Pollutants, including Organophosphorus and Organochloride Pesticides, May Increase the Risk of Cardiac Remodeling and Atrial Fibrillation: A Narrative Review
Abstract
:Highlights
- Abnormally increased concentrations of ingested or inhaled pollutants can lead to cardiac oxidative stress and inflammation.
- Untreated cardiac inflammation promotes myocardial fibrosis and cardiac arrhythmias.
- Patients hospitalized for acute pesticide poisoning often suffer from episodes of atrial or ventricular fibrillation.
- Management of pollutant poisoning associated with AF includes detoxification (i.e., gastric lavage) and prompt rhythm control.
Abstract
1. Introduction
2. Methods
3. Evidence of the Association between Air Pollution and Cardiac Arrhythmias
3.1. Definition, Nomenclature, and Sources of Air Pollutants
3.2. Clinical Evidence of Air Pollution Associated with Cardiac Arrhythmias
3.3. Specific Situation of Firefighters
4. Relation between Pesticide Exposure and Cardiac Rhythm Disorders
4.1. Organophosphorus Exposure and Cardiac Rhythm Alterations
4.1.1. Clinical Reports of Organophosphorus Exposure Associated with Cardiac Arrhythmias
4.1.2. Organophosphonate Exposure: Particular Case of Glyphosate Poisoning and Cardiac Rhythm Disorders
4.2. Organochlorus Exposure and Cardiac Arrhythmias
4.2.1. Association between Organochlorus Exposure and Cardiac Arrhythmias
4.2.2. Focus on the Chlordecone Cardiotoxicity
5. Proposed Mechanisms Underlying the Association between Pesticide Poisoning and the Occurrence of Cardiac Arrhythmias and AF
5.1. Generalities
5.2. Proposed Concept of Pollutant-Induced Cardiac Inflammation and AF
6. Perspectives and Management
7. Conclusions
8. Future Directions and Call for Action
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrade, J.; Khairy, P.; Dobrev, D.; Nattel, S. The Clinical Profile and Pathophysiology of Atrial Fibrillation: Relationships Among Clinical Features, Epidemiology, and Mechanisms. Circ. Res. 2014, 114, 1453–1468. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Green, J.B.; Halperin, J.L.; Piccini, J.P., Sr. Atrial Fibrillation and Diabetes Mellitus: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2019, 74, 1107–1115. [Google Scholar] [CrossRef] [PubMed]
- Nalliah, C.J.; Sanders, P.; Kottkamp, H.; Kalman, J.M. The role of obesity in atrial fibrillation. Eur. Heart J. 2016, 37, 1565–1572. [Google Scholar] [CrossRef] [PubMed]
- Wilke, T.; Groth, A.; Mueller, S.; Pfannkuche, M.; Verheyen, F.; Linder, R.; Maywald, U.; Bauersachs, R.; Breithardt, G. Incidence and Prevalence of Atrial Fibrillation: An Analysis Based on 8.3 Million Patients. Europace 2013, 15, 486–493. [Google Scholar] [CrossRef]
- Hiram, R.; Provencher, S. Pulmonary Disease, Pulmonary Hypertension and Atrial Fibrillation. Card. Electrophysiol. Clin. 2021, 13, 141–153. [Google Scholar] [CrossRef]
- Heijman, J.; Muna, A.P.; Veleva, T.; Molina, C.E.; Sutanto, H.; Tekook, M.; Wang, Q.; Abu-Taha, I.H.; Gorka, M.; Künzel, S.; et al. Atrial Myocyte NLRP3/CaMKII Nexus Forms a Substrate for Postoperative Atrial Fibrillation. Circ. Res. 2020, 127, 1036–1055. [Google Scholar] [CrossRef]
- Zhang, H.Z.; Shao, B.; Wang, Q.Y.; Wang, Y.H.; Cao, Z.Z.; Sun, J.Y.; Gu, M.F. Alcohol Consumption and Risk of Atrial Fibrillation: A Dose-Response Meta-Analysis of Prospective Studies. Front. Cardiovasc. Med. 2022, 9, 802163. [Google Scholar] [CrossRef]
- Chamberlain, A.M.; Agarwal, S.K.; Folsom, A.R.; Duval, A.R.; Soliman, E.Z.; Ambrose, M.; Eberly, L.E.; Alonso, A. Smoking and incidence of atrial fibrillation: Results from the Atherosclerosis Risk in Communities (ARIC) study. Heart Rhythm. 2011, 8, 1160–1166. [Google Scholar] [CrossRef]
- Andrade, J.G.; Aguilar, M.; Atzema, C.; Bell, A.; Cairns, J.A.; Cheung, C.C.; Cox, J.L.; Dorian, P.; Galdstone, D.J.; Healey, J.S.; et al. The 2020 Canadian Cardiovascular Society/Canadian Heart Rhythm Society Com-prehensive Guidelines for the Management of Atrial Fibrillation. Can. J. Cardiol. 2020, 36, 1847–1948. [Google Scholar] [CrossRef]
- Lee, H.H.; Pan, S.C.; Chen, B.Y.; Lo, S.H.; Guo, Y.L. Atrial fibrillation hospitalization is associated with exposure to fine particulate air pollutants. Environ. Health 2019, 18, 117. [Google Scholar] [CrossRef]
- Brunetti, R.; Maradey, J.A.; Dearmin, R.S.; Belford, P.M.; Bhave, P.D. Electrocardiographic abnormalities associated with acute glyphosate toxicity. Heart Rhythm Case Rep. 2019, 6, 63–66. [Google Scholar] [CrossRef]
