Efficacy of Hypoxia-Inducible Factor Prolyl-Hydroxylase Inhibitors in Renal Anemia: Enhancing Erythropoiesis and Long-Term Outcomes in Patients with Chronic Kidney Disease
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical and Laboratory Findings
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Changes in Erythropoiesis After HIF-PHI and ESA Treatment
3.3. Long-Term Prognosis After HIF-PHI and ESA Treatment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nagai, K.; Asahi, K.; Iseki, K.; Yamagata, K. Estimating the prevalence of definitive chronic kidney disease in the Japanese general population. Clin. Exp. Nephrol. 2021, 25, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Kovesdy, C.P. Epidemiology of chronic kidney disease: An update 2022. Kidney Int. Suppl. 2022, 12, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Marreiros, C.; Viegas, C.; Simes, D. Targeting a silent disease: Vascular calcification in chronic kidney disease. Int. J. Mol. Sci. 2022, 23, 16114. [Google Scholar] [CrossRef]
- Kon, S.; Konta, T.; Ichikawa, K.; Asahi, K.; Yamagata, K.; Fujimoto, S.; Tsuruya, K.; Narita, I.; Kasahara, M.; Shibagaki, Y.; et al. Association between renal function and cardiovascular and all-cause mortality in the community-based elderly population: Results from the Specific Health Check and Guidance Program in Japan. Clin. Exp. Nephrol. 2018, 22, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Takata, T.; Hanada, H.; Taniguchi, S.; Hamada, S.; Mae, Y.; Iyama, T.; Isomoto, H. Zinc deficiency induces hypertension by paradoxically amplifying salt sensitivity under high salt intake in mice. Clin. Exp. Nephrol. 2024, 28, 728–739. [Google Scholar] [CrossRef] [PubMed]
- Takata, T.; Motoe, A.; Tanida, K.; Taniguchi, S.; Ida, A.; Yamada, K.; Hamada, S.; Ogawa, M.; Yamamoto, M.; Mae, Y.; et al. Feasibility of computed tomography-based assessment of skeletal muscle mass in hemodialysis patients. J. Nephrol. 2020, 34, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Mae, Y.; Takata, T.; Yamada, K.; Hamada, S.; Yamamoto, M.; Iyama, T.; Isomoto, H. Creatinine generation rate can detect sarcopenia in patients with hemodialysis. Clin. Exp. Nephrol. 2021, 26, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Taal, M.W.; Brenner, B.M. Renoprotective benefits of RAS inhibition: From ACEI to angiotensin II antagonists. Kidney Int. 2000, 57, 1803–1817. [Google Scholar] [CrossRef] [PubMed]
- Hosokawa, K.; Takata, T.; Sugihara, T.; Matono, T.; Koda, M.; Kanda, T.; Taniguchi, S.; Ida, A.; Mae, Y.; Yamamoto, M.; et al. Ipragliflozin ameliorates endoplasmic reticulum stress and apoptosis through preventing ectopic lipid deposition in renal tubules. Int. J. Mol. Sci. 2019, 21, 190. [Google Scholar] [CrossRef]
- Regidor, D.L.; Kopple, J.D.; Kovesdy, C.P.; Kilpatrick, R.D.; McAllister, C.J.; Aronovitz, J.; Greenland, S.; Kalantar-Zadeh, K. Associations between changes in hemoglobin and administered erythropoiesis-stimulating agent and survival in hemodialysis patients. J. Am. Soc. Nephrol. 2003, 14, 1181–1191. [Google Scholar] [CrossRef]
- Kovesdy, C.P.; Trivedi, B.K.; Kalantar-Zadeh, K.; Anderson, J.E. Association of anemia with outcomes in men with moderate and severe chronic kidney disease. Kidney Int. 2006, 69, 560–564. [Google Scholar] [CrossRef]
- Maruyama, Y.; Kanda, E.; Kikuchi, K.; Abe, M.; Masakane, I.; Yokoo, T.; Nitta, K. Association between anemia and mortality in hemodialysis patients is modified by the presence of diabetes. J. Nephrol. 2021, 34, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.D.; Uno, H.; Lewis, E.F.; Eckardt, K.U.; Lin, J.; Burdmann, E.A.; de Zeeuw, D.; Ivanovich, P.; Levey, A.S.; Parfrey, P.; et al. Trial to Reduce Cardiovascular Events with Aranesp Therapy (TREAT) Investigators. Erythropoietic response and outcomes in kidney disease and type 2 diabetes. N. Engl. J. Med. 2010, 363, 1146–1155. [Google Scholar] [CrossRef] [PubMed]
