Role of Incretins in Muscle Functionality, Metabolism, and Body Composition in Breast Cancer: A Metabolic Approach to Understanding This Pathology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Body Composition Analysis by BIA, Anthropometric Measurements, Muscular Strength, Body Indexes, and Muscle Quality Calculations Adjusted According to Body Surface
2.2. Blood Sample and Metabolic Markers and Adipocytokines Levels
2.3. Statistical Analysis
3. Results
- A.
- Healthy women (n = 69):
- a.
- Normal weight (n = 22, 31.9%);
- b.
- Overweight (n = 32, 46.4%);
- c.
- Obese (n = 15, 21.7%).
- B.
- Women with breast cancer (n = 87):
- a.
- Normal weight (n = 26, 29.9%);
- b.
- Overweight (n = 28, 32.2%);
- c.
- Obese (n = 33, 37.9%).
3.1. Anthropometric Parameters in Healthy Women and Women with Breast Cancer Groups by Nutritional State
Age and Anthropometric Indexes
3.2. Handgrip Strength and Muscle Quality Adjusted for BMI, ASMMI, and FMI
3.3. Comparison of Adipocytokines and Metabolic Biomarkers between the Health and Nutritional States
3.4. Comparison of Anthropometric Parameters by Health State
3.5. Comparison of Adipocytokines Levels by Health State
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harbeck, N.; Penault-Llorca, F.; Cortes, J.; Gnant, M.; Houssami, N.; Poortmans, P.; Ruddy, K.; Tsang, J.; Cardoso, F. Breast Cancer. Nat. Rev. Dis. Primers 2019, 5, 66. [Google Scholar] [CrossRef]
- Giaquinto, A.N.; Sung, H.; Miller, K.D.; Kramer, J.L.; Newman, L.A.; Minihan, A.; Jemal, A.; Siegel, R.L. Breast Cancer Statistics, 2022. CA Cancer J. Clin. 2022, 72, 524–541. [Google Scholar] [CrossRef]
- World Health Organization. Global Cancer Observatory; International Agency for Research on Cancer: Lyon, France, 2023. [Google Scholar]
- Gille, J.; Spieth, K.; Kaufmann, R. Metronomic Low-dose Chemotherapy as Antiangiogenic Therapeutic Strategy for Cancer: Metronomische Niedrig-dosierte Chemotherapie Als Antiangiogene Therapiestrategie Für Tumorerkrankungen. J. Dtsch. Dermatol. Ges. 2005, 3, 26–32. [Google Scholar] [CrossRef]
- Beck, S.; Ng, T. C2c: Turning Cancer into Chronic Disease. Genome Med. 2014, 6, 38. [Google Scholar] [CrossRef] [PubMed]
- Che Bakri, N.A.; Kwasnicki, R.M.; Giannas, E.; Tenang, L.; Khan, N.; Moenig, C.; Imam, Z.; Dhillon, K.; Ashrafian, H.; Darzi, A.; et al. ASO Author Reflections: Objective Outcome Measure of Upper Limb Function Following Axillary Lymph Node Dissection and Sentinel Lymph Node Biopsy. Ann. Surg. Oncol. 2023, 30, 7133–7134. [Google Scholar] [CrossRef] [PubMed]
- Caamaño-Navarrete, F.; Jerez-Mayorga, D.; Alvarez, C.; del-Cuerpo, I.; Cresp-Barría, M.; Delgado-Floody, P. Muscle Quality Index in Morbidly Obesity Patients Related to Metabolic Syndrome Markers and Cardiorespiratory Fitness. Nutrients 2023, 15, 2458. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto Takigami, N.; Kuniyoshi, S.; Miki, Y.; Tamaki, K.; Kamada, Y.; Uehara, K.; Tsuchiya, S.; Terukina, S.; Iwabuchi, E.; Kanai, A.; et al. Breast Cancer, Diabetes Mellitus and Glucagon-Like Peptide-1 Receptor toward Exploring Their Possible Associations. Breast Cancer Res. Treat. 2021, 189, 39–48. [Google Scholar] [CrossRef]
- Cho, Y.M.; Fujita, Y.; Kieffer, T.J. Glucagon-Like Peptide-1: Glucose Homeostasis and Beyond. Annu. Rev. Physiol. 2014, 76, 535–559. [Google Scholar] [CrossRef] [PubMed]
- Muskiet, M.H.A.; Tonneijck, L.; Smits, M.M.; Van Baar, M.J.B.; Kramer, M.H.H.; Hoorn, E.J.; Joles, J.A.; Van Raalte, D.H. GLP-1 and the Kidney: From Physiology to Pharmacology and Outcomes in Diabetes. Nat. Rev. Nephrol. 2017, 13, 605–628. [Google Scholar] [CrossRef] [PubMed]
