Is It Time to Alter the Standard of Care for Iron Deficiency/Iron Deficiency Anemia in Reproductive-Age Women?
Abstract
:1. Introduction
2. Discussion
2.1. The Role of Iron in Cell Life and Its Homeostasis
2.2. The Impact of Iron Deficiency, Iron Deficiency Anemia, and Anemia in Women of Reproductive Age
2.3. The Impact of Iron Deficiency, Iron Deficiency Anemia, and Anemia during Pregnancy
2.4. The Diagnosis of Iron Deficiency and Iron Deficiency Anemia among Women
2.5. The Replenishment of Iron in Iron Deficiency and Iron Deficiency Anemia among Women
2.6. Oral Iron as Treatment for Iron Deficiency and Iron Deficiency Anemia in Pregnancy
2.7. Intravenous Iron as a Treatment for Iron Deficiency and Iron Deficiency Anemia in Pregnancy
2.8. Postpartum Interventions for Iron Deficiency and Iron Deficiency Anemia
2.9. Recommendations for Future Research: New Iron Trials Can Potentially Change the Standard of Care
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ben-Ami, T.; Natour, M.; Rekhtman, D.; Ariel, T.; Revel-Vilk, S. Iron deficiency anemia as a leading cause of severe anemia in children may be associated with unnecessary red blood cells (rbcs) transfusion. Blood 2015, 126, 4454. [Google Scholar] [CrossRef]
- Johnson-Wimbley, T.D.; Graham, D.Y. Diagnosis and management of iron deficiency anemia in the 21st century. Therap. Adv. Gastroenterol. 2011, 4, 177–184. [Google Scholar] [CrossRef]
- World Health Organization. The Global Prevalence of Anaemia in 2011; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Friedman, A.J.; Chen, Z.; Ford, P.; Johnson, C.A.; Lopez, A.M.; Shander, A.; Waters, J.H.; Van Wyck, D. Iron deficiency anemia in women across the life span. J. Women’s Health 2012, 21, 1282–1289. [Google Scholar] [CrossRef]
- Wen, S.X.; Nisenbaum, R.; Auerbach, M.; Sholzberg, M. High prevalence of iron deficiency and socioeconomic disparities in laboratory screening of non-pregnant females of reproductive age. Blood 2022, 140 (Suppl. S1), 8008–8010. [Google Scholar] [CrossRef]
- Bayoumi, I.; Parkin, P.C.; Birken, C.S.; Maguire, J.L.; Borkhoff, C.M.; TARGet Kids! Collaboration. Association of Family Income and Risk of Food Insecurity with Iron Status in Young Children. JAMA Netw. Open 2020, 3, e208603. [Google Scholar] [CrossRef]
- Stevens, G.A.; Finucane, M.M.; De-Regil, L.M.; Paciorek, C.J.; Flaxman, S.R.; Branca, F.; Peña-Rosas, J.P.; Bhutta, Z.A.; Ezzati, M. Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995–2011: A systematic analysis of population-representative data. Lancet Glob. Health 2013, 1, e16–e25. [Google Scholar] [CrossRef]
- Ministry of Health and Family Welfare. National Family Health Survey—5 2019-21: India Fact Sheet. Updated 2022. Available online: http://rchiips.org/nfhs/ (accessed on 19 December 2022).