- Takata, T.; Mae, Y.; Yamada, K.; Taniguchi, S.; Hamada, S.; Yamamoto, M.; Iyama, T.; Isomoto, H. Skeletal muscle mass is associated with erythropoietin response in hemodialysis patients. BMC Nephrol. 2021, 22, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Wish, J.B. Hypoxia-inducible factor prolyl hydroxylase inhibitors: A potential new treatment for anemia in patients with CKD. Am. J. Kidney Dis. 2017, 69, 815–826. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, T.; Kuragano, T. The hepcidin-anemia axis: Pathogenesis of anemia in chronic kidney disease. Contrib. Nephrol. 2019, 198, 124–134. [Google Scholar] [CrossRef]
- Weir, M.R. Managing anemia across the stages of kidney disease in those hyporesponsive to erythropoiesis-stimulating agents. Am. J. Nephrol. 2021, 54, 450–466. [Google Scholar] [CrossRef]
- Aschemeyer, S.; Qiao, B.; Stefanova, D.; Valore, E.; Sek, A.C.; Ruwe, T.A.; Vieth, K.R.; Jung, G.; Casu, C.; Rivella, S.; et al. Structure-function analysis of ferroportin defines the binding site and an alternative mechanism of action of hepcidin. Blood 2018, 131, 899–910. [Google Scholar] [CrossRef]
- Ganz, T. Anemia of inflammation. N. Engl. J. Med. 2019, 131, 899–910. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, K.; Fukagawa, M.; Akiba, T.; Nakayama, M.; Ito, K.; Hanaki, K.; Wolf, M.; Hirakata, H. Randomised clinical trial of ferric citrate hydrate on anemia management in hemodialysis patients with hyperphosphatemia: ASTRIO study. Sci. Rep. 2019, 9, 8877. [Google Scholar] [CrossRef] [PubMed]
- Tomosugi, N.; Koshino, Y. Tips for erythropoiesis-stimulating agent treatment of renal anemia. Clin. Exp. Nephrol. 2020, 24, 105–106. [Google Scholar] [CrossRef] [PubMed]
- Förhécz, Z.; Gombos, T.; Borgulya, G.; Pozsonyi, Z.; Prohászka, Z.; Jánoskuti, L. Red cell distribution width in heart failure: Prediction of clinical events and relationship with markers of ineffective erythropoiesis, inflammation, renal function, and nutritional state. Am. Heart J. 2020, 158, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.W.; Lee, M.; Lee, K.J.; Lee, Y.H.; Kim, D.; Shin, S.J.; Yoon, H.E. The combined clinical impact of red blood cell distribution width and vascular calcification on cardiovascular events and mortality in patients with end-stage kidney disease. Nephrology 2022, 41, 351–362. [Google Scholar] [CrossRef]
- Yamamoto, H.; Nishi, S.; Tomo, T.; Masakane, I.; Saito, K.; Nangaku, M.; Hattori, M.; Suzuki, T.; Morita, S.; Ashida, A.; et al. 2015 Japanese Society for Dialysis Therapy: Guidelines for renal anemia in chronic kidney disease. Ther. Apher. Dial. 2017, 3, 36. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [PubMed]
- Kurumi, H.; Takata, T.; Kanda, T.; Sugihara, T.; Kakugawa, T.; Yokota, S.I.; Morisaki, T.; Akashi, T.; Isomoto, H. Investigating the role of heat shock protein 47 in fibrosis in Crohn’s disease. Sci. Rep. 2022, 12, 10966. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, S.; Imae, E.; Horio, M.; Yasuda, Y.; Tomita, K.; Nitta, K.; Yamagata, K.; Tomino, Y.; Yokoyama, H.; Hishida, A. Collaborators developing the Japanese equation for estimated GFR. Revised equations for estimated GFR from serum creatinine in Japan. Am. J. Kidney Dis. 2009, 53, 982–992. [Google Scholar] [CrossRef]
- Nangaku, M.; Kondo, K.; Kokado, Y.; Ueta, K.; Kaneko, G.; Tandai, T.; Kawaguchi, Y.; Komatsu, Y. Phase 3 randomized study comparing vadadustat with darbepoetin alfa for anemia in Japanese patients with chronic kidney disease. J. Am. Soc. Nephrol. 2021, 32, 1779–1790. [Google Scholar] [CrossRef] [PubMed]
