Impact of Nitric Oxide on Polymorphonuclear Neutrophils’ Function
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vote of the Local Ethics Committee
2.2. Sample Collection and Isolation of PMNs
2.3. Preparation of the Chemotaxis Chambers
2.4. Live Cell Imaging
2.5. Evaluation of the Microscope Images Showing Migration
2.6. Evaluation of the Microscope Images Showing Immune Effects
2.7. Flow Cytometer Experiments
2.7.1. Preparing the ROS Measurement Series
2.7.2. Preparation of the Antigen Test Series
2.7.3. Measurement and Examination Flow Cytometry Data
2.8. Statistics
3. Results
3.1. Results of Neutrophil Migration
Results of Parameter TrackLength
3.2. Immune Effects in Live Cell Imaging
3.3. Result of Flow Cytometry
3.3.1. Quantification of the Oxidative Burst Reaction
3.3.2. Analyses of Neutrophil Surface Epitopes
4. Discussion
4.1. Influence of NO on Oxidative Metabolism
4.2. Influence of NO on NETosis
4.3. Influence of NO on PMN Surfaces
4.4. Choice of NO Concentration in Buffer Solutions: Discussion and Rationale
4.5. Limitations of the Selected Method
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Förstermann, U. Janus-faced role of endothelial NO synthase in vascular disease: Uncoupling of oxygen reduction from NO synthesis and its pharmacological reversal. Biol. Chem. 2006, 387, 1521–1533. [Google Scholar] [CrossRef]
- Naseem, K. The role of nitric oxide in cardiovascular diseases. Mol. Asp. Med. 2005, 26, 33–65. [Google Scholar] [CrossRef] [PubMed]
- Farah, C.; Michel, L.Y.M.; Balligand, J.-L. Nitric oxide signalling in cardiovascular health and disease. Nat. Rev. Cardiol. 2018, 15, 292–316. [Google Scholar] [CrossRef]
- Hosseini, N.; Kourosh-Arami, M.; Nadjafi, S.; Ashtari, B. Structure, Distribution, Regulation, and Function of Splice Variant Isoforms of Nitric Oxide Synthase Family in the Nervous System. Curr. Protein Pept. Sci. 2022, 23, 510–534. [Google Scholar] [CrossRef]
- Cyr, A.R.; Huckaby, L.V.; Shiva, S.S.; Zuckerbraun, B.S. Nitric Oxide and Endothelial Dysfunction. Crit. Care Clin. 2020, 36, 307–321. [Google Scholar] [CrossRef]
- Gajecki, D.; Gawryś, J.; Szahidewicz-Krupska, E.; Doroszko, A. Role of Erythrocytes in Nitric Oxide Metabolism and Paracrine Regulation of Endothelial Function. Antioxidants 2022, 11, 943. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, G.; Koning, T.; Ehrenfeld, P.; Sánchez, F.A. Role of NO and S-nitrosylation in the Expression of Endothelial Adhesion Proteins That Regulate Leukocyte and Tumor Cell Adhesion. Front. Physiol. 2020, 11, 595526. [Google Scholar] [CrossRef]
- Cinelli, M.A.; Do, H.T.; Miley, G.P.; Silverman, R.B. Inducible nitric oxide synthase: Regulation, structure, and inhibition. Med. Res. Rev. 2020, 40, 158–189. [Google Scholar] [CrossRef]
- Divakaran, S.; Loscalzo, J. The Role of Nitroglycerin and Other Nitrogen Oxides in Cardiovascular Therapeutics. J. Am. Coll. Cardiol. 2017, 70, 2393–2410. [Google Scholar] [CrossRef]
- Product Information Nitrolingual® Spray, 0.41 mg/spray, Solution for a Nebulizer. 2015. Available online: https://www.fachinfo.de/fi/pdf/020573 (accessed on 15 August 2024).
- Product Information Molsidomin Heumann. 2020. Available online: https://www.heumann.de/fileadmin/user_upload/produkte/infos/Fachinformation-Molsidomin-Heumann.pdf (accessed on 15 August 2024).
- Linde GmbH. Product Information: Linde Gas Therapeutics GmbH. INOmax® 800 ppm mol/mol Inhalation Gas. 2020. Available online: https://www.fachinfo.de/fi/pdf/012951 (accessed on 15 August 2024).