- Weyand, A.C.; Chaitoff, A.; Freed, G.L.; Sholzberg, M.; Choi, S.W.; McGann, P.T. Prevalence of Iron Deficiency and Iron-Deficiency Anemia in US Females Aged 12–21 Years, 2003–2020. JAMA 2023, 329, 2191–2193. [Google Scholar] [CrossRef]
- GBD 2016 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1211–1259, Erratum in Lancet 2017, 390, e38. [Google Scholar] [CrossRef]
- Camaschella, C. Iron-deficiency anemia. N. Engl. J. Med. 2015, 372, 1832–1843. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.F.; Wessling-Resnick, M.; Knutson, M.D. Hepcidin regulation of iron transport. J. Nutr. 2008, 138, 2284–2288. [Google Scholar] [CrossRef]
- Munro, M.G. Heavy menstrual bleeding, iron deficiency, and iron deficiency anemia: Framing the issue. Int. J. Gynaecol. Obstet. 2023, 162 (Suppl. S2), 7–13. [Google Scholar] [CrossRef]
- Bruner, A.B.; Joffe, A.; Duggan, A.K.; Casella, J.F.; Brandt, J. Randomised study of cognitive effects of iron supplementation in non-anaemic iron-deficient adolescent girls. Lancet 1996, 348, 992–996. [Google Scholar] [CrossRef]
- Rowland, T.W.; Deisroth, M.B.; Green, G.M.; Kelleher, J.F. The effect of iron therapy on the exercise capacity of nonanemic iron-deficient adolescent runners. Am. J. Dis. Child. 1988, 142, 165–169. [Google Scholar] [CrossRef]
- Patterson, A.J.; Brown, W.J.; Powers, J.R.; Roberts, D.C. Iron deficiency, general health and fatigue: Results from the Australian Longitudinal Study on Women’s Health. Qual. Life Res. 2000, 9, 491–497. [Google Scholar] [CrossRef]
- Palacios, S. The management of iron deficiency in menometrorrhagia. Gynecol. Endocrinol. 2011, 27 (Suppl. S1), 1126–1130. [Google Scholar] [CrossRef]
- DeLoughery, T.G. Microcytic anemia. N. Engl. J. Med. 2014, 371, 1324–1331. [Google Scholar] [CrossRef]
- DeLoughery, T.G. Iron deficiency anemia. Med. Clin. N. Am. 2017, 101, 319–332. [Google Scholar] [CrossRef]
- Pasricha, S.R.; Black, J.; Muthayya, S.; Shet, A.; Bhat, V.; Nagaraj, S.; Prashanth, N.S.; Sudarshan, H.; Biggs, B.A.; Shet, A.S. Determinants of anemia among young children in rural India. Pediatrics 2010, 126, e140–e149. [Google Scholar] [CrossRef]
- Farley, M.A.; Smith, P.D.; Mahoney, A.W.; West, D.W.; Post, J.R. Adult dietary characteristics affecting iron intake: A comparison based on iron density. J. Am. Diet. Assoc. 1987, 87, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.L.; West, K.P., Jr.; Black, R.E. The epidemiology of global micronutrient deficiencies. Ann. Nutr. Metab. 2015, 66 (Suppl. S2), 22–33. [Google Scholar] [CrossRef] [PubMed]
- Ezzati, M.; Lopez, A.D.; Rodgers, A.A.; Murray, C.J.L. Comparative Quantification of Health Risks: Global and Regional Burden of Disease Attributable to Selected Major Risk Factors; World Health Organization: Geneva, Switzerland, 2004; Available online: https://apps.who.int/iris/handle/10665/42770 (accessed on 20 December 2023).
- Bhutta, Z.A.; Das, J.K.; Bahl, R.; Lawn, J.E.; Salam, R.A.; Paul, V.K.; Sankar, M.J.; Blencowe, H.; Rizvi, A.; Chou, V.B.; et al. Can available interventions end preventable deaths in mothers, newborn babies, and stillbirths, and at what cost? Lancet 2014, 384, 347–370, Erratum in Lancet 2014, 384, 308. [Google Scholar] [CrossRef]
- Bothwell, T.H. Iron requirements in pregnancy and strategies to meet them. Am. J. Clin. Nutr. 2000, 72 (Suppl. S1), 257S–264S. [Google Scholar] [CrossRef]
- Fisher, A.L.; Nemeth, E. Iron homeostasis during pregnancy. Am. J. Clin. Nutr. 2017, 106 (Suppl. S6), 1567S–1574S. [Google Scholar] [CrossRef]
