The Beneficial Role of Apigenin against Cognitive and Neurobehavioural Dysfunction: A Systematic Review of Preclinical Investigations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Selection
2.2. Data Extraction
3. Results
3.1. Study Characteristics
3.2. Learning and Memory
3.3. Locomotor Activity
3.4. Depressive-like Behaviour
3.5. Anxiety-like Behaviour Test
3.6. Sensorimotor Behaviour and Coordination Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dumurgier, J.; Tzourio, C. Epidemiology of neurological diseases in older adults. Rev. Neurol. 2020, 176, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Van Schependom, J.; D’Haeseleer, M. Advances in Neurodegenerative Diseases. J. Clin. Med. 2023, 12, 1709. [Google Scholar] [CrossRef]
- Morris, J.C. Neurodegenerative disorders of aging: The down side of rising longevity. Mo. Med. 2013, 110, 393–394. [Google Scholar] [PubMed]
- Gómez-Gómez, M.E.; Zapico, S.C. Frailty, Cognitive Decline, Neurodegenerative Diseases and Nutrition Interventions. Int. J. Mol. Sci. 2019, 20, 2842. [Google Scholar] [CrossRef] [PubMed]
- Levenson, R.W.; Sturm, V.E.; Haase, C.M. Emotional and behavioral symptoms in neurodegenerative disease: A model for studying the neural bases of psychopathology. Annu. Rev. Clin. Psychol. 2014, 10, 581–606. [Google Scholar] [CrossRef] [PubMed]
- Ayeni, E.A.; Aldossary, A.M.; Ayejoto, D.A.; Gbadegesin, L.A.; Alshehri, A.A.; Alfassam, H.A.; Afewerky, H.K.; Almughem, F.A.; Bello, S.M.; Tawfik, E.A. Neurodegenerative Diseases: Implications of Environmental and Climatic Influences on Neurotransmitters and Neuronal Hormones Activities. Int. J. Environ. Res. Public Health 2022, 19, 12495. [Google Scholar] [CrossRef] [PubMed]
- Migliaccio, R.; Tanguy, D.; Bouzigues, A.; Sezer, I.; Dubois, B.; Le Ber, I.; Batrancourt, B.; Godefroy, V.; Levy, R. Cognitive and behavioural inhibition deficits in neurodegenerative dementias. Cortex 2020, 131, 265–283. [Google Scholar] [CrossRef]
- Calina, D.; Buga, A.M.; Mitroi, M.; Buha, A.; Caruntu, C.; Scheau, C.; Bouyahya, A.; El Omari, N.; El Menyiy, N.; Docea, A.O. The Treatment of Cognitive, Behavioural and Motor Impairments from Brain Injury and Neurodegenerative Diseases through Cannabinoid System Modulation-Evidence from In Vivo Studies. J. Clin. Med. 2020, 9, 2395. [Google Scholar] [CrossRef]
- Cirmi, S.; Ferlazzo, N.; Lombardo, G.E.; Ventura-Spagnolo, E.; Gangemi, S.; Calapai, G.; Navarra, M. Neurodegenerative Diseases: Might Citrus Flavonoids Play a Protective Role? Molecules 2016, 21, 1312. [Google Scholar] [CrossRef]
- Popović, M.; Caballero-Bleda, M.; Benavente-García, O.; Castillo, J. The flavonoid apigenin delays forgetting of passive avoidance conditioning in rats. J. Psychopharmacol. 2014, 28, 498–501. [Google Scholar] [CrossRef]
- Olayinka, J.N.; Akawa, O.B.; Ogbu, E.K.; Eduviere, A.T.; Ozolua, R.I.; Soliman, M. Apigenin attenuates depressive-like behavior via modulating monoamine oxidase A enzyme activity in chronically stressed mice. Curr. Res. Pharmacol. Drug Discov. 2023, 5, 100161. [Google Scholar] [CrossRef] [PubMed]