- Gress, S.; Lemoine, S.; Puddu, P.E.; Séralini, G.E.; Rouet, R. Cardiotoxic Electrophysiological Effects of the Herbicide Roundup(®) in Rat and Rabbit Ventricular Myocardium In Vitro. Cardiovasc. Toxicol. 2015, 15, 324–335. [Google Scholar] [CrossRef] [PubMed]
- Dayton, S.B.; Sandler, D.P.; Blair, A.; Alavanja, M.; Beane Freeman, L.E.; Hoppin, J.A. Pesticide use and myocardial infarction incidence among farm women in the agricultural health study. J. Occup. Environ. Med. 2010, 52, 693–697. [Google Scholar] [CrossRef] [PubMed]
- Peritore, A.F.; Franco, G.A.; Molinari, F.; Arangia, A.; Interdonato, L.; Marino, Y.; Cuzzocrea, S.; Gugliandolo, E.; Britti, D.; Crupi, R. Effect of Pesticide Vinclozolin Toxicity Exposure on Cardiac Oxidative Stress and Myocardial Damage. Toxics 2023, 11, 473. [Google Scholar] [CrossRef] [PubMed]
- Topacoglu, H.; Unverir, P.; Erbil, B.; Sarikaya, S. An unusual cause of atrial fibrillation: Exposure to insecticides. Am. J. Ind. Med. 2007, 50, 48–49. [Google Scholar] [CrossRef]
- Brunekreef, B.; Holgate, S.T. Air pollution and health. Lancet 2002, 360, 1233–1242. [Google Scholar] [CrossRef] [PubMed]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef]
- Mueller, W.; Cowie, H.; Horwell, C.J.; Hurley, F.; Baxter, P.J. Health Impact Assessment of Volcanic Ash Inhalation: A Comparison With Outdoor Air Pollution Methods. Geohealth 2020, 4, e2020GH000256. [Google Scholar] [CrossRef]
- Angle, K.J.; Crocker, D.R.; Simpson, R.M.C.; Mayer, K.J.; Garofalo, L.A.; Moore, A.N.; Mora Garcia, S.L.; Or, V.W.; Srinivasan, S.; Farhan, M.; et al. Acidity across the interface from the ocean surface to sea spray aerosol. Proc. Natl. Acad. Sci. USA 2021, 118, e2018397118. [Google Scholar] [CrossRef]
- Middleton, N.; Yiallouros, P.; Kleanthous, S.; Kolokotroni, O.; Schwartz, J.; Dockery, D.W.; Demokritou, P.; Koutrakis, P. A 10-year time-series analysis of respiratory and cardiovascular morbidity in Nicosia, Cyprus: The effect of short-term changes in air pollution and dust storms. Environ. Health 2008, 7, 39. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Niehoff, N.M.; White, A.J.; Werder, E.J.; Sandler, D.P. Fossil-fuel and combustion-related air pollution and hypertension in the Sister Study. Environ. Pollut. 2022, 315, 120401. [Google Scholar] [CrossRef] [PubMed]
- Massarelli, C.; Losacco, D.; Tumolo, M.; Campanale, C.; Uricchio, V.F. Protection of Water Resources from Agriculture Pollution: An Integrated Methodological Approach for the Nitrates Directive 91-676-EEC Implementation. Int. J. Environ. Res. Public Health 2021, 18, 13323. [Google Scholar] [CrossRef] [PubMed]
- Siddiqua, A.; Hahladakis, J.N.; Al-Attiya, W.A.K.A. An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. Environ. Sci. Pollut. Res. Int. 2022, 29, 58514–58536. [Google Scholar] [CrossRef]
- Mustafic, H.; Jabre, P.; Caussin, C.; Murad, M.H.; Escolano, S.; Tafflet, M.; Périer, M.C.; Marijon, E.; Vernerey, D.; Empana, J.P.; et al. Main air pollutants and myocardial infarction: A systematic review and meta-analysis. JAMA 2012, 307, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Xiang, W.; Wang, W.; Du, L.; Zhao, B.; Liu, X.; Zhang, X.; Yao, L.; Ge, M. Toxicological Effects of Secondary Air Pollutants. Chem. Res. Chin. Univ. 2023, 39, 326–341. [Google Scholar] [CrossRef]
- Bălă, G.P.; Râjnoveanu, R.M.; Tudorache, E.; Motișan, R.; Oancea, C. Air pollution exposure-the (in)visible risk factor for respiratory diseases. Environ. Sci. Pollut. Res. Int. 2021, 28, 19615–19628. [Google Scholar] [CrossRef]
- Pye, H.O.T.; Appel, K.W.; Seltzer, K.M.; Ward-Caviness, C.K.; Murphy, B.N. Human-health impacts of controlling secondary air pollution precursors. Environ. Sci. Technol. Lett. 2022, 9, 96–101. [Google Scholar] [CrossRef]
- Tran, V.V.; Park, D.; Lee, Y.C. Indoor Air Pollution, Related Human Diseases, and Recent Trends in the Control and Improvement of Indoor Air Quality. Int. J. Environ. Res. Public Health 2020, 17, 2927. [Google Scholar] [CrossRef]
- Fiordelisi, A.; Piscitelli, P.; Trimarco, B.; Coscioni, E.; Iaccarino, G.; Sorriento, D. The mechanisms of air pollution and particulate matter in cardiovascular diseases. Heart Fail. Rev. 2017, 22, 337–347. [Google Scholar] [CrossRef]
- GBD 2016 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1736. [Google Scholar]