- Akiszawa, T.; Nangaku, M.; Yonekawa, T.; Okuda, N.; Kawamatsu, S.; Onoue, T.; Endo, Y.; Hara, K.; Cobitz, A.R. Efficacy and Safety of Daprodustat Compared with Darbepoetin Alfa in Japanese Hemodialysis Patients with Anemia: A Randomized, Double-Blind, Phase 3 Trial. Clin. J. Am. Soc. Nephrol. 2020, 15, 1155–1165. [Google Scholar] [CrossRef]
- Singh, A.K.; Carroll, K.; McMurray, J.J.V.; Solomon, S.; Jha, V.; Johansen, K.L.; Lopes, R.D.; Macdougall, I.C.; Obrador, G.T.; Waikar, S.S.; et al. Daprodustat for the Treatment of Anemia in Patients Not Undergoing Dialysis. N. Engl. J. Med. 2021, 385, 2313–2324. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, X. Stabilizing Hypoxia-Inducible Factor to Manage Anemia in Chronic Kidney Disease: From Basic Theory to Clinical Study. Kidney Dis. 2024, 10, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Srole, D.N.; Ganz, T. Erythroferrone structure, function, and physiology: Iron homeostasis and beyond. J. Cell. Physiol. 2021, 236, 4888–4901. [Google Scholar] [CrossRef]
- Hernik, A.; Szczepanek-Parulska, A.; Filipowicz, D.; Abdolall, A.; Borowczyk, M.; Wrotkowska, E.; Czarnywojtek, A.; Krasiński, Z.; Ruchała, M. The hepcidin concentration decreases in hypothyroid patients with Hashimoto’s thyroiditis following restoration of euthyroidism. Sci. Rep. 2019, 9, 16222. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, Q.; Gao, L.; Liu, S.; Zhao, J.; Liu, G.; Zhang, S. Promising applications of red cell distribution width in diagnosis and prognosis of diseases with or without disordered iron metabolism. Cell Biol. Int. 2023, 47, 1161–1169. [Google Scholar] [CrossRef]
- Erken, E.; Ulgen, C.; Sarisik, F.N.; Erken, N.; Gungor, O.; Altunoren, O. Hematological parameters and clinical features in patients with advanced chronic kidney disease. Yonago Acta Med. 2020, 63, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Solak, Y.; Yilmaz, M.I.; Saglam, M.; Caglar, K.; Verim, S.; Unal, H.U.; Gok, M.; Demirkaya, E.; Gaipov, A.; Kayrak, M.; et al. Red cell distribution width is independently related to endothelial dysfunction in patients with chronic kidney disease. Am. J. Med. Sci. 2014, 347, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Fukasawa, H.; Ishibuchi, K.; Kaneko, M.; Niwa, H.; Yasuda, H.; Kumagai, H.; Furuya, R. Red blood cell distribution width is associated with all-cause and cardiovascular mortality in hemodialysis patients. Ther. Apher. Dial. 2017, 21, 565–571. [Google Scholar] [CrossRef]
- Hsieh, Y.P.; Tsai, S.M.; Chang, C.C.; Kor, C.T.; Lin, C.C. Association between red cell distribution width and mortality in patients undergoing continuous ambulatory peritoneal dialysis. Sci. Rep. 2017, 7, 45632. [Google Scholar] [CrossRef]
- Chen, J.; Li, Y.; Liu, P.; Wu, H.; Su, G. A nomogram to predict the in-hospital mortality of patients with congestive heart failure and chronic kidney disease. ESC Heart Fail. 2022, 28, 3167–3176. [Google Scholar] [CrossRef]
- Saito, H.; Tanaka, K.; Iwasaki, T.; Oda, A.; Watanabe, S.; Kobari, E.; Kimura, H.; Kazama, S.; Shimabukuro, M.; Asahi, K.; et al. Hematological parameters of anemia and prognosis of non-dialysis-dependent chronic kidney disease: The Fukushima CKD cohort study. Clin. Exp. Nephrol. 2023, 27, 55–65. [Google Scholar] [CrossRef]
- Li, Z.; Li, J.; Zhong, J.; Qu, C.; Du, M.; Tian, H.; Xu, H.; Hao, F.; Huang, L. Red blood cell count and cystatin C as the specific biomarkers for diabetic retinopathy from diabetes mellitus: A case-control study. Sci. Rep. 2024, 14, 29288. [Google Scholar] [CrossRef]