- Chang, S.; Zeng, L.; Brouwer, I.D.; Kok, F.J.; Yan, H. Effect of iron deficiency anemia in pregnancy on child mental development in rural China. Pediatrics 2013, 131, e755–e763. [Google Scholar] [CrossRef]
- Widdowson, E.M.; Spray, C.M. Chemical development in utero. Arch. Dis. Child. 1951, 26, 205–214. [Google Scholar] [CrossRef]
- Sukrat, B.; Wilasrusmee, C.; Siribumrungwong, B.; McEvoy, M.; Okascharoen, C.; Attia, J.; Thakkinstian, A. Hemoglobin concentration and pregnancy outcomes: A systematic review and meta-analysis. Biomed. Res. Int. 2013, 2013, 769057. [Google Scholar] [CrossRef] [PubMed]
- Hämäläinen, H.; Hakkarainen, K.; Heinonen, S. Anaemia in the first but not in the second or third trimester is a risk factor for low birth weight. Clin. Nutr. 2003, 22, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Ren, A.; Wang, J.; Ye, R.W.; Li, S.; Liu, J.M.; Li, Z. Low first-trimester hemoglobin and low birth weight, preterm birth and small for gestational age newborns. Int. J. Gynaecol. Obstet. 2007, 98, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Dewey, K.G.; Oaks, B.M. U-shaped curve for risk associated with maternal hemoglobin, iron status, or iron supplementation. Am. J. Clin. Nutr. 2017, 106 (Suppl. S6), 1694S–1702S. [Google Scholar] [CrossRef] [PubMed]
- Youssry, M.A.; Radwan, A.M.; Gebreel, M.A.; Patel, T.A. Prevalence of maternal anemia in pregnancy: The effect of maternal hemoglobin level on pregnancy and neonatal outcome. GOROJ. 2018, 8, 676–687. [Google Scholar] [CrossRef]
- Abeysena, C.; Jayawardana, P.; de ASeneviratne, R. Maternal haemoglobin level at booking visit and its effect on adverse pregnancy outcome. Aust. N. Z. J. Obstet. Gynaecol. 2010, 50, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Lozoff, B.; Georgieff, M.K. Iron deficiency and brain development. Semin. Pediatr. Neurol. 2006, 13, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Victora, C.G.; de Onis, M.; Hallal, P.C.; Blössner, M.; Shrimpton, R. Worldwide timing of growth faltering: Revisiting implications for interventions. Pediatrics 2010, 125, e473–e480. [Google Scholar] [CrossRef]
- Lozoff, B.; Beard, J.; Connor, J.; Barbara, F.; Georgieff, M.; Schallert, T. Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutr. Rev. 2006, 64 Pt 2, S34–S91. [Google Scholar] [CrossRef]
- Georgieff, M.K. Iron deficiency in pregnancy. Am. J. Obstet. Gynecol. 2020, 223, 516–524. [Google Scholar] [CrossRef]
- Berglund, S.K.; Westrup, B.; Hägglöf, B.; Hernell, O.; Domellöf, M. Effects of iron supplementation of LBW infants on cognition and behavior at 3 years. Pediatrics 2013, 131, 47–55. [Google Scholar] [CrossRef]
- Richards, T.; Musallam, K.M.; Nassif, J.; Ghazeeri, G.; Seoud, M.; Gurusamy, K.S.; Jamali, F.R. Impact of Preoperative Anaemia and Blood Transfusion on Postoperative Outcomes in Gynaecological Surgery. PLoS ONE 2015, 10, e0130861. [Google Scholar] [CrossRef]
- Frise, M.C.; Holdsworth, D.A.; Sandhu, M.S.; Mellor, A.J.; Kasim, A.S.; Hancock, H.C.; Maier, R.H.; Dorrington, K.L.; Robbins, P.A.; Akowuah, E.F. Non-anemic iron deficiency predicts prolonged hospitalisation following surgical aortic valve replacement: A single-centre retrospective study. J. Cardiothorac. Surg. 2022, 17, 157. [Google Scholar] [CrossRef]
- Caesarean Section Rates Continue to Rise Amid Growing Inequalities in Access. World Health Organization. Updated 16 June 2021. Available online: https://www.who.int/news/item/16-06-2021-caesarean-section-rates-continue-to-rise-amid-growing-inequalities-in-access (accessed on 19 December 2022).