- Al-Yamani, M.J.; Mohammed Basheeruddin Asdaq, S.; Alamri, A.S.; Alsanie, W.F.; Alhomrani, M.; Alsalman, A.J.; Al Mohaini, M.; Al Hawaj, M.A.; Alanazi, A.A.; Alanzi, K.D.; et al. The role of serotonergic and catecholaminergic systems for possible antidepressant activity of apigenin. Saudi J. Biol. Sci. 2022, 29, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Bu, H.; Jiang, Y.; Sun, G.; Jiang, R.; Huang, X.; Duan, H.; Huang, Z.; Wu, Q. The antidepressant effects of apigenin are associated with the promotion of autophagy via the mTOR/AMPK/ULK1 pathway. Mol. Med. Rep. 2019, 20, 2867–2874. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, A.; Almuqbil, M.; Alrofaidi, M.A.; Burzangi, A.S.; Alshamrani, A.A.; Alzahrani, A.R.; Kamal, M.; Imran, M.; Alshehri, S.; Mannasaheb, B.A.; et al. Potential Antioxidant Activity of Apigenin in the Obviating Stress-Mediated Depressive Symptoms of Experimental Mice. Molecules 2022, 27, 9055. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lu, R.R.; Xu, R.H.; Wang, H.H.; Feng, W.S.; Zheng, X.K. Naringenin and apigenin ameliorates corticosterone-induced depressive behaviors. Heliyon 2023, 9, e15618. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.T.; Li, H.M.; Li, Y.C.; Pan, Y.; Xu, Q.; Kong, L.D. Antidepressant-like behavioral and neurochemical effects of the citrus-associated chemical apigenin. Life Sci. 2008, 82, 741–751. [Google Scholar] [CrossRef] [PubMed]
- Nabavi, S.F.; Khan, H.; D’Onofrio, G.; Šamec, D.; Shirooie, S.; Dehpour, A.R.; Argüelles, S.; Habtemariam, S.; Sobarzo-Sanchez, E. Apigenin as neuroprotective agent: Of mice and men. Pharmacol. Res. 2018, 128, 359–365. [Google Scholar] [CrossRef]
- Gaur, K.; Siddique, Y.H. Effect of apigenin on neurodegenerative diseases. In CNS & Neurological Disorders-Drug Targets; Bentham Science Publishers: Hilversum, The Netherlands, 2023. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Chen, L.; Xie, W.; Xie, W.; Zhuang, W.; Jiang, C.; Liu, N. Apigenin attenuates isoflurane-induced cognitive dysfunction via epigenetic regulation and neuroinflammation in aged rats. Arch. Gerontol. Geriatr. 2017, 73, 29–36. [Google Scholar] [CrossRef]
- Chesworth, R.; Gamage, R.; Ullah, F.; Sonego, S.; Millington, C.; Fernandez, A.; Liang, H.; Karl, T.; Münch, G.; Niedermayer, G. Spatial memory and microglia activation in a mouse model of chronic neuroinflammation and the anti-inflammatory effects of apigenin. Front. Neurosci. 2021, 15, 699329. [Google Scholar] [CrossRef]
- Bijani, S.; Dizaji, R.; Sharafi, A.; Hosseini, M.J. Neuroprotective Effect of Apigenin on Depressive-Like Behavior: Mechanistic Approach. Neurochem. Res. 2022, 47, 644–655. [Google Scholar] [CrossRef]
- Anusha, C.; Sumathi, T. Protective role of apigenin against rotenone induced model of parkinson’s disease: Behavioral study. Int. J. Toxicol. Pharmacol. Res. 2016, 8, 79–82. [Google Scholar]
- Anusha, C.; Sumathi, T.; Joseph, L.D. Protective role of apigenin on rotenone induced rat model of Parkinson’s disease: Suppression of neuroinflammation and oxidative stress mediated apoptosis. Chem.-Biol. Interact. 2017, 269, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Amin, F.; Ibrahim, M.A.A.; Rizwan-ul-Hasan, S.; Khaliq, S.; Gabr, G.A.; Muhammad; Khan, A.; Sidhom, P.A.; Tikmani, P.; Shawky, A.M.; et al. Interactions of Apigenin and Safranal with the 5HT1A and 5HT2A Receptors and Behavioral Effects in Depression and Anxiety: A Molecular Docking, Lipid-Mediated Molecular Dynamics, and In Vivo Analysis. Molecules 2022, 27, 8658. [Google Scholar] [CrossRef]
