Hierarchical Capability in Distinguishing Severities of Sepsis via Serum Lactate: A Network Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Study Protocol
2.2. Search Strategy
2.3. Study Selection
2.4. Data Collection and Assessment of Study Quality
2.5. Statistical Analysis
3. Results
3.1. Assessment of Methodological Quality
3.2. Higher Blood Lactate Value Was Associated with Mortality of Sepsis
3.3. Blood Lactate Significantly Elevated in Non-Survivors of Sepsis Events
3.4. High Level Blood Lactate Demonstrated a Sufficient Prognostic Value in Determining the Sepsis Mortality
3.5. Blood Lactate Levels Failed to Distinguish Sepsis, Severe Sepsis and Septic Shock Based on Network Meta-Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AUC | Areas under the curve |
CI | Confidence interval |
HSROC | Summary receiver operating characteristic curve |
NOS | Newcastle–Ottawa Scale |
OR | Odds Ratio |
QUADAS | Quality assessment of diagnostic accuracy studies |
SE | Standard error |
SIRS | Systemic inflammatory response syndrome |
SMD | Standard mean difference |
SOFA | Sequential Organ Failure Assessment |
SUCRA | Surface under the cumulative ranking |
References
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef]
- Fleischmann, C.; Scherag, A.; Adhikari, N.K.; Hartog, C.S.; Tsaganos, T.; Schlattmann, P.; Angus, D.C.; Reinhart, K.; International Forum of Acute Care, T. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am. J. Respir. Crit. Care Med. 2016, 193, 259–272. [Google Scholar] [CrossRef]
- Font, M.D.; Thyagarajan, B.; Khanna, A.K. Sepsis and Septic Shock—Basics of diagnosis, pathophysiology and clinical decision making. Med. Clin. N. Am. 2020, 104, 573–585. [Google Scholar] [CrossRef]
- Seymour, C.W.; Liu, V.X.; Iwashyna, T.J.; Brunkhorst, F.M.; Rea, T.D.; Scherag, A.; Rubenfeld, G.; Kahn, J.M.; Shankar-Hari, M.; Singer, M.; et al. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 762–774. [Google Scholar] [CrossRef]
- Bone, R.C.; Balk, R.A.; Cerra, F.B.; Dellinger, R.P.; Fein, A.M.; Knaus, W.A.; Schein, R.M.; Sibbald, W.J. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. Am. Coll. Chest Physicians/Soc. Crit. Care Med. Chest 1992, 101, 1644–1655. [Google Scholar] [CrossRef]
- Mikkelsen, M.E.; Miltiades, A.N.; Gaieski, D.F.; Goyal, M.; Fuchs, B.D.; Shah, C.V.; Bellamy, S.L.; Christie, J.D. Serum lactate is associated with mortality in severe sepsis independent of organ failure and shock. Crit. Care Med. 2009, 37, 1670–1677. (In English) [Google Scholar] [CrossRef]
- Wright, S.W.; Hantrakun, V.; Rudd, K.E.; Lau, C.Y.; Lie, K.C.; Chau, N.V.V.; Teprarrukkul, P.; West, T.E.; Limmathurotsakul, D. Enhanced bedside mortality prediction combining point-of-care lactate and the quick Sequential Organ Failure Assessment (qSOFA) score in patients hospitalised with suspected infection in southeast Asia: A cohort study. Lancet Glob. Health 2022, 10, e1281–e1288. (In English) [Google Scholar] [CrossRef]
- Garcia-Alvarez, M.; Marik, P.; Bellomo, R. Sepsis-associated hyperlactatemia. Crit. Care 2014, 18, 503. [Google Scholar] [CrossRef]
- Kim, Y.A.; Ha, E.J.; Jhang, W.K.; Park, S.J. Early blood lactate area as a prognostic marker in pediatric septic shock. Intensive Care Med. 2013, 39, 1818–1823. (In English) [Google Scholar] [CrossRef]
- Houwink, A.P.I.; Rijkenberg, S.; Bosman, R.J.; van der Voort, P.H.J. The association between lactate, mean arterial pressure, central venous oxygen saturation and peripheral temperature and mortality in severe sepsis: A retrospective cohort analysis. Crit. Care 2016, 20, 56. (In English) [Google Scholar] [CrossRef]