- Roberts-Thomson, K.M.; Parker, L.; Betik, A.C.; Wadley, G.D.; Gatta, P.A.D.; Marwick, T.H.; Keske, M.A. Oral and Intravenous Glucose Administration Elicit Opposing Microvascular Blood Flow Responses in Skeletal Muscle of Healthy People: Role of Incretins. J. Physiol. 2022, 600, 1667–1681. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, R.; Ninomiya, D.; Kasai, Y.; Kusunoki, T.; Ohtsuka, N.; Kumagi, T.; Abe, M. Handgrip Strength Is Associated with Metabolic Syndrome among Middle-Aged and Elderly Community-Dwelling Persons. Clin. Exp. Hypertens. 2016, 38, 245–251. [Google Scholar] [CrossRef]
- da Cunha Nascimento, D.; Prestes, J.; de Sousa Diniz, J.; Beal, P.R.; Alves, V.P.; Stone, W.; Beal, F.L.R. Comparison of Field- and Laboratory-Based Estimates of Muscle Quality Index between Octogenarians and Young Older Adults: An Observational Study. J. Exerc. Rehabil. 2020, 16, 458–466. [Google Scholar] [CrossRef]
- Hoekstra, C.; Swart, M.; Bautmans, I.; Melis, R.; Peeters, G. Association between Muscle Fatigability, Self-Perceived Fatigue and C-Reactive Protein at Admission in Hospitalized Geriatric Patients. Int. J. Environ. Res. Public Health 2023, 20, 6582. [Google Scholar] [CrossRef] [PubMed]
- Seaton, M.P.; Nichols, J.F.; Rauh, M.J.; Kado, D.M.; Wetherell, J.L.; Lenze, E.J.; Wing, D. Associations of Lean Mass, Muscular Strength, and Physical Function with Trabecular Bone Score in Older Adults. J. Clin. Densitom. 2023, 26, 101370. [Google Scholar] [CrossRef]
- Hidrobo Coello, J.F. Actividad Física para pacientes con diagnóstico de cáncer. Guía de prescripción deportiva para Ecuador. Rev. Iberoam. Cienc. Act. Fís. Deporte 2020, 9, 18–41. [Google Scholar] [CrossRef]
- Sayer, A.A.; Kirkwood, T.B.L. Grip Strength and Mortality: A Biomarker of Ageing? Lancet 2015, 386, 226–227. [Google Scholar] [CrossRef]
- García-Hermoso, A.; Cavero-Redondo, I.; Ramírez-Vélez, R.; Ruiz, J.R.; Ortega, F.B.; Lee, D.-C.; Martínez-Vizcaíno, V. Muscular Strength as a Predictor of All-Cause Mortality in an Apparently Healthy Population: A Systematic Review and Meta-Analysis of Data from Approximately 2 Million Men and Women. Arch. Phys. Med. Rehabil. 2018, 99, 2100–2113.e5. [Google Scholar] [CrossRef]
- Rantanen, T.; Harris, T.; Leveille, S.G.; Visser, M.; Foley, D.; Masaki, K.; Guralnik, J.M. Muscle Strength and Body Mass Index as Long-Term Predictors of Mortality in Initially Healthy Men. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2000, 55, M168–M173. [Google Scholar] [CrossRef]
- Jerez-Mayorga, D.; Chirosa Ríos, L.J.; Reyes, A.; Delgado-Floody, P.; Machado Payer, R.; Guisado Requena, I.M. Muscle Quality Index and Isometric Strength in Older Adults with Hip Osteoarthritis. PeerJ 2019, 7, e7471. [Google Scholar] [CrossRef] [PubMed]
- Fragala, M.S.; Fukuda, D.H.; Stout, J.R.; Townsend, J.R.; Emerson, N.S.; Boone, C.H.; Beyer, K.S.; Oliveira, L.P.; Hoffman, J.R. Muscle Quality Index Improves with Resistance Exercise Training in Older Adults. Exp. Gerontol. 2014, 53, 1–6. [Google Scholar] [CrossRef]
- Cooper, R.; Kuh, D.; Hardy, R. Mortality Review Group Objectively Measured Physical Capability Levels and Mortality: Systematic Review and Meta-Analysis. BMJ 2010, 341, c4467. [Google Scholar] [CrossRef]
- DeFronzo, R.A. From the Triumvirate to the Ominous Octet: A New Paradigm for the Treatment of Type 2 Diabetes Mellitus. Diabetes 2009, 58, 773–795. [Google Scholar] [CrossRef]
- Sat-Muñoz, D.; Martínez-Herrera, B.-E.; Quiroga-Morales, L.-A.; Trujillo-Hernández, B.; González-Rodríguez, J.-A.; Gutiérrez-Rodríguez, L.-X.; Leal-Cortés, C.-A.; Portilla-de-Buen, E.; Rubio-Jurado, B.; Salazar-Páramo, M.; et al. Adipocytokines and Insulin Resistance: Their Role as Benign Breast Disease and Breast Cancer Risk Factors in a High-Prevalence Overweight-Obesity Group of Women over 40 Years Old. Int. J. Environ. Res. Public Health 2022, 19, 6093. [Google Scholar] [CrossRef]
- Lopes, J.; Grams, S.T.; Da Silva, E.F.; De Medeiros, L.A.; De Brito, C.M.M.; Yamaguti, W.P. Reference Equations for Handgrip Strength: Normative Values in Young Adult and Middle-Aged Subjects. Clin. Nutr. 2018, 37, 914–918. [Google Scholar] [CrossRef]