- Hadley, M.B.; Vedanthan, R.; Fuster, V. Air pollution and cardiovascular disease: A window of opportunity. Nat. Rev. Cardiol. 2018, 15, 193–194. [Google Scholar] [CrossRef]
- Kwon, O.K.; Kim, S.H.; Kang, S.H.; Cho, Y.; Oh, I.Y.; Yoon, C.H.; Kim, S.Y.; Kim, O.J.; Choi, E.K.; Youn, T.J.; et al. Association of short- and long-term exposure to air pollution with atrial fibrillation. Eur. J. Prev. Cardiol. 2019, 26, 1208–1216. [Google Scholar] [CrossRef] [PubMed]
- Peralta, A.A.; Link, M.S.; Schwartz, J.; Luttmann-Gibson, H.; Dockery, D.W.; Blomberg, A.; Wei, Y.; Mittleman, M.A.; Gold, D.R.; Laden, F.; et al. Exposure to Air Pollution and Particle Radioactivity with the Risk of Ventricular Arrhythmias. Circulation 2020, 142, 858–867. [Google Scholar] [CrossRef]
- Yue, C.; Yang, F.; Li, F.; Chen, Y. Association between air pollutants and atrial fibrillation in general population: A systematic re-view and meta-analysis. Ecotoxicol. Environ. Saf. 2021, 208, 111508. [Google Scholar] [CrossRef]
- Shin, S.; Burnett, R.T.; Kwong, J.C.; Hystad, P.; Van Donkelaar, A.; Brook, J.R.; Goldberg, M.S.; Tu, K.; Copes, R.; Martin, R.V.; et al. Ambient Air Pollution and the Risk of Atrial Fibrillation and Stroke: A Population-Based Cohort Study. Environ. Health Perspect. 2019, 127, 87009. [Google Scholar] [CrossRef] [PubMed]
- Link, M.S.; Luttmann-Gibson, H.; Schwartz, J.; Mittleman, M.A.; Wessler, B.; Gold, D.R.; Dockery, D.W.; Laden, F. Acute exposure to air pollution triggers atrial fibrillation. J. Am. Coll. Cardiol. 2013, 62, 816–825. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, J.; Zhuo, C.; Zheng, L. The Association Between Ambient Air Pollution and Atrial Fibrillation. Int. Heart J. 2021, 62, 290–297. [Google Scholar] [CrossRef]
- Dahlquist, M.; Frykman, V.; Stafoggia, M.; Qvarnström, E.; Wellenius, G.A.; Ljungman, P.L.S. Short-term ambient air pollution exposure and risk of atrial fibrillation in patients with intracardiac devices. Environ. Epidemiol. 2022, 6, e215. [Google Scholar] [CrossRef] [PubMed]
- Saifipour, A.; Azhari, A.; Pourmoghaddas, A.; Hosseini, S.M.; Jafari-Koshki, T.; Rahimi, M.; Nasri, A.; Shishehforoush, M.; Lahijanza-deh, A.; Sadeghian, B.; et al. Association between ambient air pollution and hospitalization caused by atrial fibrillation. ARYA Atheroscler. 2019, 15, 106–112. [Google Scholar]
- Gallo, E.; Folino, F.; Buja, G.; Zanotto, G.; Bottigliengo, D.; Comoretto, R.; Marras, E.; Allocca, G.; Vaccari, D.; Gasparini, G.; et al. Daily Exposure to Air Pollution Particulate Matter Is Associated with Atrial Fibrillation in High-Risk Patients. Int. J. Environ. Res. Public Health 2020, 17, 6017. [Google Scholar] [CrossRef]
- Hunter, A.L.; Shah, A.S.V.; Langrish, J.P.; Raftis, J.B.; Lucking, A.J.; Brittan, M.; Venkatasubramanian, S.; Stables, C.L.; Stelzle, D.; Marshall, J.; et al. Fire Simulation and Cardiovascular Health in Firefighters. Circulation 2017, 135, 1284–1295. [Google Scholar] [CrossRef] [PubMed]
- Brandt-Rauf, P.W.; Fallon, L.F., Jr.; Tarantini, T.; Idema, C.; Andrews, L. Health hazards of fire fighters: Exposure assessment. Br. J. Ind. Med. 1988, 45, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Vanchiere, C.; Thirumal, R.; Hendrani, A.; Dherange, P.; Bennett, A.; Shi, R.; Gopinathannair, R.; Olshansky, B.; Smith, D.L.; Dominic, P. Association Between Atrial Fibrillation and Occupational Exposure in Firefighters Based on Self-Reported Survey Data. J. Am. Heart Assoc. 2022, 11, e022543. [Google Scholar] [CrossRef] [PubMed]
- Geibe, J.R.; Holder, J.; Peeples, L.; Kinney, A.M.; Burress, J.W.; Kales, S.N. Predictors of on-duty coronary events in male firefighters in the United States. Am. J. Cardiol. 2008, 101, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Moffatt, S.M.; Stewart, D.F.; Jack, K.; Dudar, M.D.; Bode, E.D.; Mathias, K.C.; Smith, D.L. Cardiometabolic health among United States firefighters by age. Prev. Med. Rep. 2021, 23, 101492. [Google Scholar] [CrossRef]
- Khaja, S.U.; Mathias, K.C.; Bode, E.D.; Stewart, D.F.; Jack, K.; Moffatt, S.M.; Smith, D.L. Hypertension in the United States Fire Service. Int. J. Environ. Res. Public Health 2021, 18, 10. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Chang, Y.T.; Lin, C.J. How a winding-down oil refinery park impacts air quality nearby? Environ. Int. 2022, 169, 107533. [Google Scholar] [CrossRef]