- Ahmedy, O.A.; Abdelghany, T.M.; El-Shamarka, M.E.A.; Khattab, M.A.; El-Tanbouly, D.M. Apigenin attenuates LPS-induced neurotoxicity and cognitive impairment in mice via promoting mitochondrial fusion/mitophagy: Role of SIRT3/PINK1/Parkin pathway. Psychopharmacology 2022, 239, 3903–3917. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, P.; Fahanik Babaei, J.; Vazifekhah, S.; Nikbakht, F. Evaluation of the neuroprotective, anticonvulsant, and cognition-improvement effects of apigenin in temporal lobe epilepsy: Involvement of the mitochondrial apoptotic pathway. Iran. J. Basic Med. Sci. 2019, 22, 752–758. [Google Scholar]
- Jameie, S.B.; Pirasteh, A.; Naseri, A.; Jameie, M.S.; Farhadi, M.; Babaee, J.F.; Elyasi, L. β-Amyloid Formation, Memory, and Learning Decline Following Long-term Ovariectomy and Its Inhibition by Systemic Administration of Apigenin and β-Estradiol. Basic Clin. Neurosci. 2021, 12, 383–394. [Google Scholar]
- Kim, Y.; Kim, J.; He, M.; Lee, A.; Cho, E. Apigenin Ameliorates Scopolamine-Induced Cognitive Dysfunction and Neuronal Damage in Mice. Molecules 2021, 26, 5192. [Google Scholar] [CrossRef]
- Mao, X.Y.; Yu, J.; Liu, Z.Q.; Zhou, H.H. Apigenin attenuates diabetes-associated cognitive decline in rats via suppressing oxidative stress and nitric oxide synthase pathway. Int. J. Clin. Exp. Med. 2015, 8, 15506–15513. [Google Scholar]
- Nikbakht, F.; Khadem, Y.; Haghani, S.; Hoseininia, H.; Moein Sadat, A.; Heshemi, P.; Jamali, N. Protective Role of Apigenin Against Aβ 25-35 Toxicity Via Inhibition of Mitochondrial Cytochrome c Release. Basic Clin. Neurosci. 2019, 10, 557–566. [Google Scholar]
- Li, R.; Wang, X.; Qin, T.; Qu, R.; Ma, S. Apigenin ameliorates chronic mild stress-induced depressive behavior by inhibiting interleukin-1β production and NLRP3 inflammasome activation in the rat brain. Behav. Brain Res. 2016, 296, 318–325. [Google Scholar] [CrossRef]
- Li, R.; Zhao, D.; Qu, R.; Fu, Q.; Ma, S. The effects of apigenin on lipopolysaccharide-induced depressive-like behavior in mice. Neurosci. Lett. 2015, 594, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Zhang, T.; Yang, H.; Lan, X.; Ying, J.; Du, G. The flavonoid apigenin protects brain neurovascular coupling against amyloid-β25–35-induced toxicity in mice. J. Alzheimers Dis. 2011, 24, 85–100. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Singh, S. Apigenin Attenuates Functional and Structural Alterations via Targeting NF-kB/Nrf2 Signaling Pathway in LPS-Induced Parkinsonism in Experimental Rats: Apigenin Attenuates LPS-Induced Parkinsonism in Experimental Rats. Neurotox. Res. 2022, 40, 941–960. [Google Scholar] [CrossRef] [PubMed]
- Patil, C.S.; Singh, V.P.; Satyanarayan, P.S.; Jain, N.K.; Singh, A.; Kulkarni, S.K. Protective effect of flavonoids against aging- and lipopolysaccharide-induced cognitive impairment in mice. Pharmacology 2003, 69, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Salgueiro, J.B.; Ardenghi, P.; Dias, M.; Ferreira, M.B.; Izquierdo, I.; Medina, J.H. Anxiolytic natural and synthetic flavonoid ligands of the central benzodiazepine receptor have no effect on memory tasks in rats. Pharmacol. Biochem. Behav. 1997, 58, 887–891. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Sharma, S.; Singh, D. Apigenin reverses behavioural impairments and cognitive decline in kindled mice via CREB-BDNF upregulation in the hippocampus. Nutr. Neurosci. 2020, 23, 118–127. [Google Scholar] [CrossRef]
- Taha, M.; Eldemerdash, O.M.; Elshaffei, I.M.; Yousef, E.M.; Soliman, A.S.; Senousy, M.A. Apigenin Attenuates Hippocampal Microglial Activation and Restores Cognitive Function in Methotrexate-Treated Rats: Targeting the miR-15a/ROCK-1/ERK1/2 Pathway. Mol. Neurobiol. 2023, 60, 3770–3787. [Google Scholar] [CrossRef]