- Turner, R.C.; Holman, R.R.; Matthews, D.R.; Peto, J. Relative contributions of insulin deficiency and insulin resistance in maturity-onset diabetes. Lancet 1982, 319, 596–598. [Google Scholar] [CrossRef]
- Reyes-Muñoz, E.; Martínez-Herrera, E.M.; Ortega-González, C.; Arce-Sánchez, L.; Ávila-Carrasco, A.; Zamora-Escudero, R. Valores de referencia de HOMA-IR y QUICKI durante el embarazo en mujeres mexicanas. Ginecol. Obstet. Méx. 2017, 85, 306–313. [Google Scholar]
- Chen, L.-K. Reimaging Cachexia Care in Asia: The AWGC Consensus and Future Directions. Arch. Gerontol. Geriatr. 2024, 117, 105261. [Google Scholar] [CrossRef] [PubMed]
- Morton, M.; Patterson, J.; Sciuva, J.; Perni, J.; Backes, F.; Nagel, C.; O’Malley, D.M.; Chambers, L.M. Malnutrition, Sarcopenia, and Cancer Cachexia in Gynecologic Cancer. Gynecol. Oncol. 2023, 175, 142–155. [Google Scholar] [CrossRef] [PubMed]
- Seke Etet, P.F.; Vecchio, L.; Nwabo Kamdje, A.H.; Mimche, P.N.; Njamnshi, A.K.; Adem, A. Physiological and Environmental Factors Affecting Cancer Risk and Prognosis in Obesity. Semin. Cancer Biol. 2023, 94, 50–61. [Google Scholar] [CrossRef]
- Jujić, A.; Godina, C.; Belting, M.; Melander, O.; Juul Holst, J.; Ahlqvist, E.; Gomez, M.F.; Nilsson, P.M.; Jernström, H.; Magnusson, M. Endogenous Incretin Levels and Risk of First Incident Cancer: A Prospective Cohort Study. Sci. Rep. 2023, 13, 382. [Google Scholar] [CrossRef] [PubMed]
- Samuel, S.M.; Varghese, E.; Kubatka, P.; Büsselberg, D. Tirzepatide—Friend or Foe in Diabetic Cancer Patients? Biomolecules 2022, 12, 1580. [Google Scholar] [CrossRef] [PubMed]
- Weng, L.; Xu, Z.; Chen, Y.; Chen, C. Associations between the Muscle Quality Index and Adult Lung Functions from NHANES 2011–2012. Front. Public Health 2023, 11, 1146456. [Google Scholar] [CrossRef]
- Lee, S.; Kim, Y.; White, D.; Kuk, J.; Arslanian, S. Relationships between Insulin Sensitivity, Skeletal Muscle Mass and Muscle Quality in Obese Adolescent Boys. Eur. J. Clin. Nutr. 2012, 66, 1366–1368. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Murakami, H.; Kawakami, R.; Gando, Y.; Nanri, H.; Nakagata, T.; Watanabe, D.; Yoshida, T.; Hatamoto, Y.; Yoshimura, E.; et al. Association between Skeletal Muscle Mass or Percent Body Fat and Metabolic Syndrome Development in Japanese Women: A 7-Year Prospective Study. PLoS ONE 2022, 17, e0263213. [Google Scholar] [CrossRef]
- Valenzuela, P.L.; Maffiuletti, N.A.; Tringali, G.; De Col, A.; Sartorio, A. Obesity-Associated Poor Muscle Quality: Prevalence and Association with Age, Sex, and Body Mass Index. BMC Musculoskelet. Disord. 2020, 21, 200. [Google Scholar] [CrossRef]
- Roberti, E.; Merlano, M.; Ravanelli, M.; Alberti, A.; Esposito, A.; Gili, R.; Spinazzé, S.; Baré, C.; Jocollé, G.; Benasso, M.; et al. Muscle Quality and Not Quantity as a Predictor of Survival in Head and Neck Squamous Cell Carcinoma. Oral Oncol. 2023, 145, 106540. [Google Scholar] [CrossRef]
- Abellan Van Kan, G.; Houles, M.; Vellas, B. Identifying Sarcopenia. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Dimitriadis, G.D.; Maratou, E.; Kountouri, A.; Board, M.; Lambadiari, V. Regulation of Postabsorptive and Postprandial Glucose Metabolism by Insulin-Dependent and Insulin-Independent Mechanisms: An Integrative Approach. Nutrients 2021, 13, 159. [Google Scholar] [CrossRef]
- Solis-Herrera, C.; Triplitt, C.; Cersosimo, E.; DeFronzo, R.A. Pathogenesis of Type 2 Diabetes Mellitus. In Endotext; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Hunter, S.J.; Garvey, W.T. Insulin Action and Insulin Resistance: Diseases Involving Defects in Insulin Receptors, Signal Transduction, and the Glucose Transport Effector System. Am. J. Med. 1998, 105, 331–345. [Google Scholar] [CrossRef]