- Filho, R.R.; Rocha, L.L.; Correa, T.D.; Pessoa, C.M.; Colombo, G.; Assuncao, M.S. Blood Lactate Levels Cutoff and Mortality Prediction in Sepsis-Time for a Reappraisal? a Retrospective Cohort Study. Shock 2016, 46, 480–485. [Google Scholar] [CrossRef]
- Schlapbach, L.J.; MacLaren, G.; Festa, M.; Alexander, J.; Erickson, S.; Beca, J.; Slater, A.; Schibler, A.; Pilcher, D.; Millar, J.; et al. Prediction of pediatric sepsis mortality within 1 h of intensive care admission. Intensive Care Med. 2017, 43, 1085–1096. (In English) [Google Scholar] [CrossRef]
- Oedorf, K.; Day, D.E.; Lior, Y.; Novack, V.; Sanchez, L.D.; Wolfe, R.E.; Kirkegaard, H.; Shapiro, N.I.; Henning, D.J. Serum Lactate Predicts Adverse Outcomes in Emergency Department Patients With and Without Infection. West. J. Emerg. Med. 2017, 18, 258–266. (In English) [Google Scholar] [CrossRef]
- Chen, H.; Zhao, C.Y.; Wei, Y.; Jin, J. Early lactate measurement is associated with better outcomes in septic patients with an elevated serum lactate level. Crit. Care 2019, 23, 351. (In English) [Google Scholar] [CrossRef]
- Park, J.E.; Lee, B.; Yoon, S.J.; Park, C.M.; Jung, C.W.; Ahn, M.J.; Park, H.D.; Hwang, S.Y.; Shin, T.G.; Kang, E.S. Complementary Use of Presepsin with the Sepsis-3 Criteria Improved Identification of High-Risk Patients with Suspected Sepsis. Biomedicines 2021, 9, 1076. [Google Scholar] [CrossRef]
- D’Onofrio, V.; Meersman, A.; Vijgen, S.; Cartuyvels, R.; Messiaen, P.; Gyssens, I.C. Risk Factors for Mortality, Intensive Care Unit Admission, and Bacteremia in Patients Suspected of Sepsis at the Emergency Department: A Prospective Cohort Study. Open Forum Infect. Dis. 2021, 8, ofaa594. (In English) [Google Scholar] [CrossRef]
- Alataby, H.; Nfonoyim, J.; Diaz, K.; Al-Tkrit, A.; Akhter, S.; David, S.; Leelaruban, V.; Gay-Simon, K.S.; Maharaj, V.; Colet, B.; et al. The Levels of Lactate, Troponin, and N-Terminal Pro-B-Type Natriuretic Peptide Are Predictors of Mortality in Patients with Sepsis and Septic Shock: A Retrospective Cohort Study. Med. Sci. Monit. Basic. Res. 2021, 27, e927834. [Google Scholar] [CrossRef]
- Hernandez, G.; Ospina-Tascon, G.A.; Damiani, L.P.; Estenssoro, E.; Dubin, A.; Hurtado, J.; Friedman, G.; Castro, R.; Alegria, L.; Teboul, J.L.; et al. Effect of a Resuscitation Strategy Targeting Peripheral Perfusion Status vs Serum Lactate Levels on 28-Day Mortality Among Patients With Septic Shock: The ANDROMEDA-SHOCK Randomized Clinical Trial. JAMA 2019, 321, 654–664. [Google Scholar] [CrossRef]
- Vorwerk, C.; Loryman, B.; Coats, T.J.; Stephenson, J.A.; Gray, L.D.; Reddy, G.; Florence, L.; Butler, N. Prediction of mortality in adult emergency department patients with sepsis. Emerg. Med. J. 2009, 26, 254–258. [Google Scholar] [CrossRef]
- Riley, R.D.; Moons, K.G.M.; Snell, K.I.E.; Ensor, J.; Hooft, L.; Altman, D.G.; Hayden, J.; Collins, G.S.; Debray, T.P.A. A guide to systematic review and meta-analysis of prognostic factor studies. BMJ 2019, 364, k4597. [Google Scholar] [CrossRef]
- Foroutan, F.; Guyatt, G.; Zuk, V.; Vandvik, P.O.; Alba, A.C.; Mustafa, R.; Vernooij, R.; Arevalo-Rodriguez, I.; Munn, Z.; Roshanov, P.; et al. GRADE Guidelines 28: Use of GRADE for the assessment of evidence about prognostic factors: Rating certainty in identification of groups of patients with different absolute risks. J. Clin. Epidemiol. 2020, 121, 62–70. (In English) [Google Scholar] [CrossRef]