- Tu, F.; Pang, Q.; Huang, T.; Zhao, Y.; Liu, M.; Chen, X. Apigenin ameliorates post-stroke cognitive deficits in rats through histone acetylation- mediated neurochemical alterations. Med. Sci. Monit. 2017, 23, 4004–4013. [Google Scholar] [CrossRef]
- Weng, L.; Guo, X.; Li, Y.; Yang, X.; Han, Y. Apigenin reverses depression-like behavior induced by chronic corticosterone treatment in mice. Eur. J. Pharmacol. 2016, 774, 50–54. [Google Scholar] [CrossRef]
- Yadav, R.K.; Mehan, S.; Sahu, R.; Kumar, S.; Khan, A.; Makeen, H.A.; Al Bratty, M. Protective effects of apigenin on methylmercury-induced behavioral/neurochemical abnormalities and neurotoxicity in rats. Hum. Exp. Toxicol. 2022, 41, 9603271221084276. [Google Scholar] [CrossRef]
- Yarim, G.F.; Kazak, F.; Yarim, M.; Sozmen, M.; Genc, B.; Ertekin, A.; Gokceoglu, A. Apigenin alleviates neuroinflammation in a mouse model of Parkinson’s disease. Int. J. Neurosci. 2022. ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Zanoli, P.; Avallone, R.; Baraldi, M. Behavioral characterisation of the flavonoids apigenin and chrysin. Fitoterapia 2000, 71, S117–S123. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Dang, Y.; Zhang, R.; Jing, G.; Liang, W.; Xie, L.; Li, Z. Apigenin attenuates acrylonitrile-induced neuro-inflammation in rats: Involved of inactivation of the TLR4/NF-κB signaling pathway. Int. Immunopharmacol. 2019, 75, 105697. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Wang, J.-L.; Liu, R.; Li, X.-X.; Li, J.-F.; Zhang, L. Neuroprotective, anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimer’s disease mouse model. Molecules 2013, 18, 9949–9965. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, F.; Zeng, Y. Effects of apigenin on learning and memory and synaptic plicity in SAMP8 mice. Chin. J. Gerontol. 2015, 35, 4113–4116. [Google Scholar]
- Bourtchuladze, R.; Frenguelli, B.; Blendy, J.; Cioffi, D.; Schutz, G.; Silva, A.J. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 1994, 79, 59–68. [Google Scholar] [CrossRef]
- Lyu, Y.; Ren, X.K.; Zhang, H.F.; Tian, F.J.; Mu, J.B.; Zheng, J.P. Sub-chronic administration of benzo[a]pyrene disrupts hippocampal long-term potentiation via inhibiting CaMK II/PKC/PKA-ERK-CREB signaling in rats. Environ. Toxicol. 2020, 35, 961–970. [Google Scholar] [CrossRef]
- Velmurugan, K.; Balamurugan, A.N.; Loganathan, G.; Ahmad, A.; Hering, B.J.; Pugazhenthi, S. Antiapoptotic actions of exendin-4 against hypoxia and cytokines are augmented by CREB. Endocrinology 2012, 153, 1116–1128. [Google Scholar] [CrossRef]
- Kalivarathan, J.; Chandrasekaran, S.P.; Kalaivanan, K.; Ramachandran, V.; Carani Venkatraman, A. Apigenin attenuates hippocampal oxidative events, inflammation and pathological alterations in rats fed high fat, fructose diet. Biomed. Pharmacother. 2017, 89, 323–331. [Google Scholar] [CrossRef]
- Miura, H.; Naoi, M.; Nakahara, D.; Ohta, T.; Nagatsu, T. Changes in monoamine levels in mouse brain elicited by forced-swimming stress, and the protective effect of a new monoamine oxidase inhibitor, RS-8359. J. Neural Transm. 1993, 95, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhao, J.; Guo, W. Emotional Roles of Mono-Aminergic Neurotransmitters in Major Depressive Disorder and Anxiety Disorders. Front. Psychol. 2018, 9, 2201. [Google Scholar] [CrossRef] [PubMed]