- Kerouz, N.J.; Hörsch, D.; Pons, S.; Kahn, C.R. Differential Regulation of Insulin Receptor Substrates-1 and -2 (IRS-1 and IRS-2) and Phosphatidylinositol 3-Kinase Isoforms in Liver and Muscle of the Obese Diabetic (Ob/Ob) Mouse. J. Clin. Investig. 1997, 100, 3164–3172. [Google Scholar] [CrossRef]
- Saltiel, A.R.; Kahn, C.R. Insulin Signalling and the Regulation of Glucose and Lipid Metabolism. Nature 2001, 414, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, J.P.; Clark, S.F.; Ursø, B.; James, D.E. Signalling through the Insulin Receptor. Curr. Opin. Cell Biol. 2000, 12, 222–228. [Google Scholar] [CrossRef] [PubMed]
Normal Values * | Cutoff ** | |
---|---|---|
Biochemical reference values | ||
C-peptide (pg/mL) | 178 (149–216) | >216 |
GIP (pg/mL) | 15 (11–18) | >18 |
GLP-1 (pg/mL) | 15 (11–18) | >18 |
Ghrelin (pg/mL) | 72 (66–106) | >106 |
Glucagon (pg/mL) | 186 (155–192) | >192 |
PAI-1 (ng/mL) | 266 (94–118) | <94 |
Anthropometric reference values | ||
Fat Mass Percentage (percentage%) | 32 (28–36) | >36 |
Fat Mass Index (kg/m2BS) | 8 (6–8.5) | >8.5 |
Maximum Grip Strength (kg) | 26 (23–27) | <26 |
Muscle Quality Index—BMI (kg/BMI) | 1.08 (0.9–1.3) | <0.9 |
Muscle Quality Index—SMMI (kg/SMMI) | 4 (3.3–4.3) | <3.3 |
Muscle Quality Index—FMI (kg/FMI) | 3.4 (3–4.2) | <3 |
Healthy Women (Control Group, n = 69) | Women with Breast Cancer (Case Group, n = 87) | |||||||
---|---|---|---|---|---|---|---|---|
Age and Anthropometrical Indicators | Normal Weight n = 22 Mean (SD) | Overweight n = 32 Mean (SD) | Obesity n = 15 Mean (SD) | p-Value * | Normal Weight n = 26 Mean (SD) | Overweight n = 28 Mean (SD) | Obesity n = 33 Mean (SD) | p-Value * |
Age (years) | 48.91 (12.36) | 51.5 (6.64) | 51.6 (9.24) | 0.558 | 51.27 (11.82) | 54.14 (9.84) | 54.64 (11.71) | 0.483 |
Body Mass Index (kg/m2) | 23.2 (1.94) * | 26.88 (1.09) * | 34.59 (4.17) * | 0.000 | 22.34 (1.56) * | 27.98 (1.22) * | 34.35 (4.28) * | 0.000 |
Appendicular Skeletal Muscle Index (kg/m2) | 6.46 (0.45) * | 6.92 (0.42) | 7.89 (0.94) * | 0.000 | 6.22 (0.55) * | 7.04 (0.75) ** | 7.97 (0.94) * | 0.000 |
Fat Mass Index (kg/m2) | 7.18 (2.25) * | 9.93 (1.42) * | 15.49 (3.25) * | 0.000 | 6.91 (1.25) * | 10.55 (1.17) * | 15.20 (2.95) * | 0.000 |
Fat Mass Percentage (%) | 30.63 (8.43) * | 36.91 (4.87) * | 44.43 (4.80) * | 0.000 | 30.78 (4.21) * | 37.64 (3.32) * | 43.98 (3.71) * | 0.000 |
Max Handgrip Strength (kg) | 25.48 (5.47) | 26.5 (4.81) | 24.04 (4.04) | 0.277 | 21.56 (4.12) | 22.52 (6.49) | 22.01 (5.54) | 0.817 |
Muscle Quality Index According to Max Handgrip Strength | 1.1 (0.25) * | 0.98 (0.16) | 0.7 (0.13) * | 0.000 | 0.97 (0.21) | 0.8 (0.23) * | 0.64 (0.18) * | 0.000 |
Muscle Quality Index According to Appendicular Skeletal Muscle Index | 3.95 (0.85) * | 3.82 (0.64) * | 3.07 (0.59) * | 0.001 | 3.51 (0.83) * | 3.21 (0.96) | 2.78 (0.73) * | 0.005 |
Muscle Quality Index According to Fat Mass Index | 2.66 (0.81) * | 2.87 (1.09) * | 1.85 (0.93) * | 0.005 | 3.35 (3.68) | 2.16 (0.95) | 2.34 (0.98) | 0.100 |
Normal-Weight Women (n = 48) | |||
Age and Anthropometrical Indicators | Control Group n = 22 n(%) | Breast Cancer Group n = 26 n (%) | p-Value * |
Fat Mass Percentage | |||
<36% (normal fat mass percentage) | 16 (76.2%) | 25 (96.2%) | |
≥36% | 5 (23.8%) | 1 (3.8%) | 0.076 |
Fat Mass Index | |||
<8.5 kg/m2BS (normal fat mass index) | 14 (66.7%) | 25 (96.2%) | |
≥8.5 kg/m2BS | 7 (33.3%) | 1 (3.8%) | 0.015 |
Handgrip Strength | |||
≥26 kg (normal HGS) | 9 (42.9%) | 3 (11.5%) | |
<26 kg | 12 (57.1%) | 23 (88.5%) | 0.020 |
Muscle Quality Index (MQI) Adjusted for BMI | |||
≥0.9 kg/kg/m2BS (normal MQI/BMI) | 18 (85.7%) | 18 (69.2%) | |
<0.9 kg/kg/m2BS | 3 (14.3%) | 8 (72.7%) | 0.300 |
Muscle Quality Index (MQI) Adjusted for SMMI | |||
≥3.3 kg/kg/m2BS (normal MQI/SMMI) | 16 (76.2%) | 15 (57.7%) | |
<3.3 kg/kg/m2BS | 5 (23.8%) | 11 (42.3%) | 0.226 |
Muscle Quality Index (MQI) Adjusted for FMI | |||
≥3 kg/kg/m2BS (normal MQI/FMI) | 16 (76.2%) | 16 (61.5%) | |