- Iorio, A.; Spencer, F.A.; Falavigna, M.; Alba, C.; Lang, E.; Burnand, B.; McGinn, T.; Hayden, J.; Williams, K.; Shea, B.; et al. Use of GRADE for assessment of evidence about prognosis: Rating confidence in estimates of event rates in broad categories of patients. BMJ Brit Med. J. 2015, 350, h870. (In English) [Google Scholar] [CrossRef]
- Luo, D.; Wan, X.; Liu, J.; Tong, T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat. Methods Med. Res. 2018, 27, 1785–1805. [Google Scholar] [CrossRef]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014, 14, 135. [Google Scholar] [CrossRef]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.G.; Sterne, J.A.C.; Bossuyt, P.M.M.; QUADAS-2 Group. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studie. Ann. Intern. Med. 2011, 155, 529–536. (In English) [Google Scholar] [CrossRef]
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. (In English) [Google Scholar] [CrossRef]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef]
- Rutter, C.M.; Gatsonis, C.A. A hierarchical regression approach to meta-analysis of diagnostic test accuracy evalua-tions. Stat. Med. 2001, 20, 2865–2884. (In English) [Google Scholar] [CrossRef] [PubMed]
- Salanti, G.; Ades, A.E.; Ioannidis, J.P. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: An overview and tutorial. J. Clin. Epidemiol. 2011, 64, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Zamora, J.; Abraira, V.; Muriel, A.; Khan, K.; Coomarasamy, A. Meta-DiSc: A software for meta-analysis of test accuracy data. BMC Med. Res. Methodol. 2006, 6, 31. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.J.; Li, B.B.; Lin, Y.; Shi, F.; Chen, W.B.; Wu, W.Y.; Zhang, W.J.; Fei, Y.; Zou, S.Q.; Yao, C. Combining Blood-Based Biomarkers to Predict Mortality of Sepsis at Arrival at the Emergency Department. Med. Sci. Monit. 2021, 27, e929527. (In English) [Google Scholar] [CrossRef]
- Guarino, M.; Perna, B.; De Giorgi, A.; Gambuti, E.; Alfano, F.; Catanese, E.M.; Volpato, S.; Strada, A.; Caio, G.; Contini, C.; et al. A 2-year retrospective analysis of the prognostic value of MqSOFA compared to lactate, NEWS and qSOFA in patients with sepsis. Infection 2022, 50, 941–948. [Google Scholar] [CrossRef]
- Wu, Y.; Yu, C.; Zhou, Y.; He, Z.M.; Zhang, W.; Fan, J.; Sun, Y. Risk stratification and prognostic value of serum neutrophil gelatinase-associated lipocalin (sNGAL) in sepsis patients. Acta Biochim. Pol. 2022, 69, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Bai, C.; Li, B.; Shan, A.; Shi, F.; Yao, C.; Zhang, Y.; Wang, J.; Chen, W.; Xie, M.; et al. Mortality prediction using a novel combination of biomarkers in the first day of sepsis in intensive care units. Sci. Rep. 2021, 11, 1275. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.Y.; Min, Y.; Yu, J.C.; Wang, Q.L.; Wang, H.; Li, S.; Su, L. Admission Blood Glucose Is Associated With the 30-Days Mortality in Septic Patients: A Retrospective Cohort Study. Front. Med. 2021, 8, 757061. (In English) [Google Scholar] [CrossRef]
- Erdogan, M.; Findikli, H.A. Novel biomarker for predicting sepsis mortality: Vitamin D receptor. J. Int. Med. Res. 2021, 49, 3000605211034733. [Google Scholar] [CrossRef]
- Nandi, U.; Jones, A.E.; Puskarich, M.A. Group IIA secretory phospholipase 2 independently predicts mortality and positive blood culture in emergency department sepsis patients. J. Am. Coll. Emerg. Physicians Open 2021, 2, e12460. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, R.Z.; Cheng, J.; Wu, J.F.; Zhang, S.H. Ratio of serum procalcitonin to monocytic HLA-DR as a reliable parameter in prognosis prediction of sepsis. Clin. Chim. Acta 2021, 519, 94–100. (In English) [Google Scholar] [CrossRef]