- Cryan, J.F.; Page, M.E.; Lucki, I. Differential behavioral effects of the antidepressants reboxetine, fluoxetine, and moclobemide in a modified forced swim test following chronic treatment. Psychopharmacology 2005, 182, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Salim, S.; Chugh, G.; Asghar, M. Inflammation in anxiety. In Advances in Protein Chemistry and Structural Biology; Donev, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 88, pp. 1–25. [Google Scholar]
- Quesseveur, G.; David, D.J.; Gaillard, M.C.; Pla, P.; Wu, M.V.; Nguyen, H.T.; Nicolas, V.; Auregan, G.; David, I.; Dranovsky, A.; et al. BDNF overexpression in mouse hippocampal astrocytes promotes local neurogenesis and elicits anxiolytic-like activities. Transl. Psychiatry 2013, 3, e253. [Google Scholar] [CrossRef]
- Moore, A.H.; Bigbee, M.J.; Boynton, G.E.; Wakeham, C.M.; Rosenheim, H.M.; Staral, C.J.; Morrissey, J.L.; Hund, A.K. Non-Steroidal Anti-Inflammatory Drugs in Alzheimer’s Disease and Parkinson’s Disease: Reconsidering the Role of Neuroinflammation. Pharmaceuticals 2010, 3, 1812–1841. [Google Scholar] [CrossRef]
- Gardoni, F.; Bellone, C. Modulation of the glutamatergic transmission by Dopamine: A focus on Parkinson, Huntington and Addiction diseases. Front. Cell. Neurosci. 2015, 9, 25. [Google Scholar] [CrossRef]
Authors | Subjects | Dosage and Route of Administration | Duration of Experiment | Study Description | Cognitive and Behavioural Parameters Studies |
---|---|---|---|---|---|
Chen et al. [20] | 100 male Sprague Dawley rats | 50 and 100 mg/kg/intraperitoneal | 7 days | Isoflurane-induced cognitive dysfunction and neuroinflammation | Morris Water Maze |
Chesworth et al. [21] | Male and female (C57BL/6) and GFAP-IL6 heterozygous mice | 110 mg/kg/oral | 22 months | Mouse model of chronic neuroinflammation | Barnes maze |
Bijani et al. [22] | Male mice of NMRI | 10, 20 and 40 mg/kg intraperitoneal | 4 days | Streptozotocin-induced depressive-like behaviour | Open field test Forced swimming test Splash test |
Anusha and Sumathi [23] | Male Wistar rats | 10 and 20 mg/kg intraperitoneal | 14 days | Rotenone-induced model of Parkinson’s disease | Rotarod activity Catalepsy Rearing behaviour |
Anusha et al. [24] | Male Sprague Dawley rats | 10 and 20 mg/kg intraperitoneal | Rotenone-induced model of Parkinson’s disease | Rotarod test | |
Amin et al. [25] | Sprague Dawley rats | 50 mg/kg oral | 21 days | Diabetes-induced depression and anxiety | Elevated plus maze Forced swimming test |
Ahmedy et al. [26] | Male Swiss Albino mice | 40 mg/kg oral | 7 days | Lipopolysaccharide-induced cognitive impairment in mice | Morris Water Maze Y Maze |
Hashemi et al. [27] | Male Wistar rats | 50 mg/kg | 5 days | Kainite temporal lobe epilepsy model | Morris Water Maze Y Maze |
Jameie et al. [28] | Female Wistar rats | 2 mg intraperitoneal | 5 weeks | Longterm ovariectomy-induced cognitive decline | Morris Water Maze |
Kim et al. [29] | Male ICR mice | 10 and 20 mg/kg oral | 14 days | Scopolamine-induced cognitive dysfunction | T-maze Morris Water Maze Novel object recognition test |
Mao et al. [30] | Male Wistar rats | 10, 20 and 40 mg/kg intraperitoneal | 7 weeks | Diabetes-induced cognitive deficit | Morris water maze |
Nikbakht et al. [31] | Wistar rats | 50 mg/kg oral | 28 days | Aβ25-35-induced neurotoxicity | Y-Maze |
Li et al. [32] | Male Sprague Dawley rats | 20 mg/kg intragastric | 3 weeks | Chronic mild stress-induced depressive behaviour | Sucrose preference test Open field test |