<3 kg/kg/m2BS | 5 (23.8%) | 10 (38.5%) | 0.355 |
Overweight Women (n = 60) | |||
Age and Anthropometrical Indicators | Control Group n = 32 n (%) | Breast Cancer Group n = 28 n (%) | p-Value * |
Fat Mass Percentage | |||
<36% | 12 (36.4%) | 7 (25%) | |
≥36% | 21 (63.6%) | 21 (75%) | 0.412 |
Fat Mass Index | |||
<8.5 kg/m2BS | 4 (12.1%) | 1 (3.6%) | |
≥8.5 kg/m2BS | 29 (87.9%) | 27 (96.4%) | 0.363 |
Handgrip Strength | |||
≥26 kg | 21 (63.6%) | 7 (25%) | |
<26 kg | 12 (36.4%) | 21 (75%) | 0.004 |
Muscle Quality Index (MQI) Adjusted for BMI | |||
≥0.9 kg/kg/m2BS | 26 (78.8%) | 8 (28.6%) | |
<0.9 kg/kg/m2BS | 7 (21.2%) | 20 (71.4%) | 0.000 |
Muscle Quality Index (MQI) Adjusted for SMMI | |||
≥3.3 kg/kg/m2BS | 26 (78.8%) | 9 (32.1%) | |
<3.3 kg/kg/m2BS | 7 (21.2%) | 19 (67.9%) | 0.000 |
Muscle Quality Index (MQI) Adjusted for FMI | |||
≥3 kg/kg/m2BS | 10 (30.3%) | 1 (3.6%) | |
<3 kg/kg/m2BS | 23 (69.7%) | 27 (96.4%) | 0.008 |
Obese Women (n = 48) | |||
Age and Anthropometrical Indicators | Control Women n = 15 n (%) | Women with Breast Cancer n = 33 n (%) | p-Value * |
Fat Mass Percentage | |||
<36% | - | - | |
≥36% | 15 (100%) | 33 (100%) | - |
Fat Mass Index | |||
<8.5 kg/m2BS | - | - | |
≥8.5 kg/m2BS | 15 (100%) | 33 (100%) | - |
Handgrip Strength | |||
≥26 kg | 4 (26.7%) | 9.8 (27.3%) | |
<26 kg | 11 (73.3%) | 24 (72.7%) | 1.000 |
Muscle Quality Index (MQI) Adjusted for BMI | |||
≥0.9 kg/kg/m2BS | 1 (6.7%) | 3 (9.1%) | |
<0.9 kg/kg/m2BS | 14 (93.3%) | 30 (90.9%) | 1.000 |
Muscle Quality Index (MQI) Adjusted for SMMI | |||
≥3.3 kg/kg/m2BS | 5 (33.3%) | 8 (24.2%) | |
<3.3 kg/kg/m2BS | 10 (66.7%) | 25 (75.8%) | 0.509 |
Muscle Quality Index (MQI) Adjusted for FMI | |||
≥3 kg/kg/m2BS | - | - | |
<3 kg/kg/m2BS | 15 (100%) | 33 (100%) | - |
Healthy Women (Control Group, n = 69) | Breast Cancer (Case Group, n = 87) | |||||||
---|---|---|---|---|---|---|---|---|
Adipocytokines and Metabolic Biomarkers | Normal Weight n = 22 Mean (SD) | Overweight n = 32 Mean (SD) | Obesity n = 15 Mean (SD) | p-Value * | Normal Weight n = 26 Mean (SD) | Overweight n = 28 Mean (SD) | Obesity n = 33 Mean (SD) | p-Value * |
C-peptide (pg/mL) Md (IQI) | 189.9 (144–216) | 221 (186–264) | 215 (167–315) | 0.036 | 315.5 (161–389) | 358.4 (274–467) | 382 (242–633) | 0.163 |
GIP (pg/mL) | 15.61 (6.26) | 19.34 (25.26) | 16.53 (5.99) | 0.732 | 57.2 (31–73) | 47 (35–60) | 51.3 (40–75) | 0.709 |
GLP-1 (pg/mL) | 14.85 (4.36) | 14.51 (4.68) | 14.30 (3.18) | 0.926 | 63.6 (6.6–142.5) | 74.8 (50–131) | 53 (0.01–138) | 0.361 |
Ghrelin (pg/mL) Md (IQI) | 71.7 (65–107) | 65 (43–77) | 48.6 (39–70) | 0.008 | 149.5 (75–408) | 168 (59–251) | 157 (55–354) | 0.778 |
Glucagon (pg/mL) Md (IQI) | 187.7 (155–198) | 192 (177–200) | 185 (179–192) | 0.508 | 321.44 (203.2) | 335 (184.81) | 252.96 (201) | 0.310 |
Insulin (mU/mL) | 0.97 (0.49) | 1.21 (0.65) | 1.43 (0.93) | 0.125 | 17.8 (11–34) | 15.6 (9.3–27) | 17.3 (11–28.3) | 0.641 |
HOMA-IR (Homeostasis Model Assessment of Insulin Resistance) | 0.22 (0.14) | 0.29 (0.20) | 0.31 (0.22) | 0.256 | 2.48 (5.71) | 2.11 (5.83) | 3.79 (10.40) | 0.678 |
Leptin (ng/mL) Md (IQI) | 1.6 (0.6–3.2) | 2.4 (1.3–3.6) | 4.1 (2–10.7) | 0.007 | 5.68 (7.89) | 4.78 (4.34) | 12.23 (15.31) | 0.014 |
Adiponectin (μg/mL) | 4.4 (1.8–8) | 2.5 (1.4–4.4) | 3.2 (1.6–4.4) | 0.378 | 9.7 (7.3–18.2) | 6.1 (3–13.4) | 8.6 (2.7–18) | 0.227 |
Resistin (ng/mL) Md (IQI) | 3 (1–28) | 5 (1–28) | 4.5 (1.2–28) | 0.521 | 2.26 (1.62) | 2.37 (1.36) | 4.14 (8.51) | 0.311 |
Visfatin (ng/mL) | 0.85 (0.2) | 0.89 (0.17) | 0.86 (0.14) | 0.732 | 1.4 (1.1) | 1.3 (0.9) | 2.06 (4.9) | 0.560 |
PAI-1 (ng/mL) Md (IQI) | 292.6 (89–2194) | 202 (103–2217) | 376 (133–2217) | 0.770 | 20.4 (12.6–255) | 19 (13.6–37) | 22 (12–295.4) | 0.910 |
Adipsin (μg/mL) | 0.42 (0.23) | 0.49 (0.21) | 0.51 (0.21) | 0.313 | 0.90 (0.83) | 0.86 (0.70) | 0.91 (0.91) | 0.975 |
Normal-Weight Women (n = 48) | |||