- Kraus, R.F.; Gruber, M.A. Neutrophils-From Bone Marrow to First-Line Defense of the Innate Immune System. Front. Immunol. 2021, 12, 767175. [Google Scholar] [CrossRef]
- Petri, B.; Sanz, M.-J. Neutrophil chemotaxis. Cell Tissue Res. 2018, 371, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Manoharan, R.R.; Prasad, A.; Pospíšil, P.; Kzhyshkowska, J. ROS signaling in innate immunity via oxidative protein modifications. Front. Immunol. 2024, 15, 1359600. [Google Scholar] [CrossRef] [PubMed]
- Thiam, H.R.; Wong, S.L.; Wagner, D.D.; Waterman, C.M. Cellular Mechanisms of NETosis. Annu. Rev. Cell Dev. Biol. 2020, 36, 191–218. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Kumar, S.; Jyoti, A.; Srinag, B.S.; Keshari, R.S.; Saluja, R.; Verma, A.; Mitra, K.; Barthwal, M.K.; Krishnamurthy, H.; et al. Nitric oxide donors release extracellular traps from human neutrophils by augmenting free radical generation. Nitric Oxide 2010, 22, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Manda-Handzlik, A.; Bystrzycka, W.; Cieloch, A.; Glodkowska-Mrowka, E.; Jankowska-Steifer, E.; Heropolitanska-Pliszka, E.; Skrobot, A.; Muchowicz, A.; Ciepiela, O.; Wachowska, M.; et al. Nitric oxide and peroxynitrite trigger and enhance release of neutrophil extracellular traps. Cell. Mol. Life Sci. 2019, 77, 3059–3075. [Google Scholar] [CrossRef]
- Clancy, R.M.; Leszczynska-Piziak, J.; Abramson, S.B. Nitric oxide, an endothelial cell relaxation factor, inhibits neutrophil superoxide anion production via a direct action on the NADPH oxidase. J. Clin. Investig. 1992, 90, 1116–1121. [Google Scholar] [CrossRef]
- Manda-Handzlik, A.; Demkow, U. Neutrophils: The Role of Oxidative and Nitrosative Stress in Health and Disease. In Pulmonary Infection; Pokorski, M., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 51–60. [Google Scholar]
- Ródenas, J.; Carbonell, T.; Mitjavila, M.T. Different roles for nitrogen monoxide and peroxynitrite in lipid peroxidation induced by activated neutrophils. Free Radic. Biol. Med. 2000, 28, 374–380. [Google Scholar] [CrossRef]
- Su, S.-H.; Jen, C.J.; Chen, H. NO signaling in exercise training-induced anti-apoptotic effects in human neutrophils. Biochem. Biophys. Res. Commun. 2011, 405, 58–63. [Google Scholar] [CrossRef]
- Doblinger, N.; Bredthauer, A.; Mohrez, M.; Hähnel, V.; Graf, B.; Gruber, M.; Ahrens, N. Impact of hydroxyethyl starch and modified fluid gelatin on granulocyte phenotype and function. Transfusion 2019, 59, 2121–2130. [Google Scholar] [CrossRef]
- Kraus, R.F.; Gruber, M.A.; Kieninger, M. The influence of extracellular tissue on neutrophil function and its possible linkage to inflammatory diseases. Immun. Inflamm. Dis. 2021, 9, 1237–1251. [Google Scholar] [CrossRef]