- Zago, A.M.; Faria, N.M.X.; Fávero, J.L.; Meucci, R.D.; Woskie, S.; Fassa, A.G. Pesticide exposure and risk of cardiovascular disease: A systematic review. Glob. Public Health 2022, 17, 3944–3966. [Google Scholar] [CrossRef]
- Mesnage, R.; Bernay, B.; Séralini, G.E. Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology 2013, 313, 122–128. [Google Scholar] [CrossRef]
- Adeyemi, J.A.; Ukwenya, V.O.; Arowolo, O.K.; Olise, C.C. Pesticides-induced Cardiovascular Dysfunctions: Prevalence and Associated Mechanisms. Curr. Hypertens. Rev. 2021, 17, 27–34. [Google Scholar] [CrossRef]
- Kim, Y.H.; Lee, J.H.; Hong, C.K.; Cho, K.W.; Park, Y.H.; Kim, Y.W.; Hwang, S.Y. Heart rate-corrected QT interval predicts mortality in glyphosate-surfactant herbicide-poisoned patients. Am. J. Emerg. Med. 2014, 32, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Hassaan, M.A.; El Nemr, A. Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. Egypt. J. Aquat. Res. 2020, 46, 207–220. [Google Scholar] [CrossRef]
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Front. Microbiol. 2022, 13, 962619. [Google Scholar] [CrossRef] [PubMed]
- Souto, A.L.; Sylvestre, M.; Tölke, E.D.; Tavares, J.F.; Barbosa-Filho, J.M.; Cebrián-Torrejón, G. Plant-derived pesticides as an alternative to pest management and sustainable agricultural production: Prospects, applications and challenges. Molecules 2021, 26, 4835. [Google Scholar] [CrossRef]
- Parra-Arroyo, L.; González-González, R.B.; Castillo-Zacarías, C.; Martínez, E.M.M.; Sosa-Hernández, J.E.; Bilal, M.; Iqbal, H.M.N.; Barcelò, D.; Parra-Saldìvar, R. Highly hazardous pesticides and related pollutants: Toxicological, regulatory, and analytical aspects. Sci. Total Environ. 2022, 807, 151879. [Google Scholar] [CrossRef] [PubMed]
- Adeyinka, A.; Muco, E.; Pierre, L. Organophosphates. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Vale, A. Organophosphorus insecticide poisoning. BMJ Clin. Evid. 2015, 2015, 2102. [Google Scholar]
- Maheshwari, M.; Chaudhary, S. Acute Atrial Fibrillation Complicating Organophosphorus Poisoning. Heart Views 2017, 18, 96–99. [Google Scholar] [CrossRef]
- Pannu, A.K.; Bhalla, A.; Vishnu, R.I.; Garg, S.; Prasad Dhibar, D.; Sahrma, N.; Vijayvergiya, R. Cardiac injury in organophosphate poisoning after acute ingestion. Toxicol. Res. 2021, 10, 446–452. [Google Scholar] [CrossRef]
- Siegal, D.; Kotowycz, M.A.; Methot, M.; Baranchuk, A. Complete heart block following intentional carbamate ingestion. Can. J. Cardiol. 2009, 25, e288–e290. [Google Scholar] [CrossRef]
- Paul, U.K.; Bhattacharyya, A.K. ECG manifestations in acute organophosphorus poisoning. J. Indian Med. Assoc. 2012, 110, 98–108. [Google Scholar]
- Tisdale, J.E.; Wroblewski, H.A.; Overholser, B.R.; Kingery, J.R.; Trujillo, T.N.; Kovacs, R.J. Prevalence of QT interval prolongation in patients admitted to cardiac care units and frequency of subsequent administration of QT interval-prolonging drugs: A prospective, observational study in a large urban academic medical center in the US. Drug Saf. 2012, 35, 459–470. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.X.; Zhou, X.H.; Sun, C.A.; Yan, P.X. Manifestations of and risk factors for acute myocardial injury after acute organophos-phorus pesticide poisoning. Medicine 2019, 98, e14371. [Google Scholar] [CrossRef] [PubMed]
- Ramadori, G.P. Organophosphorus Poisoning: Acute Respiratory Distress Syndrome (ARDS) and Cardiac Failure as Cause of Death in Hospitalized Patients. Int. J. Mol. Sci. 2023, 24, 6658. [Google Scholar] [CrossRef] [PubMed]
- Worek, F.; Thiermann, H.; Wille, T. Organophosphorus compounds and oximes: A critical review. Arch. Toxicol. 2020, 94, 2275–2292. [Google Scholar] [CrossRef]
- Tarazona, J.V.; Court-Marques, D.; Tiramani, M.; Reich, H.; Pfeil, R.; Istace, F.; Crivellente, F. Glyphosate toxicity and carcinogenicity: A review of the scientific basis of the European Union assessment and its differences with IARC. Arch. Toxicol. 2017, 91, 2723–2743. [Google Scholar] [CrossRef]
- Soares, D.; Silva, L.; Duarte, S.; Pena, A.; Pereira, A. Glyphosate Use, Toxicity and Occurrence in Food. Foods 2021, 10, 2785. [Google Scholar] [CrossRef]
- Novotny, E. Glyphosate, Roundup and the Failures of Regulatory Assessment. Toxics 2022, 10, 321. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 3496, Glyphosate. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Glyphosate (accessed on 7 July 2023).