Biochemical Marker, Normal Values, Cutoff | Control Group n = 22, Mean (SD) | Breast Cancer Group n = 26, Mean (SD) | p-Value * |
C-peptide | |||
<216 pg/mL (normal values) | 18 (85.7%) | 9 (34.6%) | |
≥216 pg/mL (high values) | 3 (14.3%) | 17 (65.4%) | 0.001 |
Raw Odds Ratio (OR) for Cancer Risk in Normal-Weight Women | OR (CI95%); p-value | ||
High C-peptide values | 11.1 (2.6–49); 0.001 | ||
GIP (Glucose-Dependent Insulinotropic Polypeptide) | |||
<18 pg/mL (normal values) | 15 (71.4%) | 0 (0%) | |
≥18 pg/mL (high values) | 6 (28.6%) | 26 (100%) | 0.000 |
Raw Odds Ratio (OR) | OR (CI95%); p-value | ||
High GIP values | 5.3 (2.6–11); 0.000 | ||
GLP-1 (Glucagon-Like Peptide-1) | |||
<18 pg/mL (normal values) | 14 (66.7%) | 8 (30.8%) | |
≥18 pg/mL (high values) | 7 (33.3%) | 18 (69.2%) | 0.020 |
Raw Odds Ratio (OR) | OR (CI95%); p-value | ||
High GLP-1 values | 4.5 (1.3–15.4); 0.020 | ||
PAI-1 (Plasminogen Activator Inhibitor-1) | |||
≥94 ng/mL (normal values) | 16 (76.2%) | 7 (26.9%) | |
<94 ng/mL (high values) | 5 (23.8%) | 19 (73.1%) | 0.001 |
Raw Odds Ratio (OR) | OR (CI95%); p-value | ||
8.7 (2.3–32.7); 0.001 | |||
Overweight Women (n = 60) | |||
Age and Anthropometrical Indicators | Control Group n = 32, mean (SD) | Breast Cancer Group n = 28, mean (SD) | p-Value * |
C-peptide | |||
<216 pg/mL (normal values) | 16 (48.5%) | 4 (14.3%) | |
≥216 pg/mL (high values) | 17 (51.5%) | 24 (85.7%) | 0.006 |
Raw Odds Ratio (OR) | OR (CI95%); p-value | ||
High C-peptide values | 5.6 (1.6–20); 0.006 | ||
GIP (Glucose-Dependent Insulinotropic Polypeptide) | |||
<18 pg/mL (normal values) | 24 (72.7%) | 0 (0%) | |
≥18 pg/mL (high values) | 9 (27.3%) | 28 (100%) | 0.000 |
Raw Odds Ratio (OR) | OR (CI95%); p-value | ||
High GIP values | 4.1 (2.3–7.3); 0.000 | ||
GLP-1 (Glucagon-Like Peptide-1) | |||
<18 pg/mL (normal values) | 26 (78.8%) | 6 (21.4%) | |
≥18 pg/mL (high values) | 7 (24.1%) | 22 (78.6%) | 0.000 |
Raw Odds Ratio (OR) | OR (CI95%); p-value | ||
High GLP-1 values | 13.6 (4–46.6); 0.000 | ||
PAI-1 (Plasminogen Activator Inhibitor-1) | |||
≥94 ng/mL (normal values) | 27 (81.8%) | 5 (17.9%) | |
<94 ng/mL (high values) | 6 (18.2%) | 23 (82.1%) | 0.000 |
Raw Odds Ratio (OR) | OR (CI95%); p-value | ||
20.7 (5.6–76.8); 0.000 | |||
Obese Women (n = 48) | |||
Age and Anthropometrical Indicators | Control Group n = 15, mean (SD) | Breast Cancer Group n = 33, mean (SD) | p-Value * |
C-peptide | |||
<216 pg/mL (normal values) | 8 (53.3%) | 4 (12.1%) | |
≥216 pg/mL (high values) | 7 (46.7%) | 29 (87.9%) | 0.004 |
Raw Odds Ratio (OR) | OR (CI95%); p-value | ||
High C-peptide values | 8.3 (1.9–35.5); 0.004 | ||
GIP (Glucose-Dependent Insulinotropic Polypeptide) | |||
<18 pg/mL (normal values) | 9 (60%) | 4 (12.1%) | |
≥18 pg/mL (high values) | 6 (40%) | 29 (87.9%) | 0.001 |
Raw Odds Ratio (OR) | OR (CI95%); p-value | ||
10.9 (2.5–47.3); 0.001 | |||
GLP-1 (Glucagon-Like Peptide-1) | |||
<18 pg/mL (normal values) | 12 (85.7%) | 15 (45.5%) | |
≥18 pg/mL (high values) | 2 (14.3%) | 18 (54.5%) | 0.022 |
Raw Odds Ratio (OR) | OR (CI95%); p-value | ||
7.2 (1.4–37.3); 0.022 | |||
PAI-1 (Plasminogen Activator Inhibitor-1) | |||
≥94 ng/mL (normal values) | 12 (80%) | 11 (33.3%) | |
<94 ng/mL (high values) | 3 (20%) | 22 (66.7%) | 0.004 |
Raw Odds Ratio (OR) | OR (CI95%); p-value | ||
8 (1.9–34.4); 0.004 |
Normal-Weight Women (n = 48) | |||
Age and Anthropometrical Indicators | Control Group n = 22, Mean (SD) | Breast Cancer Group n = 26, Mean (SD) | p-Value * |
Age (years) | 48.91 (12.37) | 51.27 (11.82) | 0.503 |
Body Mass Index (BMI) (kg/m2) | 23.20 (1.94) | 22.35 (1.57) | 0.097 |
Appendicular Skeletal Muscle Index (ASMI) (kg/m2) | 6.46 (0.46) | 6.22 (0.55) | 0.108 |
Fat Mass Index (FMI) (kg/m2) | 7.18 (2.25) | 6.91 (1.25) | 0.620 |
Fat Mass Percentage (%) | 30.63 (8.43) | 30.78 (4.21) | 0.940 |