- Li, S.; Liu, J.; Chen, F.; Cai, K.; Tan, J.; Xie, W.; Qian, R.; Liu, X.; Zhang, W.; Du, H.; et al. A risk score based on pediatric sequential organ failure assessment predicts 90-day mortality in children with Klebsiella pneumoniae bloodstream infection. BMC Infect. Dis. 2020, 20, 916. [Google Scholar] [CrossRef]
- Perez-San Martin, S.; Suberviola, B.; Garcia-Unzueta, M.T.; Lavin, B.A.; Campos, S.; Santibanez, M. Prognostic value of plasma pentraxin 3 levels in patients with septic shock admitted to intensive care. PLoS ONE 2020, 15, e0243849. [Google Scholar] [CrossRef]
- Bou Chebl, R.; Jamali, S.; Mikati, N.; Al Assaad, R.; Abdel Daem, K.; Kattouf, N.; Safa, R.; Makki, M.; Tamim, H.; Abou Dagher, G. Relative Hyperlactatemia in the Emergency Department. Front. Med. 2020, 7, 561. [Google Scholar] [CrossRef]
- Jouffroy, R.; Leguillier, T.; Gilbert, B.; Tourtier, J.P.; Bloch-Laine, E.; Ecollan, P.; Bounes, V.; Boularan, J.; Gueye-Ngalgou, P.; Nivet-Antoine, V.; et al. Pre-Hospital Lactatemia Predicts 30-Day Mortality in Patients with Septic Shock-Preliminary Results from the LAPHSUS Study. J. Clin. Med. 2020, 9, 3290. [Google Scholar] [CrossRef]
- Jaiswal, P.; Dewan, P.; Gomber, S.; Banerjee, B.D.; Kotru, M.; Malhotra, R.K.; Tyagi, V. Early lactate measurements for predicting in-hospital mortality in paediatric sepsis. J. Paediatr. Child. Health 2020, 56, 1570–1576. [Google Scholar] [CrossRef]
- Hsiao, S.Y.; Kung, C.T.; Su, C.M.; Lai, Y.R.; Huang, C.C.; Tsai, N.W.; Wang, H.C.; Cheng, B.C.; Su, Y.J.; Lin, W.C.; et al. Impact of oxidative stress on treatment outcomes in adult patients with sepsis: A prospective study. Medicine 2020, 99, e20872. [Google Scholar] [CrossRef]
- Song, J.; Moon, S.; Park, D.W.; Cho, H.J.; Kim, J.Y.; Park, J.; Cha, J.H. Biomarker combination and SOFA score for the prediction of mortality in sepsis and septic shock: A prospective observational study according to the Sepsis-3 definitions. Medicine 2020, 99, e20495. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Lv, D.; Deng, Y.; Zhu, C.; Gao, Y.; Huang, Y.; Xu, X. STAPLAg: A convenient early warning score for use in infected patients in the intensive care unit. Medicine 2020, 99, e20274. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.M.; Shao, L.J.; Dou, J.Y.; Zhou, Y.P.; Chen, M.; Cui, Y.; Zhang, Y.C.; Wang, C.X. Fibrinogen as a Prognostic Predictor in Pediatric Patients with Sepsis: A Database Study. Mediat. Inflamm. 2020, 2020, 9153620. (In English) [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, M.; Zhu, B.; Zhu, Y.; Xi, X. Prediction of median survival time in sepsis patients by the SOFA score combined with different predictors. Burn. Trauma. 2020, 8, tkz006. [Google Scholar] [CrossRef] [PubMed]
- Mearelli, F.; Barbati, G.; Casarsa, C.; Giansante, C.; Breglia, A.; Spica, A.; Moras, C.; Olivieri, G.; Occhipinti, A.A.; De Nardo, M.; et al. The Integration of qSOFA with Clinical Variables and Serum Biomarkers Improves the Prognostic Value of qSOFA Alone in Patients with Suspected or Confirmed Sepsis at ED Admission. J. Clin. Med. 2020, 9, 1205. (In English) [Google Scholar] [CrossRef]