- Thomas, D.D.; Ridnour, L.A.; Isenberg, J.S.; Flores-Santana, W.; Switzer, C.H.; Donzelli, S.; Hussain, P.; Vecoli, C.; Paolocci, N.; Ambs, S.; et al. The chemical biology of nitric oxide: Implications in cellular signaling. Free Radic. Biol. Med. 2008, 45, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Kotamraju, S.; Tampo, Y.; Kalivendi, S.V.; Joseph, J.; Chitambar, C.R.; Kalyanaraman, B. Nitric oxide mitigates peroxide-induced iron-signaling, oxidative damage, and apoptosis in endothelial cells: Role of proteasomal function? Arch. Biochem. Biophys. 2004, 423, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Ridnour, L.A.; Thomas, D.D.; Donzelli, S.; Espey, M.G.; Roberts, D.D.; Wink, D.A.; Isenberg, J.S. The Biphasic Nature of Nitric Oxide Responses in Tumor Biology. Antioxid. Redox Signal. 2006, 8, 1329–1337. [Google Scholar] [CrossRef] [PubMed]
- Wink, D.A.; Cook, J.A.; Pacelli, R.; Liebmann, J.; Krishna, M.C.; Mitchell, J.B. Nitric oxide (NO) protects against cellular damage by reactive oxygen species. Proc. Int. Congr. Toxicol. VII 1995, 82–83, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Guzik, T.J.; Korbut, R.; Adamek-Guzik, T. Nitric Oxide and Superoxide in Inflammation and Immune Regulation. J. Physiol. Pharmacol. 2003, 54, 469–487. [Google Scholar]
- Abramson, S.B.; Amin, A.R.; Clancy, R.M.; Attur, M. The role of nitric oxide in tissue destruction. Best Pract. Res. Clin. Rheumatol. 2001, 15, 831–845. [Google Scholar] [CrossRef]
- Sharma, J.N.; Al-Omran, A.; Parvathy, S.S. Role of nitric oxide in inflammatory diseases. Inflammopharmacology 2007, 15, 252–259. [Google Scholar] [CrossRef]
- Kuklinski, B. Praxisrelevanz des Nitrosativen Stresses; OM Ernähr: Zuerich, Switzerland, 2008. [Google Scholar]
- Faro, M.L.L.; Fox, B.; Whatmore, J.L.; Winyard, P.G.; Whiteman, M. Hydrogen sulfide and nitric oxide interactions in inflammation. Nitric Oxide 2014, 41, 38–47. [Google Scholar] [CrossRef]
- Sethi, S.; Singh, M.P.; Dikshit, M. Nitric Oxide–Mediated Augmentation of Polymorphonuclear Free Radical Generation after Hypoxia-Reoxygenation. Blood 1999, 93, 333–340. [Google Scholar] [CrossRef]
- Lee, C.; Miura, K.; Liu, X.; Zweier, J.L. Biphasic Regulation of Leukocyte Superoxide Generation by Nitric Oxide and Peroxynitrite. J. Biol. Chem. 2000, 275, 38965–38972. [Google Scholar] [CrossRef]
- Pieper, G.M.; Clarke, G.A.; Gross, G.J. Stimulatory and inhibitory action of nitric oxide donor agents vs. nitrovasodilators on reactive oxygen production by isolated polymorphonuclear leukocytes. J. Pharmacol. Exp. Ther. 1994, 269, 451. [Google Scholar]
- Hundhammer, T.; Gruber, M.; Wittmann, S. Paralytic Impact of Centrifugation on Human Neutrophils. Biomedicines 2022, 10, 2896. [Google Scholar] [CrossRef] [PubMed]
- Zandalinas, S.I.; Mittler, R. ROS-induced ROS release in plant and animal cells. Free Radic. Biol. Med. 2018, 122, 21–27. [Google Scholar] [CrossRef]
- Zorov, D.B.; Filburn, C.R.; Klotz, L.-O.; Zweier, J.L.; Sollott, S.J. Reactive Oxygen Species (Ros-Induced) Ros Release. J. Exp. Med. 2000, 192, 1001–1014. [Google Scholar] [CrossRef] [PubMed]
- Zinkevich, N.S.; Gutterman, D.D. ROS-induced ROS release in vascular biology: Redox-redox signaling. Am. J. Physiol.-Heart Circ. Physiol. 2011, 301, H647–H653. [Google Scholar] [CrossRef]
- Dikalov, S.; Griendling, K.K.; Harrison, D.G. Measurement of Reactive Oxygen Species in Cardiovascular Studies. Hypertension 2007, 49, 717–727. [Google Scholar] [CrossRef]
- Wink, D.A.; Mitchell, J.B. Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic. Biol. Med. 1998, 25, 434–456. [Google Scholar] [CrossRef]