Max Handgrip Strength (kg) | 25.49 (5.48) | 21.57 (4.12) | 0.007 |
Muscle Quality Index (HGS/BMI = MQIM) (kg/BMI) | 1.11 (0.25) | 0.97 (0.21) | 0.056 |
Muscle Quality Index (HGS/SMMI = MQI per ASMMI) (kg/SMMI) | 3.95 (0.86) | 3.51 (0.83) | 0.079 |
Muscle Quality Index According to Fat Mass Index (kg/FMI) | 2.66 (0.81) | 3.35 (3.68) | 0.392 |
Overweight Women (n = 60) | |||
Age and Anthropometrical Indicators | Control Group n = 32, mean (SD) | Breast Cancer Group n = 28, mean (SD) | p-Value * |
Age (years) | 51.50 (6.65) | 54.14 (9.85) | 0.223 |
Body Mass Index (BMI) (kg/m2) | 26.88 (1.09) | 27.99 (1.23) | 0.000 |
Appendicular Skeletal Muscle Index (ASMI) (kg/m2) | 6.92 (0.43) | 7.05 (0.75) | 0.436 |
Fat Mass Index (FMI) (kg/m2) | 9.93 (1.42) | 10.55 (1.17) | 0.072 |
Fat Mass Percentage (%) | 36.91 (4.87) | 37.64 (3.32) | 0.505 |
Max Handgrip Strength (kg) | 26.50 (4.82) | 22.52 (6.50) | 0.009 |
Muscle Quality Index (HGS/BMI = MQIM) (kg/BMI) | 0.99 (0.17) | 0.81 (0.23) | 0.001 |
Muscle Quality Index (HGS/SMMI = MQI per ASMMI) (kg/SMMI) | 3.83 (0.65) | 3.22 (0.97) | 0.005 |
Muscle Quality Index by Fat Mass Index (kg/FMI) | 2.87 (1.09) | 2.16 (0.95) | 0.010 |
Obese Women (n = 48) | |||
Age and Anthropometrical Indicators | Control Group n = 15, mean (SD) | Breast Cancer Group n = 33, mean (SD) | p-Value * |
Age (years) | 51.60 (9.25) | 54.64 (11.71) | 0.381 |
Body Mass Index (BMI) (kg/m2) | 34.59 (4.17) | 34.35 (4.28) | 0.859 |
Appendicular Skeletal Muscle Index (ASMI) (kg/m2) | 7.90 (0.94) | 7.98 (0.94) | 0.780 |
Fat Mass Index (FMI) (kg/m2) | 15.49 (3.25) | 15.20 (2.95) | 0.762 |
Fat Mass Percentage (%) | 44.43 (4.80) | 43.98 (3.71) | 0.750 |
Max Handgrip Strength (kg) | 24.04 (4.05) | 22.01 (5.55) | 0.211 |
Muscle Quality Index (HGS/BMI = MQIM) (kg/BMI) | 0.70 (0.14) | 0.65 (0.18) | 0.321 |
Muscle Quality Index (HGS/SMMI = MQI per ASMMI) (kg/SMMI) | 3.08 (0.59) | 2.78 (0.74) | 0.176 |
Muscle Quality Index by Fat Mass Index (kg/FMI) | 1.85 (0.93) | 2.34 (0.98) | 0.111 |
Normal-Weight Women (n = 48) | |||
Biochemical Indicators and Adipocytokines | Control Group n = 22, Mean (SD) | Breast Cancer Group n = 26, Mean (SD) | p-Value * |
C-peptide (pg/mL) | 189.92 (143.89–215.84) | 315.47 (161.55–388.77) | 0.015 |
GIP (pg/mL) | 15.62 (10.76–18.26) | 57.18 (30.93–73.05) | 0.000 |
GLP-1 (pg/mL) | 14.58 (11.31–17.88) | 63.60 (6.61–142.50) | 0.018 |
Ghrelin (pg/mL) | 71.71 (65.01–107.11) | 149.47 (74.96–408.27) | 0.005 |
Glucagon (pg/mL) | 187.68 (154.97–197.74) | 313.69 (82.27–541.49) | 0.047 |
Insulin (mU/mL) | 1.03 (0.64–1.18) | 2.96 (1.82–5.63) | 0.000 |
HOMA-IR (Homeostasis Model Assessment of Insulin Resistance) | 0.22 (0.13–0.27) | 0.61 (0.38–2.20) | 0.000 |
Leptin (ng/mL) | 1.57 (0.63–3.18) | 3.04 (1.56–6.68) | 0.005 |
Adiponectin (μg/mL) | 4.37 (1.78–8.11) | 9.75 (7.31–18.20) | 0.002 |
Resistin (ng/mL) | 2.89 (0.98–28.20) | 1.69 (1.05–2.80) | 0.264 |
Visfatin (ng/mL) | 857.99 (769.34–893.27) | 852.23 (646.10–1992.63) | 0.918 |
PAI-1 (ng/mL) | 292.64 (88.98–2193.84) | 20. 38 (12.6–255.44) | 0.000 |
Adipsin (μg/mL) | 0.36 (0.26–0.48) | 0.90 (0.00–1.29) | 0.051 |
Overweight Women (n = 60) | |||
Biochemical Indicators and Adipocytokines | Control Group n = 32, mean (SD) | Breast Cancer Group n = 28, mean (SD) | p-Value * |
C-peptide (pg/mL) | 220.63 (186.53–264.47) | 358.44 (273.77–467.28) | 0.000 |
GIP (pg/mL) | 14.19 (10.67–18.77) | 47.10 (34.81–60.37) | 0.000 |
GLP-1 (pg/mL) | 14.79 (12.73–17.34) | 74.78 (50.35–130.68) | 0.000 |
Ghrelin (pg/mL) | 64.97 (43.15–77.06) | 168.33 (58.82–250.74) | 0.000 |
Glucagon (pg/mL) | 191.81 (177.49–200.26) | 317.44 (247.25–522.92) | 0.000 |
Insulin (mU/mL) | 1.18 (0.71–1.63) | 2.60 (1.56–4.50) | 0.000 |
HOMA-IR (Homeostasis Model Assessment of Insulin Resistance) | 0.26 (0.15–0.38) | 0.62 (0.35–1.07) | 0.000 |
Leptin (ng/mL) | 2.41 (1.26–3.62) | 3.23 (2.09–5.36) | 0.031 |