- Wang, L.; Zhou, W.; Wang, K.; He, S.; Chen, Y. Predictive value of circulating plasma mitochondrial DNA for Sepsis in the emergency department: Observational study based on the Sepsis-3 definition. BMC Emerg. Med. 2020, 20, 25. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, Y.; Endoh, H.; Kamimura, N.; Tamakawa, T.; Nitta, M. Lactate indices as predictors of in-hospital mortality or 90-day survival after admission to an intensive care unit in unselected critically ill patients. PLoS ONE 2020, 15, e0229135. (In English) [Google Scholar] [CrossRef] [PubMed]
- Wernly, B.; Heramvand, N.; Masyuk, M.; Rezar, R.; Bruno, R.R.; Kelm, M.; Niederseer, D.; Lichtenauer, M.; Hoppe, U.C.; Bakker, J.; et al. Acidosis predicts mortality independently from hyperlactatemia in patients with sepsis. Eur. J. Intern. Med. 2020, 76, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Alam, A.; Gupta, S. Lactate Measurements and Their Association With Mortality in Pediatric Severe Sepsis in India: Evidence That 6-Hour Level Performs Best. J. Intensive Care Med. 2021, 36, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Yoo, S.J.; Lee, S.H.; Kim, J.S.; Jung, S.; Kim, Y.J.; Kim, W.Y.; Ryoo, S.M. Utility of the early lactate area score as a prognos-tic marker for septic shock patients in the emergency department. Acute Crit. Care 2019, 34, 126–132. (In English) [Google Scholar] [CrossRef]
- Innocenti, F.; Meo, F.; Giacomelli, I.; Tozzi, C.; Ralli, M.L.; Donnini, C.; Tassinari, I.; Caldi, F.; Zanobetti, M.; Pini, R. Prognostic value of serial lactate levels in septic patients with and without shock. Intern. Emerg. Med. 2019, 14, 1321–1330. (In English) [Google Scholar] [CrossRef]
- Sivayoham, N.; Blake, L.A.; Tharimoopantavida, S.E.; Chughtai, S.; Hussain, A.N.; Cecconi, M.; Rhodes, A. The REDS score: A new scoring system to risk-stratify emergency department suspected sepsis: A derivation and validation study. BMJ Open 2019, 9, e030922. [Google Scholar] [CrossRef]
- Villar, J.; Short, J.H.; Lighthall, G. Lactate Predicts Both Short- and Long-Term Mortality in Patients With and Without Sepsis. Infect. Dis. 2019, 12, 1178633719862776. [Google Scholar] [CrossRef]
- Jendoubi, A.; Jerbi, S.; Maamar, E.; Abbess, A.; Samoud, Z.; Kanzari, L.; Boutiba, I.; Ghedira, S.; Houissa, M. Prognostic Value of High-sensitivity Troponin I in Patients with Septic Shock: A Prospective Observational Study. Indian J. Crit. Care Med. 2019, 23, 320–325. [Google Scholar] [CrossRef]
- Hsiao, S.Y.; Lai, Y.R.; Kung, C.T.; Tsai, N.W.; Su, C.M.; Huang, C.C.; Wang, H.C.; Cheng, B.C.; Su, Y.J.; Lin, W.C.; et al. alpha-1-Acid Glycoprotein Concentration as an Outcome Predictor in Adult Patients with Sepsis. Biomed. Res. Int. 2019, 2019, 3174896. (In English) [Google Scholar] [CrossRef] [PubMed]
- Estenssoro, E.; Loudet, C.I.; Edul, V.S.K.; Osatnik, J.; Rios, F.G.; Vasquez, D.N.; Pozo, M.O.; Lattanzio, B.; Palizas, F.; Klein, F.; et al. Health inequi-ties in the diagnosis and outcome of sepsis in Argentina: A prospective cohort study. Crit. Care 2019, 23, 250. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Zhang, S.S.; Kang, J.Q.; Yang, L.; Liu, F. Predictive value of C-reactive protein and NT-pro-BNP levels in sepsis pa-tients older than 75 years: A prospective, observational study. Aging Clin. Exp. Res. 2020, 32, 389–397. (In English) [Google Scholar] [CrossRef]
- Dumas, G.; Lavillegrand, J.R.; Joffre, J.; Bige, N.; de-Moura, E.B.; Baudel, J.L.; Chevret, S.; Guidet, B.; Maury, E.; Amorim, F.; et al. Mottling score is a strong predictor of 14-day mortality in septic patients whatever vasopressor doses and other tissue perfusion parameters. Crit. Care 2019, 23, 211. (In English) [Google Scholar] [CrossRef] [PubMed]