Li et al. [33] | Male ICR mice | 25 and 50 mg/kg intraperitoneal | 7 days | Lipopolysaccharide-induced depressive behaviour | Tail suspension test Sucrose preference test Open field test |
Liu et al. [34] | Male Kunming mice | 10 and 20 mg/kg oral | 8 days | Amyloid-25-35-induced toxicity in mice | Morris Water Maze |
Olayinka et al. [11] | Male Mice | 12.5 and 25 mg/kg intraperitoneal | 14 days | Chronic stress-induced depressive-like behaviour in mice | Sucrose splash test Elevated plus maze Forced swim test Tail suspension test |
Patel and Singh [35] | Male Wistar rats | 25 and 50 mg P.O. | 14 days | LPS-induced parkinsonism | Open field test Rotarod Grip strength test |
Patil et al. [36] | Swiss Mice | 5, 10 and 20 mg/kg intraperitoneal | 7 dats | LPS-induced cognitive impairment | Passive avoidance test Elevated plus maze Locomotor activity Rotarod |
Popovic et al. [10] | Male Wistar rats | 20 mg/kg intraperitoneal | 56 days | Scopolamine-induced memory impairment | Passive avoidance test |
Salgueiro et al. [37] | Male Wistar rats | 10 mg/kg intraperitoneal | Normal rats | Inhibitory avoidance Open field test Shuttle avoidance | |
Sharma et al. [38] | Swiss Albino male mice | 10 and 20 mg/kg P.O. | 20 days | Pentylenetetrazole-kindling-associated cognitive and behavioural impairment | T-maze Elevated plus maze Tail suspension test Forced swimming test |
Taha et al. [39] | Male Sprague Dawley rats | 20 mg/kg P.O. | 30 days | Methotrexate-induced cognitive dysfunction | Novel object recognition Morris Water Maze |
Tu et al. [40] | Male Sprague Dawley rats | 20 and 40 mg/kg intraperitoneal | 28 days | Post-stroke cognitive deficit in rats | Morris Water Maze |
Weng et al. [41] | Male ICR mice | 20 and 40 mg/kg oral | 21 days | Corticosterone-induced depression-like behaviour | Sucrose preference test Forced swimming test |
Yadav et al. [42] | Wistar rats | 40 and 80 mg/kg P.O. | Methylmercury-induced behavioural impairment | Morris Water Maze Grip strength test Open field test Forced swim test | |
Yarim et al. [43] | Male C57BL/6 mice | 50 mg/kg intraperitoneal | 10 days | 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease | Sensorimotor test
|
Yi et al. [16] | Male ICR mice and Wistar rats | 10 and 20 mg/kg gastric gavage 7 and 14 mg/kg oral | 2 weeks 4 weeks | Chronic mild stress-induced depressive-like behaviour | Forced swimming test Sucrose preference test |
Zanoli et al. [44] | Male Sprague Dawley rats | 25 mg/kg and 50 mg/kg intraperitoneal | <1 h | Behavioural characterization of apigenin | Open field test Dark-light model of anxiety Pentobarbital sleeping time |
Zhang et al. [15] | C57BL/6 male mice | 10, 20 and 40 mg/kg/P.O. | 3 weeks | Corticosterone-induced depressive-like behaviour | Sucrose preference test Tail suspension test Open field test |
Zhao [45] | Male Sprague Dawley rats | 117, 234, 351 mg/kg intragastric | 28 days | Acetonitrile-induced neuroinflammation in rats | Open field Test |
Zhao et al. [46] | APP/PS1 double-transgenic mice and wild-type littermates | 40 mg/kg oral gavage | 12 weeks | AβPPswe Alzheimer’s disease mouse model | Morris Water Maze |
Zhao et al. [47] | Mice | 10, 20 and 40 mg/kg | Senescence-accelerated mouse prone 8 (SAMP8) mouse model | Morris Water Maze |
Study | Behavioural Paradigm | Results |
---|---|---|
Chen et al. [20] | Morris Water Maze |
|
Chesworth et al. [21] | Barnes maze |
|
Ahmedy et al. [26] | Morris Water Maze Y-maze |
|
Hashemi et al. [27] | Morris Water Maze Y-maze |
|