- Zulet-Gonzalez, A.; Gorzolka, K.; Döll, S.; Gil-Monreal, M.; Royuela, M.; Zabalza, A. Unravelling the Phytotoxic Effects of Glypho-sate on Sensitive and Resistant Amaranthus palmeri Populations by GC-MS and LC-MS Metabolic Profiling. Plants 2023, 12, 1345. [Google Scholar] [CrossRef]
- Gillezeau, C.; Van Gerwen, M.; Shaffer, R.M.; Rana, I.; Zhang, L.; Sheppard, L.; Taioli, E. The evidence of human exposure to glyphosate: A review. Environ. Health 2019, 18, 2. [Google Scholar] [CrossRef]
- Mills, P.J.; Caussy, C.; Loomba, R. Glyphosate Excretion is Associated with Steatohepatitis and Advanced Liver Fibrosis in Pa-tients With Fatty Liver Disease. Clin. Gastroenterol. Hepatol. 2020, 18, 741–743. [Google Scholar] [CrossRef]
- Gunatilake, S.; Seneff, S.; Orlando, L. Glyphosate’s Synergistic Toxicity in Combination with Other Factors as a Cause of Chronic Kidney Disease of Unknown Origin. Int. J. Environ. Res. Public Health 2019, 16, 2734. [Google Scholar] [CrossRef]
- Ghosh, S.; Tale, S.; Kolli, M.; Kaur, S.; Garbhapu, A.; Bhalla, A. Cardiogenic shock with first-degree heart block in a patient with glyphosate-surfactant poisoning. Trop. Doct. 2021, 51, 244–246. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.B.; Chang, C.C. Refractory cardiopulmonary failure after glyphosate surfactant intoxication: A case report. J. Occup. Med. Toxicol. 2009, 4, 2. [Google Scholar] [CrossRef] [PubMed]
- Gress, S.; Lemoine, S.; Séralini, G.E.; Puddu, P.E. Glyphosate-based herbicides potently affect cardiovascular system in mammals: Review of the literature. Cardiovasc. Toxicol. 2015, 15, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Noori, J.S.; Dimaki, M.; Mortensen, J.; Svendsen, W.E. Detection of Glyphosate in Drinking Water: A Fast and Direct Detection Method without Sample Pretreatment. Sensors 2018, 18, 2961. [Google Scholar] [CrossRef]
- Jayaraj, R.; Megha, P.; Sreedev, P. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environ-ment. Interdiscip. Toxicol. 2016, 9, 90–100. [Google Scholar] [CrossRef]
- Saoudi, A.; Fréry, N.; Zeghnoun, A.; Bidondo, M.L.; Deschamps, V.; Göen, T.; Garnier, R.; Guldner, L. Serum levels of organochlorine pesticides in the French adult population: The French National Nutrition and Health Study (ENNS), 2006–2007. Sci. Total. Environ. 2014, 472, 1089–1099. [Google Scholar] [CrossRef]
- Seo, S.H.; Choi, S.D.; Batterman, S.; Chang, Y.S. Health risk assessment of exposure to organochlorine pesticides in the general popu-lation in Seoul, Korea over 12 years: A cross-sectional epidemiological study. J. Hazard. Mater. 2022, 424, 127381. [Google Scholar] [CrossRef]
- Naso, B.; Perrone, D.; Ferrante, M.C.; Bilancione, M.; Lucisano, A. Persistent organic pollutants in edible marine species from the Gulf of Naples, Southern Italy. Sci. Total Environ. 2005, 343, 83–95. [Google Scholar] [CrossRef]
- Witczak, A.; Pohoryło, A.; Abdel-Gawad, H. Endocrine-Disrupting Organochlorine Pesticides in Human Breast Milk: Changes during Lactation. Nutrients 2021, 13, 229. [Google Scholar] [CrossRef]
- Mitiku, B.A.; Mitiku, M.A. Organochlorine pesticides residue affinity in fish muscle and their public health risks in North West Ethiopia. Food Sci. Nutr. 2022, 10, 4331–4338. [Google Scholar] [CrossRef] [PubMed]
- Arsenescu, V.; Arsenescu, R.; Parulkar, M.; Karounos, M.; Zhang, X.; Baker, N.; Cassis, L.A. Polychlorinated biphenyl 77 augments angiotensin II-induced atherosclerosis and abdominal aortic aneurysms in male apolipoprotein E deficient mice. Toxicol. Appl. Pharmacol. 2011, 257, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Kopf, P.G.; Huwe, J.K.; Walker, M.K. Hypertension, cardiac hypertrophy, and impaired vascular relaxation induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin are associated with increased superoxide. Cardiovasc. Toxicol. 2008, 8, 181–193. [Google Scholar] [CrossRef] [PubMed]
- La Merrill, M.A.; Sethi, S.; Benard, L.; Moshier, E.; Haraldsson, B.; Buettner, C. Perinatal DDT Exposure Induces Hypertension and Cardiac Hypertrophy in Adult Mice. Environ. Health Perspect. 2016, 124, 1722–1727. [Google Scholar] [CrossRef] [PubMed]
- Wiles, D.A.; Russell, J.L.; Olson, K.R.; Walson, P.D.; Kelley, M. Massive lindane overdose with toxicokinetics analysis. J. Med. Toxicol. 2015, 11, 106–109. [Google Scholar] [CrossRef]
- Sauviat, M.P.; Colas, A.; Pages, N. Does lindane (gamma-hexachlorocyclohexane) increase the rapid delayed rectifier outward K+ current (IKr) in frog atrial myocytes? BMC Pharmacol. 2002, 2, 15. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 299, Chlordecone. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Chlordecone (accessed on 7 July 2023).