- Butwick, A.J.; Walsh, E.M.; Kuzniewicz, M.; Li, S.X.; Escobar, G.J. Patterns and predictors of severe postpartum anemia after Cesarean section. Transfusion 2017, 57, 36–44. [Google Scholar] [CrossRef]
- Sivahikyako, S.A.; Owaraganise, A.; Tibaijuka, L.; Agaba, D.C.; Kayondo, M.; Ngonzi, J.; Mugisha, J.; Kanyesigye, H. Prevalence and factors associated with severe anaemia post-caesarean section at a tertiary Hospital in Southwestern Uganda. BMC Pregnancy Childbirth 2021, 21, 674. [Google Scholar] [CrossRef]
- Short, M.W.; Domagalski, J.E. Iron deficiency anemia: Evaluation and management. Am. Fam. Physician 2013, 87, 98–104. [Google Scholar]
- Beutler, E.; Waalen, J. The definition of anemia: What is the lower limit of normal of the blood hemoglobin concentration? Blood 2006, 107, 1747–1750. [Google Scholar] [CrossRef] [PubMed]
- Tarancon-Diez, L.; Genebat, M.; Roman-Enry, M.; Vázquez-Alejo, E.; Espinar-Buitrago, M.D.; Leal, M.; Muñoz-Fernandez, M.Á. Threshold Ferritin Concentrations Reflecting Early Iron Deficiency Based on Hepcidin and Soluble Transferrin Receptor Serum Levels in Patients with Absolute Iron Deficiency. Nutrients 2022, 14, 4739. [Google Scholar] [CrossRef]
- Galetti, V.; Stoffel, N.U.; Sieber, C.; Zeder, C.; Moretti, D.; Zimmermann, M.B. Threshold ferritin and hepcidin concentrations indicating early iron deficiency in young women based on upregulation of iron absorption. EClinicalMedicine 2021, 39, 101052. [Google Scholar] [CrossRef]
- Mei, Z.; Addo, O.Y.; Jefferds, M.E.; Sharma, A.J.; Flores-Ayala, R.C.; Brittenham, G.M. Physiologically based serum ferritin thresholds for iron deficiency in children and non-pregnant women: A US national health and nutrition examination surveys (NHANES) serial cross-sectional study. Lancet Haematol. 2021, 8, e572–e582. [Google Scholar] [CrossRef]
- Archer, N.M.; Brugnara, C. Diagnosis of iron-deficient states. Crit. Rev. Clin. Lab. Sci. 2015, 52, 256–272. [Google Scholar] [CrossRef]
- Brugnara, C.; Adamson, J.; Auerbach, M.; Kane, R.; Macdougall, I.; Mast, A. Iron deficiency: What are the future trends in diagnostics and therapeutics? Clin. Chem. 2013, 59, 740–745. [Google Scholar] [CrossRef]
- Tolkien, Z.; Stecher, L.; Mander, A.P.; Pereira, D.I.; Powell, J.J. Ferrous sulfate supplementation causes significant gastrointestinal side-effects in adults: A systematic review and meta-analysis. PLoS ONE 2015, 10, e0117383. [Google Scholar] [CrossRef]
- Ba, D.M.; Ssentongo, P.; Kjerulff, K.H.; Na, M.; Liu, G.; Gao, X.; Du, P. Adherence to Iron Supplementation in 22 Sub-Saharan African Countries and Associated Factors among Pregnant Women: A Large Population-Based Study. Curr. Dev. Nutr. 2019, 3, nzz120. [Google Scholar] [CrossRef]
- Zhao, G.; Xu, G.; Zhou, M.; Jiang, Y.; Richards, B.; Clark, K.M.; Kaciroti, N.; Georgieff, M.K.; Zhang, Z.; Tardif, T.; et al. Prenatal Iron Supplementation Reduces Maternal Anemia, Iron Deficiency, and Iron Deficiency Anemia in a Randomized Clinical Trial in Rural China, but Iron Deficiency Remains Widespread in Mothers and Neonates. J. Nutr. 2015, 145, 1916–1923. [Google Scholar] [CrossRef]
- Stoffel, N.U.; von Siebenthal, H.K.; Moretti, D.; Zimmermann, M.B. Oral iron supplementation in iron-deficient women: How much and how often? Mol. Asp. Med. 2020, 75, 100865. [Google Scholar] [CrossRef] [PubMed]