Jameie et al. [28] | Morris Water Maze |
|
Kim et al. [29] | Morris Water Maze Tmaze Novel object recognition |
|
Mao et al. [30] | Morris Water Maze |
|
Liu et al. [34] | Morris Water Maze |
|
Patil et al. [36] | Passive avoidance test |
|
Popovic et al. [10] | Passive avoidance test |
|
Salgueiro et al. [37] | Inhibitory avoidance Passive avoidance performance |
|
Sharma et al. [38] | T-maze |
|
Taha et al. [39] | Novel object recognition Morris Water Maze |
|
Tu et al. [40] | Morris Water Maze |
|
Yadav et al. [42] | Morris Water Maze |
|
Zhao et al. [46] | Morris Water Maze |
|
Zhao et al. [47] | Morris Water Maze |
|
Nikbakht et al. [31] | Y-maze |
|
Study | Behavioural Paradigm | Results |
---|---|---|
Bijani et al. [22] | Open field test |
|
Li et al. [32] | Open field test |
|
Li et al. [33] | Open field test |
|
Patel and Singh [35] | Open field test |
|
Patil et al. [36] | Locomotor activity |
|
Salgueiro et al. [37] | Open field test |
|
Yadav et al. [42] | Open field test |
|
Zanoli et al. [44] | Open field test |
|
Zhang et al. [15] | Open field test |
|
Zhao et al. [45] | Open field test |
|
Study | Behavioural Paradigm | Results |
---|---|---|
Bijani et al. [22] | Forced swimming test Splash test |
|
Amin et al. [25] | Forced swimming test |
|
Li et al. [32] | Sucrose preference test |
|
Li et al. [33] | Tail suspension test Sucrose preference test |
|
Olayinka et al. [11] | Sucrose splash test Forced swim test Tail suspension test |
|
Sharma et al. [38] | Tail suspension test Forced swimming test |
|
Weng et al. [41] | Sucrose preference test Forced swimming test |
|
Yadav et al. [42] | Forced swim test |
|
Yi et al. [16] | Forced swimming test Sucrose preference test |
|
Zhang et al. [15] | Sucrose preference test Tail suspension test |
|
Study | Behavioural Paradigm | Results |
---|---|---|
Amin et al. [25] | Elevated plus maze |
|
Olayinka et al. [11] | Elevated plus maze |
|
Patil et al. [36] | Elevated plus maze |
|
Sharma et al. [38] | Elevated plus maze |
|
Zanoli et al. [44] | Dark–light model of anxiety |
|
Study | Behavioural Paradigm | Results |
---|---|---|
Anusha and Sumathi [23] | Rotarod activity Grip strength Catalepsy |
|
Anusha et al. [24] | Rotarod |
|
Patel and Singh [35] | Rotarod Grip strength test SG mount |
|
Patil et al. [36] | Rotarod |
|
Yadav et al. [42] | Grip strength test |
|
Yarim et al. [43] | Sensorimotor test
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olasehinde, T.A.; Olaokun, O.O. The Beneficial Role of Apigenin against Cognitive and Neurobehavioural Dysfunction: A Systematic Review of Preclinical Investigations. Biomedicines 2024, 12, 178. https://doi.org/10.3390/biomedicines12010178
Olasehinde TA, Olaokun OO. The Beneficial Role of Apigenin against Cognitive and Neurobehavioural Dysfunction: A Systematic Review of Preclinical Investigations. Biomedicines. 2024; 12(1):178. https://doi.org/10.3390/biomedicines12010178
Chicago/Turabian StyleOlasehinde, Tosin A., and Oyinlola O. Olaokun. 2024. "The Beneficial Role of Apigenin against Cognitive and Neurobehavioural Dysfunction: A Systematic Review of Preclinical Investigations" Biomedicines 12, no. 1: 178. https://doi.org/10.3390/biomedicines12010178
APA StyleOlasehinde, T. A., & Olaokun, O. O. (2024). The Beneficial Role of Apigenin against Cognitive and Neurobehavioural Dysfunction: A Systematic Review of Preclinical Investigations. Biomedicines, 12(1), 178. https://doi.org/10.3390/biomedicines12010178