- Devault, D.A.; Amalric, L.; Bristeau, S. Chlordecone consumption estimated by sewage epidemiology approach for health policy assessment. Environ. Sci. Pollut. Res. Int. 2018, 25, 29633–29642. [Google Scholar] [CrossRef]
- Parrales-Macias, V.; Michel, P.P.; Tourville, A.; Raisman-Vozari, R.; Haïk, S.; Hunot, S.; Bizat, N.; Lannuzel, A. The Pesticide Chlordecone Promotes Parkinsonism-like Neurodegeneration with Tau Lesions in Midbrain Cultures and C. elegans. Worms Cells 2023, 12, 1336. [Google Scholar] [CrossRef]
- Cannon, S.B.; Veazey, J.M., Jr.; Jackson, R.S.; Burse, V.W.; Hayes, C.; Straub, W.E.; Landrigan, P.J.; Liddle, J.A. Epidemic kepone poisoning in chemical workers. Am. J. Epidemiol. 1978, 107, 529–537. [Google Scholar] [CrossRef]
- Cabidoche, Y.M.; Achard, R.; Cattan, P.; Clermont-Dauphin, C.; Massat, F.; Sansoulet, J. Long-term pollution by chlordecone of tropi-cal volcanic soils in the French West Indies: A simple leaching model accounts for current residue. Environ. Pollut. 2009, 157, 1697–1705. [Google Scholar] [CrossRef]
- Jennings, A.A.; Li, Z. Residential surface soil guidance applied worldwide to the pesticides added to the Stockholm Convention in 2009 and 2011. J. Environ. Manag. 2015, 160, 226–240. [Google Scholar] [CrossRef]
- Wecker, P.; Lecellier, G.; Guibert, I.; Zhou, Y.; Bonnard, I.; Berteaux-Lecellier, V. Exposure to the environmentally-persistent insecti-cide chlordecone induces detoxification genes and causes polyp bail-out in the coral P. damicornis. Chemosphere 2018, 195, 190–200. [Google Scholar] [CrossRef]
- Benoit, P.; Mamy, L.; Servien, R.; Li, Z.; Latrille, E.; Rossard, V.; Bessac, F.; Patureau, D.; Martin-Laurent, F. Categorizing chlordecone potential degradation products to explore their environmental fate. Sci. Total Environ. 2017, 574, 781–795. [Google Scholar] [CrossRef] [PubMed]
- Nedellec, V.; Rabl, A.; Dab, W. Public health and chronic low chlordecone exposure in Guadeloupe, Part 1: Hazards, expo-sure-response functions, and exposures. Environ. Health 2016, 15, 75. [Google Scholar] [CrossRef]
- Multigner, L.; Ndong, J.R.; Giusti, A.; Romana, M.; Delacroix-Maillard, H.; Cordier, S.; Jégou, B.; Thome, J.P.; Blanchet, P. Chlordecone exposure and risk of prostate cancer. J. Clin. Oncol. 2010, 28, 3457–3462. [Google Scholar] [CrossRef] [PubMed]
- Multigner, L.; Kadhel, P.; Rouget, F.; Blanchet, P.; Cordier, S. Chlordecone exposure and adverse effects in French West Indies popu-lations. Environ. Sci. Pollut. Res. Int. 2016, 23, 3–8. [Google Scholar] [CrossRef]
- Rouget, F.; Kadhel, P.; Monfort, C.; Viel, J.F.; Thome, J.P.; Cordier, S.; Multigner, L. Chlordecone exposure and risk of congenital anomalies: The Timoun Mother-Child Cohort Study in Guadeloupe (French West Indies). Environ. Sci. Pollut. Res. Int. 2020, 27, 40992–40998. [Google Scholar] [CrossRef] [PubMed]
- Desaiah, D. Comparative effects of chlordecone and mirex on rat cardiac ATPases and binding of 3H-catecholamines. J. Environ. Pathol. Toxicol. 1980, 4, 237–248. [Google Scholar] [PubMed]
- Vasić, V.; Momić, T.; Petković, M.; Krstić, D. Na⁺,K⁺-ATPase as the Target Enzyme for Organic and Inorganic Compounds. Sensors 2008, 8, 8321–8360. [Google Scholar] [CrossRef]
- Desaiah, D. Interaction of chlordecone with biological membranes. J. Toxicol. Environ. Health 1981, 8, 719–730. [Google Scholar] [CrossRef] [PubMed]
- Kodavanti, P.R.; Cameron, J.A.; Yallapragada, P.R.; Desaiah, D. Effect of chlordecone (Kepone) on calcium transport mechanisms in rat heart sarcoplasmic reticulum. Pharmacol. Toxicol. 1990, 67, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Priest, B.T.; McDermott, J.S. Cardiac ion channels. Channels 2015, 9, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Alonso, A.; Rooney, M.R.; Chen, L.Y.; Norby, F.L.; Saenger, A.K.; Soliman, E.Z.; O’Neal, W.T.; Hootman, K.C.; Selvin, E.; Lutsey, P. Circulating electrolytes and the prevalence of atrial fibrillation and supraventricular ectopy: The Atherosclerosis Risk in Communities (ARIC) study. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1121–1129. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, A.D.; Joca, H.C.; Boyman, L.; Greiser, M. Calcium Signaling Silencing in Atrial Fibrillation: Implications for Atrial So-dium Homeostasis. Int. J. Mol. Sci. 2021, 22, 10513. [Google Scholar] [CrossRef]