- Tsukahara, Y.; Morisaki, T.; Kojima, M.; Uchiyama, A.; Tanaka, M. iNOS expression by activated neutrophils from patients with sepsis: iNOS Expression by PMN from Septic Patients. ANZ J. Surg. 2001, 71, 15–20. [Google Scholar] [CrossRef]
- Blaeser-Kiel, G. Akutes Lungenversagen: Inhalation von Stickstoffmonoxid. Dtsch. Arztebl. Int. 1996, 93, A-348. [Google Scholar]
- Friedrich, I.; Hentschel, T.; Czeslick, E.; Sablotzki, A. Haemodynamische Wirkung der inhalativen Applikation von Stickstoff-Monoxyd und Iloprost bei Patienten mit geplanter Herztransplantation. Z. Für Herz-Thorax-Und Gefäßchirurgie 2003, 17, 1–8. [Google Scholar] [CrossRef]
- Fuchs, T.A.; Abed, U.; Goosmann, C.; Hurwitz, R.; Schulze, I.; Wahn, V.; Weinrauch, Y.; Brinkmann, V.; Zychlinsky, A. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 2007, 176, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Hickey, M.J.; Sharkey, K.A.; Sihota, E.G.; Reinhardt, P.H.; Macmickeng, J.D.; Nathan, C.; Kubes, P. Inducible nitric oxide synthase-deficient mice have enhanced leukocyte-endothelium interactions in endotoxemia. FASEB J. 1997, 11, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Kubes, P.; Suzuki, M.; Granger, D.N. Nitric oxide: An endogenous modulator of leukocyte adhesion. Proc. Natl. Acad. Sci. USA 1991, 88, 4651–4655. [Google Scholar] [CrossRef] [PubMed]
- Suematsu, M.; Tamatani, T.; Delano, F.A.; Miyasaka, M.; Forrest, M.; Suzuki, H.; Schmid-Schonbein, G.W. Microvascular oxidative stress preceding leukocyte activation elicited by in vivo nitric oxide suppression. Am. J. Physiol.-Heart Circ. Physiol. 1994, 266, H2410–H2415. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.W. Endothelial adhesion molecules and their role in inflammation. Can. J. Physiol. Pharmacol. 1993, 71, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Akimitsu, T.; Gute, D.C.; Korthuis, R.J. Leukocyte adhesion induced by inhibition of nitric oxide production in skeletal muscle. J. Appl. Physiol. 1995, 78, 1725–1732. [Google Scholar] [CrossRef]
- Thomas, D.D.; Heinecke, J.L.; Ridnour, L.A.; Cheng, R.Y.; Kesarwala, A.H.; Switzer, C.H.; McVicar, D.W.; Roberts, D.D.; Glynn, S.; Fukuto, J.M.; et al. Signaling and stress: The redox landscape in NOS2 biology. Free Radic. Biol. Med. 2015, 87, 204–225. [Google Scholar] [CrossRef]
- Zacharia, I.G.; Deen, W.M. Diffusivity and Solubility of Nitric Oxide in Water and Saline. Ann. Biomed. Eng. 2005, 33, 214–222. [Google Scholar] [CrossRef]
- Shi, W.; Thompson, R.L.; Albenze, E.; Steckel, J.A.; Nulwala, H.B.; Luebke, D.R. Contribution of the Acetate Anion to CO2 Solubility in Ionic Liquids: Theoretical Method Development and Experimental Study. J. Phys. Chem. B 2014, 118, 7383–7394. [Google Scholar] [CrossRef]
- Chen, X.; Buerk, D.G.; Barbee, K.A.; Jaron, D. A Model of NO/O2 Transport in Capillary-perfused Tissue Containing an Arteriole and Venule Pair. Ann. Biomed. Eng. 2007, 35, 517–529. [Google Scholar] [CrossRef]