- Weiss, S.J.; Guerrero, A.; Root-Bowman, C.; Ernst, A.; Krumperman, K.; Femling, J.; Froman, P. Sepsis alerts in EMS and the results of pre-hospital ETCO2. Am. J. Emerg. Med. 2019, 37, 1505–1509. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.Q.; Meng, Z.B.; Li, Y.F.; Zhao, J.Y.; Wu, S.H.; Gou, S.M.; Wu, H.S. Prognostic accuracy of the serum lactate level, the SOFA score and the qSOFA score for mortality among adults with Sepsis. Scand. J. Trauma. Resus 2019, 27, 51. (In English) [Google Scholar] [CrossRef] [PubMed]
- Ryoo, S.M.; Lee, J.; Lee, Y.S.; Lee, J.H.; Lim, K.S.; Huh, J.W.; Hong, S.B.; Lim, C.M.; Koh, Y.; Kim, W.Y. Lactate Level Versus Lactate Clearance for Predicting Mortality in Patients With Septic Shock Defined by Sepsis-3. Crit. Care Med. 2018, 46, e489–e495. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.L.; Huang, L.W.; Yin, J.; Zhang, K.N.; Xiao, K.; Qing, G.Z. Association between early serum cholinesterase activity and 30-day mortality in sepsis-3 patients: A retrospective cohort study. PLoS ONE 2018, 13, e0203128. (In English) [Google Scholar] [CrossRef] [PubMed]
- Nazer, L.H.; Rimawi, D.; Hawari, F.I. Evaluating the Predictive Value of Lactate in Patients With Cancer Having Septic Shock. J. Intensive Care Med. 2020, 35, 789–796. (In English) [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhu, Z.; Zhou, T.; Cao, X.; Lu, T.; Liang, Y.; He, J.; Liu, C.; Dou, Z.; Shen, B. Early increases in serum FGF21 levels predict mortality of septic patients. Cytokine 2018, 111, 428–433. [Google Scholar] [CrossRef]
- Cheng, H.H.; Chen, F.C.; Change, M.W.; Kung, C.T.; Cheng, C.Y.; Tsai, T.C.; Hsiao, S.Y.; Su, C.M. Difference between elderly and non-elderly patients in using serum lactate level to predict mortality caused by sepsis in the emergency department. Medicine 2018, 97, e0209. (In English) [Google Scholar] [CrossRef]
- Mahmoodpoor, A.; Shadvar, K.; Saghaleini, S.H.; Koleini, E.; Hamishehkar, H.; Ostadi, Z.; Nader, N.D. Which one is a better predictor of ICU mortality in septic patients? Comparison between serial serum lactate concentrations and its re-moval rate. J. Crit. Care 2018, 44, 51–56. (In English) [Google Scholar] [CrossRef]
- Hu, C.G.; Zhou, Y.F.; Liu, C.; Kang, Y. Pentraxin-3, procalcitonin and lactate as prognostic markers in patients with sepsis and septic shock. Oncotarget 2018, 9, 5125–5136. (In English) [Google Scholar] [CrossRef]
- Julian-Jimenez, A.; Yanez, M.C.; Gonzalez-del Castillo, J.; Salido-Mota, M.; Mora-Ordonez, B.; Arranz-Nieto, M.J.; Chano-vas-Borras, M.R.; Llopis-Roca, F.; Modol-Deltell, J.M.; Munoz, G.; et al. Prognostic power of biomarkers for short-term mortality in the elderly patients seen in Emergency Departments due to infections. Enferm. Infecc. Microbiol. Clin. 2019, 37, 11–18. (In Spanish) [Google Scholar] [CrossRef]
- Oh, D.H.; Kim, M.H.; Jeong, W.Y.; Kim, Y.C.; Kim, E.J.; Song, J.E.; Jung, I.Y.; Jeong, S.J.; Ku, N.S.; Choi, J.Y.; et al. Risk factors for mortality in patients with low lactate level and septic shock. J. Microbiol. Immunol. Infect. 2019, 52, 418–425. [Google Scholar] [CrossRef]
- Sekino, M.; Funaoka, H.; Sato, S.; Okada, K.; Inoue, H.; Yano, R.; Matsumoto, S.; Ichinomiya, T.; Higashijima, U.; Matsumoto, S.; et al. Intestinal fatty acid-binding protein level as a predictor of 28-day mortality and bowel ischemia in patients with septic shock: A preliminary study. J. Crit. Care 2017, 42, 92–100. (In English) [Google Scholar] [CrossRef]