- Moretti, D.; Goede, J.S.; Zeder, C.; Jiskra, M.; Chatzinakou, V.; Tjalsma, H.; Melse-Boonstra, A.; Brittenham, G.; Swinkels, D.W.; Zimmermann, M.B. Oral iron supplements increase hepcidin and decrease iron absorption from daily or twice-daily doses in iron-depleted young women. Blood 2015, 126, 1981–1989. [Google Scholar] [CrossRef]
- Von Siebenthal, H.K.; Gessler, S.; Vallelian, F.; Steinwendner, J.; Kuenzi, U.M.; Moretti, D.; Zimmermann, M.B.; Stoffel, N.U. Alternate day versus consecutive day oral iron supplementation in iron-depleted women: A randomized double-blind placebo-controlled study. EClinicalMedicine 2023, 65, 102286. [Google Scholar] [CrossRef]
- Von Siebenthal, H.K.; Moretti, D.; Zimmermann, M.B.; Stoffel, N.U. Effect of dietary factors and time of day on iron absorption from oral iron supplements in iron deficient women. Am. J. Hematol. 2023, 98, 1356–1363. [Google Scholar] [CrossRef] [PubMed]
- Pavord, S.; Daru, J.; Prasannan, N.; Robinson, S.; Stanworth, S.; Girling, J. UK guidelines on the management of iron deficiency in pregnancy. Br. J. Haematol. 2019, 188, 819–830. [Google Scholar] [CrossRef]
- Andrews, N.C. Disorders of iron metabolism. N. Engl. J. Med. 1999, 341, 1986–1995, Erratum in N. Engl. J. Med. 2000, 342, 364. [Google Scholar] [CrossRef]
- Shin, H.W.; Go, D.Y.; Lee, S.W.; Choi, Y.J.; Ko, E.J.; You, H.S.; Jang, Y.K. Comparative efficacy and safety of intravenous ferric carboxymaltose and iron sucrose for iron deficiency anemia in obstetric and gynecologic patients: A systematic review and meta-analysis. Medicine 2021, 100, e24571. [Google Scholar] [CrossRef]
- Govindappagari, S.; Burwick, R.M. Treatment of Iron Deficiency Anemia in Pregnancy with Intravenous versus Oral Iron: Systematic Review and Meta-Analysis. Am. J. Perinatol. 2019, 36, 366–376. [Google Scholar] [CrossRef]
- Qassim, A.; Grivell, R.M.; Henry, A.; Kidson-Gerber, G.; Shand, A.; Grzeskowiak, L.E. Intravenous or oral iron for treating iron deficiency anaemia during pregnancy: Systematic review and meta-analysis. Med. J. Aust. 2019, 211, 367–373. [Google Scholar] [CrossRef]
- Sultan, P.; Bampoe, S.; Shah, R.; Guo, N.; Estes, J.; Stave, C.; Goodnough, L.T.; Halpern, S.; Butwick, A.J. Oral vs intravenous iron therapy for postpartum anemia: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. 2019, 221, 19–29.e3. [Google Scholar] [CrossRef]
- Neogi, S.B.; Devasenapathy, N.; Singh, R.; Bhushan, H.; Shah, D.; Divakar, H.; Zodpey, S.; Malik, S.; Nanda, S.; Mittal, P.; et al. Safety and effectiveness of intravenous iron sucrose versus standard oral iron therapy in pregnant women with moderate-to-severe anaemia in India: A multicentre, open-label, phase 3, randomised, controlled trial. Lancet Glob. Health 2019, 7, e1706–e1716, Erratum in Lancet Glob. Health 2020, 8, e1472. [Google Scholar] [CrossRef] [PubMed]
- Arastu, A.H.; Elstrott, B.K.; Martens, K.L.; Cohen, J.L.; Oakes, M.H.; Rub, Z.T.; Aslan, J.E.; DeLoughery, T.G.; Shatzel, J. Analysis of adverse events and intravenous iron infusion formulations in adults with and without prior infusion reactions. JAMA Netw. Open 2022, 5, e224488. [Google Scholar] [CrossRef] [PubMed]
- Auerbach, M.; Deloughery, T. Single-dose intravenous iron for iron deficiency: A new paradigm. Hematol. Am. Soc. Hematol. Educ. Program. 2016, 2016, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Auerbach, M.; Adamson, J.W. How we diagnose and treat iron deficiency anemia. Am. J. Hematol. 2016, 91, 31–38. [Google Scholar] [CrossRef]