Adiponectin (μg/mL) | 2.49 (1.45–4.37) | 6.12 (2.90–13.37) | 0.004 |
Resistin (ng/mL) | 4.80 (1.23–28.20) | 2.15 (1.42–3.38) | 0.044 |
Visfatin (ng/mL) | 875.26 (812.76–983.61) | 786.93 (656.20–1992.90) | 0.790 |
PAI-1 (ng/mL) | 201 (103–221.73) | 18. 74 (13. 62–36.83) | 0.000 |
Adipsin (μg/mL) | 0.47 (0.37–0.59) | 0.84 (0.19–1.29) | 0.059 |
Obese Women (n = 48) | |||
Biochemical Indicators and Adipocytokines | Control Group n = 15, mean (SD) | Breast Cancer Group n = 33, mean (SD) | p-Value * |
C-peptide (pg/mL) | 215.84 (166.71–314.98) | 382.03 (241.57–632.62) | 0.003 |
GIP (pg/mL) | 17.53 (12.08–18.67) | 51.35 (39.63–74.47) | 0.000 |
GLP-1 (pg/mL) | 14.00 (11.87–14.93) | 52.58 (0.01–138.46) | 0.623 |
Ghrelin (pg/mL) | 48.61 (38.97–70.13) | 156.85 (55.23–353.85) | 0.003 |
Glucagon (pg/mL) | 185.34 (179.09–192.21) | 302.32 (70.70–406.93) | 0.617 |
Insulin (mU/mL) | 1.18 (0.78–1.61) | 2.89 (1.75–4.72) | 0.001 |
HOMA-IR (Homeostasis Model Assessment of Insulin Resistance) | 0.26 (0.19–0.35) | 0.66 (0.40–0.99) | 0.001 |
Leptin (ng/mL) | 4.09 (1.98–10.68) | 6.05 (2.68–14.76) | 0.238 |
Adiponectin (μg/mL) | 3.17 (1.64–4.37) | 8.61 (2.67–18.07) | 0.004 |
Resistin (ng/mL) | 4.54 (1.96–24.20) | 2.25 (1.61–3.92) | 0.034 |
Visfatin (ng/mL) | 860.53 (725.09–993.53) | 847.40 (623.55–2109.35) | 0.632 |
PAI-1 (ng/mL) | 376.32 (132.8–2217.31) | 21.89 (12.35–295.38) | 0.001 |
Adipsin (μg/mL) | 0.47 (0.45–0.52) | 0.92 (0.03–1.39) | 0.469 |
Total Population | |
Biochemical Risk Factors—Adjusted Odds Ratio (OR) | OR (CI95%); p-value |
Elevated GIP | 36.5 (11.4–115.5); 0.000 |
Elevated GLP-1 | 4.16 (1.7–10.4); 0.002 |
Obese Women (n = 48) | |
Biochemical Risk Factors—Adjusted Odds Ratio (OR) | OR (CI95%); p-value |
Elevated GIP | 8.8 (1.8–44); 0.008 |
Elevated GLP-1 | 6.5 (1.1–38.7); 0.041 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Herrera, B.-E.; Muñoz-García, M.-G.; José-Ochoa, L.-L.; Quiroga-Morales, L.-A.; Cervántes-González, L.-M.; Mireles-Ramírez, M.-A.; Delgadillo-Cristerna, R.; Nuño-Guzmán, C.-M.; Leal-Cortés, C.-A.; Portilla-de-Buen, E.; et al. Role of Incretins in Muscle Functionality, Metabolism, and Body Composition in Breast Cancer: A Metabolic Approach to Understanding This Pathology. Biomedicines 2024, 12, 280. https://doi.org/10.3390/biomedicines12020280
Martínez-Herrera B-E, Muñoz-García M-G, José-Ochoa L-L, Quiroga-Morales L-A, Cervántes-González L-M, Mireles-Ramírez M-A, Delgadillo-Cristerna R, Nuño-Guzmán C-M, Leal-Cortés C-A, Portilla-de-Buen E, et al. Role of Incretins in Muscle Functionality, Metabolism, and Body Composition in Breast Cancer: A Metabolic Approach to Understanding This Pathology. Biomedicines. 2024; 12(2):280. https://doi.org/10.3390/biomedicines12020280
Chicago/Turabian StyleMartínez-Herrera, Brenda-Eugenia, Michelle-Guadalupe Muñoz-García, Laura-Liliana José-Ochoa, Luis-Aarón Quiroga-Morales, Luz-María Cervántes-González, Mario-Alberto Mireles-Ramírez, Raúl Delgadillo-Cristerna, Carlos-M. Nuño-Guzmán, Caridad-Aurea Leal-Cortés, Eliseo Portilla-de-Buen, and et al. 2024. "Role of Incretins in Muscle Functionality, Metabolism, and Body Composition in Breast Cancer: A Metabolic Approach to Understanding This Pathology" Biomedicines 12, no. 2: 280. https://doi.org/10.3390/biomedicines12020280
APA StyleMartínez-Herrera, B. -E., Muñoz-García, M. -G., José-Ochoa, L. -L., Quiroga-Morales, L. -A., Cervántes-González, L. -M., Mireles-Ramírez, M. -A., Delgadillo-Cristerna, R., Nuño-Guzmán, C. -M., Leal-Cortés, C. -A., Portilla-de-Buen, E., Hernández, B. T., Gómez-Sánchez, E., Velázquez-Flores, M. -C., Salazar-Páramo, M., Ochoa-Plascencia, M. -R., Sat-Muñoz, D., & Balderas-Peña, L. -M. -A. (2024). Role of Incretins in Muscle Functionality, Metabolism, and Body Composition in Breast Cancer: A Metabolic Approach to Understanding This Pathology. Biomedicines, 12(2), 280. https://doi.org/10.3390/biomedicines12020280