- Javed, A.; Guirgis, F.W.; Sterling, S.A.; Puskarich, M.A.; Bowman, J.; Robinson, T.; Jones, A.E. Clinical predictors of early death from sepsis. J. Crit. Care 2017, 42, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Lu, X.; Hu, L.; Liu, P.; Zhao, W.; Yan, H.; Tang, L.; Zhu, Y.; Xiao, Z.; Chen, L.; et al. Development and validation of a mortality risk model for pediatric sepsis. Medicine 2017, 96, e6923. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Long, Y.; Liu, D.; Wang, X.; Tang, B. The Prognostic Value of Central Venous-to-Arterial CO2 Differ-ence/Arterial-Central Venous O2 Difference Ratio in Septic Shock Patients with Central Venous O2 Saturation >/=80. Shock 2017, 48, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, R.; Sitaraman, S.; Choudhary, A. Lactate clearance as the predictor of outcome in pediatric septic shock. J. Emerg. Trauma. Shock 2017, 10, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.D.; Song, J.; Gong, S.J.; Li, L.; Zhang, H.X.; Wang, M.J. Persistent hyperlactatemia-high central venous-arterial carbon dioxide to arterial-venous oxygen content ratio is associated with poor outcomes in early resuscitation of septic shock. Am. J. Emerg. Med. 2017, 35, 1136–1141. (In English) [Google Scholar] [CrossRef] [PubMed]
- Dadeh, A.A.; Wuthisuthimethawee, P. Serum Lactate Levels as a Prognostic Predictor of Septic Shock in Emergency Department Patients with Systemic Inflammatory Responpse Syndrome (SIRS) at Songklanagarind Hospital. J. Med. Assoc. Thai 2016, 99, 913–918. [Google Scholar] [PubMed]
- Lee, Y.K.; Hwang, S.Y.; Shin, T.G.; Jo, I.J.; Suh, G.Y.; Jeon, K. Prognostic Value of Lactate and Central Venous Oxygen Satura-tion after Early Resuscitation in Sepsis Patients. PLoS ONE 2016, 11, e0153305. [Google Scholar] [CrossRef]
- Bewersdorf, J.P.; Hautmann, O.; Kofink, D.; Abdul Khalil, A.; Zainal Abidin, I.; Loch, A. The SPEED (sepsis patient evalua-tion in the emergency department) score: A risk stratification and outcome prediction tool. Eur. J. Emerg. Med. 2017, 24, 170–175. [Google Scholar] [CrossRef]
- Haas, S.A.; Lange, T.; Saugel, B.; Petzoldt, M.; Fuhrmann, V.; Metschke, M.; Kluge, S. Severe hyperlactatemia, lactate clear-ance and mortality in unselected critically ill patients. Intensive Care Med. 2016, 42, 202–210. [Google Scholar] [CrossRef]
- Kuan, W.S.; Ibrahim, I.; Leong, B.S.; Jain, S.; Lu, Q.; Cheung, Y.B.; Mahadevan, M. Emergency Department Management of Sepsis Patients: A Randomized, Goal-Oriented, Noninvasive Sepsis Trial. Ann. Emerg. Med. 2016, 67, 367–378.e3. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, H.; Zhong, Y.; Huang, J.; Lv, J.; Li, J. The Cold-Inducible RNA-Binding Protein (CIRP) Level in Peripheral Blood Predicts Sepsis Outcome. PLoS ONE 2015, 10, e0137721. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.H.; Ahn, J.Y.; Song, J.E.; Choi, H.; Ann, H.W.; Kim, J.K.; Kim, J.H.; Jeon, Y.D.; Kim, S.B.; Jeong, S.J.; et al. The C-Reactive Protein/Albumin Ratio as an Independent Predictor of Mortality in Patients with Severe Sepsis or Septic Shock Treated with Early Goal-Directed Therapy. PLoS ONE 2015, 10, e0132109. (In English) [Google Scholar] [CrossRef] [PubMed]