- Sharma, N.; Thiek, J.L.; Natung, T.; Ahanthem, S.S. Comparative Study of Efficacy and Safety of Ferric Carboxymaltose Versus Iron Sucrose in Post-partum Anaemia. J. Obstet. Gynaecol. India 2017, 67, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Ge, C.; Reyes, J.; Queenan, R.A.; Gherman, R.B. Rhabdomyolysis After Intravenous Iron Sucrose Infusion During Pregnancy. Obstet. Gynecol. 2023, 141, 1049–1051. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, B.; Tobiasch, M.; Viveiros, A.; Tilg, H.; Kennedy, N.A.; Wolf, M.; Zoller, H. Hypophosphataemia after treatment of iron deficiency with intravenous ferric carboxymaltose or iron isomaltoside-a systematic review and meta-analysis. Br. J. Clin. Pharmacol. 2021, 87, 2256–2273. [Google Scholar] [CrossRef]
- Filippatos, G.; Farmakis, D.; Colet, J.C.; Dickstein, K.; Lüscher, T.F.; Willenheimer, R.; Parissis, J.; Gaudesius, G.; Mori, C.; von Eisenhart Rothe, B.; et al. Intravenous ferric carboxymaltose in iron-deficient chronic heart failure patients with and without anaemia: A subanalysis of the fair-hf trial. Eur. J. Heart Fail. 2013, 15, 1267–1276. [Google Scholar] [CrossRef]
- Richards, T.; Baikady, R.R.; Clevenger, B.; Butcher, A.; Abeysiri, S.; Chau, M.; Macdougall, I.C.; Murphy, G.; Swinson, R.; Collier, T.; et al. Preoperative intravenous iron to treat anaemia before major abdominal surgery (PREVENTT): A randomised, double-blind, controlled trial. Lancet 2020, 396, 1353–1361. [Google Scholar] [CrossRef]
- Talboom, K.; Borstlap, W.A.; Roodbeen, S.X.; Bruns, E.R.; Buskens, C.J.; Hompes, R.; Tytgat, K.M.; Tuynman, J.B.; Consten, E.C.; Heuff, G.; et al. Ferric carboxymaltose infusion versus oral iron supplementation for preoperative iron deficiency anaemia in patients with colorectal cancer (FIT): A multicentre, open-label, randomised, controlled trial. Lancet Haematol. 2023, 10, e250–e260. [Google Scholar] [CrossRef]
- Pasricha, S.R.; Mwangi, M.N.; Moya, E.; Ataide, R.; Mzembe, G.; Harding, R.; Zinenani, T.; Larson, L.M.; Demir, A.Y.; Nkhono, W.; et al. Ferric carboxymaltose versus standard-of-care oral iron to treat second-trimester anaemia in malawian pregnant women: A randomised controlled trial. Lancet 2023, 401, 1595–1609. [Google Scholar] [CrossRef] [PubMed]
- Awomolo, A.M.; McWhirter, A.; Sadler, L.C.; Coppola, L.M.; Hill, M.G. Intravenous infusions of ferumoxytol compared to oral ferrous sulfate for the treatment of anemia in pregnancy: A randomized controlled trial. Am. J. Obs. Gynecol. MFM 2023, 5, 101064. [Google Scholar] [CrossRef] [PubMed]
- Awomolo, A.M.; McWhirter, A.; Sadler, L.C.; Coppola, L.M.; Hill, M.G. Neonatal outcomes from a randomized controlled trial of maternal treatment of iron deficiency anemia with intravenous ferumoxytol vs oral ferrous sulfate. Am. J. Obs. Gynecol. MFM 2023, 5, 101063. [Google Scholar] [CrossRef] [PubMed]
- Moya, E.; Phiri, N.; Choko, A.T.; Mwangi, M.N.; Phiri, K.S. Effect of postpartum anaemia on maternal health-related quality of life: A systematic review and meta-analysis. BMC Public Health 2022, 22, 364. [Google Scholar] [CrossRef] [PubMed]