- Liu, X.; Yan, Q.; Baskerville, K.L.; Zweier, J.L. Estimation of Nitric Oxide Concentration in Blood for Different Rates of Generation. J. Biol. Chem. 2007, 282, 8831–8836. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, Q.; Gupta, E.; Zorko, N.; Brownlee, E.; Zweier, J.L. Quantitative measurements of NO reaction kinetics with a Clark-type electrode. Nitric Oxide 2005, 13, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Willnecker, S. Modulation der Granulozytenfunktionalität Durch Priming. Doctoral Dissertation, Der Fakultät für Medizin der Universität Regensburg, Regensburg, Germany, 2021. [Google Scholar]
- Kirchner, T.; Hermann, E.; Möller, S.; Klinger, M.; Solbach, W.; Laskay, T.; Behnen, M. Flavonoids and 5-Aminosalicylic Acid Inhibit the Formation of Neutrophil Extracellular Traps. Mediat. Inflamm. 2013, 2013, 710239. [Google Scholar] [CrossRef] [PubMed]
- Najmeh, S.; Cools-Lartigue, J.; Giannias, B.; Spicer, J.; Ferri, L.E. Simplified Human Neutrophil Extracellular Traps (NETs) Isolation and Handling. J. Vis. Exp. 2015, 16, 52687. [Google Scholar] [CrossRef]
- Aga, E.; Katschinski, D.M.; van Zandbergen, G.; Laufs, H.; Hansen, B.; Müller, K.; Solbach, W.; Laskay, T. Inhibition of the Spontaneous Apoptosis of Neutrophil Granulocytes by the Intracellular Parasite Leishmania major. J. Immunol. 2002, 169, 898–905. [Google Scholar] [CrossRef]
Pre-Warmed PBS | Cell Suspension | DHR & SNARF | TNFα | 37 °C 10 min | fMLP or PMA | 37 °C 20 min | Samples on Ice | |
---|---|---|---|---|---|---|---|---|
Basic Value | 1 mL | 20 µL | Each 10 µL | x | 10 µL | |||
TNFα + fMLP | 1 mL | 20 µL | Each 10 µL | 10 µL | 10 µL fMLP | x | 10 µL | |
PMA | 1 mL | 20 µL | Each 10 µL | 10 µL PMA | x | 10 µL |
Isolated PMNs | Cold PBS Centrifuged | Remove Supernatant and Add: | Incubation 15 min 4 °C | Cold PBS Centrifuged Remove Supernatant | PBS | |
---|---|---|---|---|---|---|
Basic Value | 20 µL | 1 mL | 2 mL | 200 µL | ||
AntibodiesCD11b/CD62L/CD66b | 20 µL | 1 mL | 5 µL | 2 mL | 200 µL |
TrackLength | Control (Air) | NO | p-Value | |
---|---|---|---|---|
Time slot 0–30 | n | 3319 | 5449 | 0.023 |
Median [µm] (IQR) | 94.4 (75.1) | 102.9 (103.1) | ||
Time slot 31–60 | n | 3052 | 6975 | <0.001 |
Median [µm] (IQR) | 72.4 (73.4) | 82.8 (74.4) |
TrackLength | Control (Air) | NO | p-Value | |
---|---|---|---|---|
TmaxROS | n | 24 | 37 | 0.39 |
Mean [min] (±SD) | 111.1 (38.0) | 86.3 (32.4) | ||
ET50NETosis | n | 17 | 32 | 0.226 |
Mean [min] (±SD) | 214.3 (65.8) | 235.6 (53.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kraus, R.; Maier, E.; Gruber, M.; Wittmann, S. Impact of Nitric Oxide on Polymorphonuclear Neutrophils’ Function. Biomedicines 2024, 12, 2353. https://doi.org/10.3390/biomedicines12102353
Kraus R, Maier E, Gruber M, Wittmann S. Impact of Nitric Oxide on Polymorphonuclear Neutrophils’ Function. Biomedicines. 2024; 12(10):2353. https://doi.org/10.3390/biomedicines12102353
Chicago/Turabian StyleKraus, Richard, Elena Maier, Michael Gruber, and Sigrid Wittmann. 2024. "Impact of Nitric Oxide on Polymorphonuclear Neutrophils’ Function" Biomedicines 12, no. 10: 2353. https://doi.org/10.3390/biomedicines12102353
APA StyleKraus, R., Maier, E., Gruber, M., & Wittmann, S. (2024). Impact of Nitric Oxide on Polymorphonuclear Neutrophils’ Function. Biomedicines, 12(10), 2353. https://doi.org/10.3390/biomedicines12102353