C.; Hekler, A.; Stenzinger, A.; Hauschild, A.; Weichenthal, M.; Tiemann, M.; Krahl, D.; Kutzer, H.; Utikal, J.S.; et al. Hidden variables in deep learning digital pathology and their potential to cause batch effects: Prediction model study. J. Med. Internet Res. 2021, 23, e23436. [Google Scholar] [CrossRef]
- Tizhoosh, H.; Pantanowitz, L. Artificial intelligence and digital pathology: Challenges and opportunities. J. Pathol. Inform. 2018, 9, 38. [Google Scholar] [CrossRef]
- Coudray, N.; Ocampo, P.S.; Sakellaropoulos, T.; Narula, N.; Snuderl, M.; Fenyö, D.; Moreira, A.L.; Razavian, N.; Tsirigos, A. Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nat. Med. 2018, 24, 1559–1567. [Google Scholar] [CrossRef] [PubMed]
- Hong, R.; Liu, W.; DeLair, D.; Razavian, N.; Fenyö, D. Predicting endometrial cancer subtypes and molecular features from histopathology images using multi-resolution deep learning models. Cell Rep. Med. 2021, 2, 100400. [Google Scholar] [CrossRef] [PubMed]
- Ming, Y.; Lu, R.J.; Chen, D.K.; Jana, L.; Rajendra, S.; Williamson, D.F.K.; Chen, T.F.; Mahmood, F. Federated learning for computational pathology on gigapixel whole slide images. Med. Image Anal. 2022, 76, 102298. [Google Scholar]
- Warnat-Herresthal, S.; Schultze, H.; Shastry, K.L.; Manamohan, S.; Mukherjee, S.; Garg, V.; Sarveswara, R.; Händler, K.; Pickkers, P.; Aziz, N.A.; et al. Swarm Learning for decentralized and confidential clinical machine learning. Nature 2021, 594, 265–270. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giarnieri, E.; Scardapane, S. Towards Artificial Intelligence Applications in Next Generation Cytopathology. Biomedicines 2023, 11, 2225. https://doi.org/10.3390/biomedicines11082225
Giarnieri E, Scardapane S. Towards Artificial Intelligence Applications in Next Generation Cytopathology. Biomedicines. 2023; 11(8):2225. https://doi.org/10.3390/biomedicines11082225
Chicago/Turabian StyleGiarnieri, Enrico, and Simone Scardapane. 2023. "Towards Artificial Intelligence Applications in Next Generation Cytopathology" Biomedicines 11, no. 8: 2225. https://doi.org/10.3390/biomedicines11082225
APA StyleGiarnieri, E., & Scardapane, S. (2023). Towards Artificial Intelligence Applications in Next Generation Cytopathology. Biomedicines, 11(8), 2225. https://doi.org/10.3390/biomedicines11082225