- Bhatti, H.; Mohmand, B.; Ojha, N.; Carvounis, C.P.; Carhart, R.L. The Role of Magnesium in the Management of Atrial Fibrillation with Rapid Ventricular Rate. J. Atr. Fibrill. 2020, 13, 2389. [Google Scholar]
- Dobrev, D.; Heijman, J.; Hiram, R.; Li, N.; Nattel, S. Inflammatory signalling in atrial cardiomyocytes: A novel unifying principle in atrial fibrillation pathophysiology. Nat. Rev. Cardiol. 2023, 20, 145–167. [Google Scholar] [CrossRef]
- Yang, Y.; Wei, S.; Zhang, B.; Li, W. Recent Progress in Environmental Toxins-Induced Cardiotoxicity and Protective Potential of Natural Products. Front. Pharmacol. 2021, 12, 699193. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, W.; Wei, Z.; Zhang, H. Air Pollution and Cardiac Arrhythmias: From Epidemiological and Clinical Evidences to Cellular Electrophysiological Mechanisms. Front. Cardiovasc. Med. 2021, 8, 736151. [Google Scholar] [CrossRef]
- Lin, L.; Knowlton, A.A. Innate immunity and cardiomyocytes in ischemic heart disease. Life Sci. 2014, 100, 1–8. [Google Scholar] [CrossRef]
- Yao, C.; Veleva, T.; Scott, L., Jr.; Cao, S.; Chen, G.; Jeyabal, P.; Pan, X.; Alsina, K.M.; Abu-Tahe, I.; Ghezelbash, S.; et al. Enhanced Cardiomyocyte NLRP3 Inflammasome Signaling Promotes Atrial Fibrillation. Circulation 2019, 138, 2227–2242, Correction in Circulation 2019, 139, e889. [Google Scholar] [CrossRef]
- Younes, R.; LeBlanc, C.A.; Hiram, R. Evidence of Failed Resolution Mechanisms in Arrhythmogenic Inflammation, Fibrosis and Right Heart Disease. Biomolecules 2022, 12, 720. [Google Scholar] [CrossRef] [PubMed]
- Hiram, R. Cardiac cytokine therapy? Relevance of targeting inflammatory mediators to combat cardiac arrhythmogenic remodeling. Int. J. Cardiol. Heart Vasc. 2021, 37, 100918. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yang, T.; Xiao, J.; Xu, C.; Alippe, Y.; Sun, K.; Kanneganti, T.D.; Monahan, J.B.; Abu-Amer, Y.; Lieberman, J.; et al. NLRP3 inflammasome activation triggers gasdermin D-independent inflammation. Sci. Immunol. 2021, 6, eabj3859. [Google Scholar] [CrossRef] [PubMed]
- Dahlquist, M.; Frykman, V.; Kemp-Gudmunsdottir, K.; Svennberg, E.; Wellenius, G.A.; Ljungman, P.L. Short-term associations between ambient air pollution and acute atrial fibrillation episodes. Environ. Int. 2020, 141, 105765. [Google Scholar] [CrossRef]
- Hart, J.E.; Hohensee, C.; Laden, F.; Holland, I.; Whitsel, E.A.; Wellenius, G.A.; Winkelmayer, W.C.; Sarto, G.E.; Warsinger Martin, L.; Manson, J.E.; et al. Long-Term Exposures to Air Pollution and the Risk of Atrial Fibrillation in the Women’s Health Initiative Cohort. Environ. Health Perspect. 2021, 129, 97007. [Google Scholar] [CrossRef] [PubMed]
- Rudolf, H.; Mügge, A.; Trampisch, H.J.; Scharnagl, H.; März, W.; Kara, K. NT-proBNP for risk prediction of cardiovascular events and all-cause mortality: The getABI-study. Int. J. Cardiol. Heart Vasc. 2020, 29, 100553. [Google Scholar] [CrossRef]
- Brady, P.F.; Chua, W.; Nehaj, F.; Connolly, D.L.; Khashaba, A.; Purmah, Y.J.; Ul-Qamar, M.J.; Thomas, M.R.; Varma, C.; Schnabel, R.B.; et al. Interactions Between Atrial Fibrillation and Natriuretic Peptide in Predicting Heart Failure Hospitalization or Cardiovascular Death. J. Am. Heart Assoc. 2022, 11, e022833. [Google Scholar] [CrossRef]
- Xia, R.; Tomsits, P.; Loy, S.; Zhang, Z.; Pauly, V.; Schüttler, D.; Clauss, S. Cardiac Macrophages and Their Effects on Arrhythmogenesis. Front. Physiol. 2022, 13, 900094. [Google Scholar] [CrossRef]
- Hiram, R. Resolution-promoting autacoids demonstrate promising cardioprotective effects against heart diseases. Mol. Biol. Rep. 2022, 49, 5179–5197. [Google Scholar] [CrossRef]
- He, G.; Tan, W.; Wang, B.; Chen, J.; Li, G.; Zhu, S.; Xie, J.; Xu, B. Increased M1 Macrophages Infiltration Is Associated with Thrombogenesis in Rheumatic Mitral Stenosis Patients with Atrial Fibrillation. PLoS ONE 2016, 11, e0149910. [Google Scholar] [CrossRef]
- Nasser, M.I.; Zhu, S.; Huang, H.; Zhao, M.; Wang, B.; Ping, H.; Geng, Q.; Zhu, P. Macrophages: First guards in the prevention of cardiovascular diseases. Life Sci. 2020, 250, 117559. [Google Scholar] [CrossRef]