- Xiong, Y.; Xie, S.; Yao, Y.; Chen, Y.; Ding, J.; Zhou, R.; Liu, W.; Zhang, Y.; Wang, L.; Liu, Y. Hemoglobin-to-red blood cell distribution width ratio is negatively associated with stroke: A cross-sectional study from NHANES. Sci. Rep. 2024, 14, 28098. [Google Scholar] [CrossRef]
- Ma, X.B.; Lv, Y.L.; Qian, L.; Huang, S.T.; Pu, X.X.; Liu, Y.M. Ratio of red blood cell distribution width to albumin level and risk of mortality in sarcopenic obesity. Sci. Rep. 2024, 14, 27886. [Google Scholar] [CrossRef]
- Liao, J.; Lu, D.; Zhang, L.; Wang, M. Prognostic value of red blood cell distribution width in sepsis induced cardiomyopathy patients. Sci. Rep. 2024, 14, 24483. [Google Scholar] [CrossRef]
- Ogawa, C.; Tsuchiya, K.; Tomosugi, N.; Maeda, K. A hypoxia-inducible factor stabilizer improves hematopoiesis and iron metabolism early after administration to treat anemia in hemodialysis patients. Int. J. Mol. Sci. 2020, 21, 7153. [Google Scholar] [CrossRef] [PubMed]
HIF-PHI | ESA | p Value | ||
---|---|---|---|---|
Number | 21 | 84 | ||
Age (year) | 76.0 ± 10.4 | 72.8 ± 12.0 | 0.22 | |
Sex | (male/female) | 10/11 | 49/35 | 0.22 |
Agents | ||||
Daprodustat/Vadadustat/Roxadustat | 10/6/5 | |||
CERA/Darbepoetin alfa | 59/25 | |||
Laboratory data at baseline | ||||
Red blood cell (×1012/L) | 3.06 ± 0.38 | 3.21 ± 0.51 | 0.13 | |
Hemoglobin (g/dL) | 9.5 ± 1.0 | 9.9 ± 1.5 | 0.14 | |
Hematocrit (L/L) | 0.298 ± 0.034 | 0.306 ± 0.047 | 0.40 | |
RDW (%) | 14.5 ± 1.9 | 14.0 ± 1.7 | 0.26 | |
Mean corpuscular volume (fL) | 99.7 ± 8.2 | 95.6 ± 5.8 | 0.029 | |
Mean cell hemoglobin (pg) | 31.7 ± 2.3 | 30.9 ± 1.9 | 0.16 | |
Mean corpuscular hemoglobin concentration (g/dL) | 31.8 ± 1.5 | 32.4 ± 1.2 | 0.13 | |
Transferrin saturation (%) | 29.6 ± 12.7 | 28.5 ± 13.5 | 0.73 | |
Ferritin (ng/dL) | 179.3 ± 120.4 | 223.1 ± 194.5 | 0.24 | |
C reactive protein (mg/dL) | 0.31 ± 0.51 | 0.89 ± 1.96 | 0.071 | |
eGFR (mL/min/1.73 m2) | 24.0 ± 9.6 | 19.9 ± 9.4 | 0.09 | |
CKD stager (n, %) | 0.15 | |||
3 | 5 (23.8) | 12 (14.3) | ||
4 | 13 (61.9) | 42 (50.0) | ||
5 | 3 (14.3) | 30 (35.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshida, Y.; Takata, T.; Taniguchi, S.; Kageyama, K.; Fujino, Y.; Hanada, H.; Mae, Y.; Iyama, T.; Hikita, K.; Isomoto, H. Efficacy of Hypoxia-Inducible Factor Prolyl-Hydroxylase Inhibitors in Renal Anemia: Enhancing Erythropoiesis and Long-Term Outcomes in Patients with Chronic Kidney Disease. Biomedicines 2024, 12, 2926. https://doi.org/10.3390/biomedicines12122926
Yoshida Y, Takata T, Taniguchi S, Kageyama K, Fujino Y, Hanada H, Mae Y, Iyama T, Hikita K, Isomoto H. Efficacy of Hypoxia-Inducible Factor Prolyl-Hydroxylase Inhibitors in Renal Anemia: Enhancing Erythropoiesis and Long-Term Outcomes in Patients with Chronic Kidney Disease. Biomedicines. 2024; 12(12):2926. https://doi.org/10.3390/biomedicines12122926
Chicago/Turabian StyleYoshida, Yukina, Tomoaki Takata, Sosuke Taniguchi, Kana Kageyama, Yudai Fujino, Hinako Hanada, Yukari Mae, Takuji Iyama, Katsuya Hikita, and Hajime Isomoto. 2024. "Efficacy of Hypoxia-Inducible Factor Prolyl-Hydroxylase Inhibitors in Renal Anemia: Enhancing Erythropoiesis and Long-Term Outcomes in Patients with Chronic Kidney Disease" Biomedicines 12, no. 12: 2926. https://doi.org/10.3390/biomedicines12122926
APA StyleYoshida, Y., Takata, T., Taniguchi, S., Kageyama, K., Fujino, Y., Hanada, H., Mae, Y., Iyama, T., Hikita, K., & Isomoto, H. (2024). Efficacy of Hypoxia-Inducible Factor Prolyl-Hydroxylase Inhibitors in Renal Anemia: Enhancing Erythropoiesis and Long-Term Outcomes in Patients with Chronic Kidney Disease. Biomedicines, 12(12), 2926. https://doi.org/10.3390/biomedicines12122926