- Vanobberghen, F.; Lweno, O.; Kuemmerle, A.; Mwebi, K.D.; Asilia, P.; Issa, A.; Simon, B.; Mswata, S.; Schmidlin, S.; Glass, T.R.; et al. Efficacy and safety of intravenous ferric carboxymaltose compared with oral iron for the treatment of iron deficiency anaemia in women after childbirth in Tanzania: A parallel-group, open-label, randomised controlled phase 3 trial. Lancet Glob. Health 2021, 9, e189–e198. [Google Scholar] [CrossRef]
- Markova, V.; Norgaard, A.; Jørgensen, K.J.; Langhoff-Roos, J. Treatment for women with postpartum iron deficiency anaemia. Cochrane Database Syst. Rev. 2015, 2015, CD010861. [Google Scholar] [CrossRef]
- Saad, A.F.; Stepanek, R.; Kothmann, M.; Wilson-Jimenez, M.; McCoy, L.; Aguillon, B.; Salazar, A.; Saade, G.R. Intravenous Iron Compared with Oral Iron Supplementation for the Treatment of Postpartum Anemia: A Randomized Controlled Trial. Obstet. Gynecol. 2023, 141, 1052–1055. [Google Scholar] [CrossRef]
- Andersson, O.; Hellström-Westas, L.; Andersson, D.; Domellöf, M. Effect of delayed versus early umbilical cord clamping on neonatal outcomes and iron status at 4 months: A randomised controlled trial. BMJ 2011, 343, d7157. [Google Scholar] [CrossRef]
- McDonald, S.J.; Middleton, P.; Dowswell, T.; Morris, P.S. Effect of timing of umbilical cord clamping of term infants on maternal and neonatal outcomes. Cochrane Database Syst. Rev. 2013, 2013, CD004074. [Google Scholar] [CrossRef]
- World Health Organization. Guideline: Delayed Umbilical Cord Clamping for Improved Maternal and Infant Health and Nutrition Outcomes; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Zhao, Y.; Hou, R.; Zhu, X.; Ren, L.; Lu, H. Effects of delayed cord clamping on infants after neonatal period: A systematic review and meta-analysis. Int. J. Nurs. Stud. 2019, 92, 97–108. [Google Scholar] [CrossRef]
- Derman, R.; Roman, E.; Modiano, M.R.; Achebe, M.M.; Thomsen, L.L.; Auerbach, M. A randomized trial of iron isomaltoside versus iron sucrose in patients with iron deficiency anemia. Am. J. Hematol. 2017, 92, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Derman, R.J.; Goudar, S.S.; Thind, S.; Bhandari, S.; Aghai, Z.; Auerbach, M.; Boelig, R.; Charantimath, U.S.; Frasso, R.; Ganachari, M.S.; et al. RAPIDIRON: Reducing Anaemia in Pregnancy in India-a 3-arm, randomized-controlled trial comparing the effectiveness of oral iron with single-dose intravenous iron in the treatment of iron deficiency anaemia in pregnant women and reducing low birth weight deliveries. Trials 2021, 22, 649. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellad, M.B.; Patted, A.; Derman, R.J. Is It Time to Alter the Standard of Care for Iron Deficiency/Iron Deficiency Anemia in Reproductive-Age Women? Biomedicines 2024, 12, 278. https://doi.org/10.3390/biomedicines12020278
Bellad MB, Patted A, Derman RJ. Is It Time to Alter the Standard of Care for Iron Deficiency/Iron Deficiency Anemia in Reproductive-Age Women? Biomedicines. 2024; 12(2):278. https://doi.org/10.3390/biomedicines12020278
Chicago/Turabian StyleBellad, Mrutyunjaya B., Anmol Patted, and Richard J. Derman. 2024. "Is It Time to Alter the Standard of Care for Iron Deficiency/Iron Deficiency Anemia in Reproductive-Age Women?" Biomedicines 12, no. 2: 278. https://doi.org/10.3390/biomedicines12020278
APA StyleBellad, M. B., Patted, A., & Derman, R. J. (2024). Is It Time to Alter the Standard of Care for Iron Deficiency/Iron Deficiency Anemia in Reproductive-Age Women? Biomedicines, 12(2), 278. https://doi.org/10.3390/biomedicines12020278