- Berg, Z.K.; Rodriguez, B.; Davis, J.; Katz, A.R.; Cooney, R.V.; Masaki, K. Association Between Occupational Exposure to Pesticides and Cardiovascular Disease Incidence: The Kuakini Honolulu Heart Program. J. Am. Heart Assoc. 2019, 8, e012569. [Google Scholar] [CrossRef]
- Bulka, C.M.; Daviglus, M.L.; Persky, V.W.; Durazo-Arvizu, R.A.; Lash, J.P.; Elfassy, T.; Lee, D.J.; Ramos, A.R.; Tarraf, W.; Argos, M. Association of occupational exposures with cardiovascular disease among US Hispanics/Latinos. Heart 2019, 105, 439–448. [Google Scholar] [CrossRef]
- Bennett, M.; Nault, I.; Koehle, M.; Wilton, S. Air Pollution and Arrhythmias. Can. J. Cardiol. 2023. ahead of print. [Google Scholar] [CrossRef]
- Błaszczyk, R.T.; Gorlo, A.; Dukacz, M.; Konopka, A.; Głowniak, A. Association between exposure to air pollution and incidence of atrial fibrillation. Ann. Agric. Environ. Med. 2023, 30, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yu, X.; Wang, Z.; Wang, H.; Zhao, X.; Cao, Y.; Wang, W.; Eddleston, M. Gastric lavage in acute organophosphorus pesticide poisoning (GLAOP)—A randomised controlled trial of multiple vs. single gastric lavage in unselected acute organophosphorus pesticide poisoning. BMC Emerg. Med. 2006, 6, 10. [Google Scholar] [CrossRef]
- Grande, G.; Ljungman, P.L.S.; Eneroth, K.; Bellander, T.; Rizzuto, D. Association between Cardiovascular Disease and Long-term Exposure to Air Pollution with the Risk of Dementia. JAMA Neurol. 2020, 77, 801–809. [Google Scholar] [CrossRef]
Pollutant | Patient Population | Induced Arrhythmia (Incidence/Prevalence) | Reference | |||
---|---|---|---|---|---|---|
Total | Age (Years) | Sex | Country | |||
PM2.5 | 124,010 patients | 48.5 ± 12.5 | Male: 48.8% Female: 51.2% | South Korea | AF 95% CI = 1.02–1.09 | Kwon OK et al., 2019 [32] |
PM2.5 | 670 patients | 70.5 ± 14 | Male: 51% Female: 49% | Taiwan | AF 95% CI = 1.03–1.44 | Lee HH et al., 2019 [10] |
PM2.5 | 176 patients | 60 ± 20 | Male: 77% Female: 23% | USA | VA 95% CI = 1.15–1.90 | Peralta A et al., 2020 [33] |
PM2.5 | Meta-analysis (18 studies) | USA Canada Europe Asia | AF 95% CI = 1.01–1.10 | Yue C et al., 2021 [34] | ||
PM2.5; NO2 O3; Ox | 5,071,956 patients | 53.2 ± 12.9 | Male: 48% Female: 52% | Canada | AF 95% CI = 1.01–1.04 | Shin S et al., 2019 [35] |
PM2.5; PM10 SO2; NO2 O3; CO | 176 patients | 58 ± 32 | Male: 70% Female: 30% | USA | AF 95% CI = 1.08–1.47 | Link MS et al., 2013 [36] |
PM2.5; SO2; NO2 O3 | Meta-analysis (18 studies) | USA Europe Asia | AF 95% CI = 1.02–1.06 | Chen M et al., 2021 [37] | ||
PM2.5 | 125 patients | 77.6 ± 7.8 | Male: 61.5% Female: 38.5% | Sweden | AF 95% CI = 1.01–1.10 | Dahlquist M et al., 2022 [38] |
NO2 | 369 patients | 66.3 ± 15.9 | Male: 46.9% Female: 53.1% | Iran | AF 95% CI = 1.02–1.55 | Saifipour A et al., 2019 [39] |
PM2.5; PM10 | 145 patients | 70.5 ± 6.5 | Male: 75.2% Female: 24.8% | Italia | AF 95% CI = 1.34–4.28 | Gallo E et al., 2020 [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Quilliec, E.; Fundere, A.; Al-U’datt, D.G.F.; Hiram, R. Pollutants, including Organophosphorus and Organochloride Pesticides, May Increase the Risk of Cardiac Remodeling and Atrial Fibrillation: A Narrative Review. Biomedicines 2023, 11, 2427. https://doi.org/10.3390/biomedicines11092427
Le Quilliec E, Fundere A, Al-U’datt DGF, Hiram R. Pollutants, including Organophosphorus and Organochloride Pesticides, May Increase the Risk of Cardiac Remodeling and Atrial Fibrillation: A Narrative Review. Biomedicines. 2023; 11(9):2427. https://doi.org/10.3390/biomedicines11092427
Chicago/Turabian StyleLe Quilliec, Ewen, Alexia Fundere, Doa’a G. F. Al-U’datt, and Roddy Hiram. 2023. "Pollutants, including Organophosphorus and Organochloride Pesticides, May Increase the Risk of Cardiac Remodeling and Atrial Fibrillation: A Narrative Review" Biomedicines 11, no. 9: 2427. https://doi.org/10.3390/biomedicines11092427
APA StyleLe Quilliec, E., Fundere, A., Al-U’datt, D. G. F., & Hiram, R. (2023). Pollutants, including Organophosphorus and Organochloride Pesticides, May Increase the Risk of Cardiac Remodeling and Atrial Fibrillation: A Narrative Review. Biomedicines, 11(9), 2427. https://doi.org/10.3390/biomedicines11092427