- Lorente, L.; Martin, M.M.; Gonzalez-Rivero, A.F.; Ferreres, J.; Sole-Violan, J.; Labarta, L.; Diaz, C.; Jimenez, A.; Borreguero-Leon, J.M. Serum levels of caspase-cleaved cytokeratin-18 and mortality are associated in severe septic patients: Pilot study. PLoS ONE 2014, 9, e109618. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.X.; Li, C.S. Arterial lactate improves the prognostic performance of severity score systems in septic patients in the ED. Am. J. Emerg. Med. 2014, 32, 982–986. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chen, X.W.; Huang, L.; Lu, N.; Zhou, L.; Wu, G.J.; Chen, Y.G. Severe sepsis: Low expression of the ren-in-angiotensin system is associated with poor prognosis. Exp. Ther. Med. 2014, 7, 1342–1348. (In English) [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.Y.; Shin, T.G.; Jo, I.J.; Jeon, K.; Suh, G.Y.; Lee, T.R.; Cha, W.C.; Sim, M.S.; Song, K.J.; Jeong, Y.K. Association between He-modynamic Presentation and Outcome in Sepsis Patients. Shock 2014, 42, 205–210. (In English) [Google Scholar] [CrossRef] [PubMed]
- Lorente, L.; Martin, M.M.; Abreu-Gonzalez, P.; Dominguez-Rodriguez, A.; Labarta, L.; Diaz, C.; Sole-Violan, J.; Ferreres, J.; Borreguero-Leon, J.M.; Jimenez, A.; et al. Prognostic value of malondialdehyde serum levels in severe sepsis: A multicenter study. PLoS ONE 2013, 8, e53741. [Google Scholar] [CrossRef] [PubMed]
- Hisamuddin, N.A.; Azlan, K. The use of laboratory and physiological parameters in predicting mortality in sepsis in-duced hypotension and septic shock patients attending the emergency department. Med. J. Malays. 2012, 67, 259–264. [Google Scholar]
- Jat, K.R.; Jhamb, U.; Gupta, V.K. Serum lactate levels as the predictor of outcome in pediatric septic shock. Indian J. Crit. Care Med. 2011, 15, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Ait-Oufella, H.; Lemoinne, S.; Boelle, P.Y.; Galbois, A.; Baudel, J.L.; Lemant, J.; Joffre, J.; Margetis, D.; Guidet, B.; Maury, E.; et al. Mottling score predicts survival in septic shock. Intensive Care Med. 2011, 37, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Lorente, L.; Martin, M.M.; Labarta, L.; Diaz, C.; Sole-Violan, J.; Blanquer, J.; Orbe, J.; Rodriguez, J.A.; Jimenez, A.; Borreguero-Leon, J.M.; et al. Matrix metalloproteinase-9,-10, and tissue inhibitor of matrix metalloproteinases-1 blood levels as biomarkers of severity and mortality in sepsis. Crit. Care 2009, 13, R158. (In English) [Google Scholar] [CrossRef] [PubMed]
- Trzeciak, S.; Dellinger, R.P.; Chansky, M.E.; Arnold, R.C.; Schorr, C.; Milcarek, B.; Hollenberg, S.M.; Parrillo, J.E. Serum lactate as a predictor of mortality in patients with infection. Intensive Care Med. 2007, 33, 970–977. (In English) [Google Scholar] [CrossRef]
- Duke, T.D.; Butt, W.; South, M. Predictors of mortality and multiple organ failure in children with sepsis. Intensive Care Med. 1997, 23, 684–692. [Google Scholar] [CrossRef]
- Galtung, N.; Diehl-Wiesenecker, E.; Lehmann, D.; Markmann, N.; Bergstrom, W.H.; Wacker, J.; Liesenfeld, O.; Mayhew, M.; Buturovic, L.; Luethy, R.; et al. Prospective validation of a transcriptomic severity classifier among patients with suspected acute infection and sepsis in the emergency department. Eur. J. Emerg. Med. 2022, 29, 357–365. (In English) [Google Scholar] [CrossRef]
- Cao, Y.; Ma, W.; Liu, Z.; Pei, Y.; Zhu, Y.; Chen, F.; Zou, L.; Jiang, Y.; Liu, X.; Huang, J.; et al. Early predictive value of platelet function for clinical outcome in sepsis. J. Infect. 2022, 84, 628–636. [Google Scholar] [CrossRef]
- Chen, H.; Gong, S.R.; Yu, R.G. Association between normalized lactate load and mortality in patients with septic shock: An analysis of the MIMIC-III database. BMC Anesth. 2021, 21, 16. (In English) [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, S.; Kim, K.H.; Jeong, N.R.; Kim, S.C.; Oh, E.J. The Association between Dynamic Changes in Serum Presepsin Levels and Mortality in Immunocompromised Patients with Sepsis: A Prospective Cohort Study. Diagnostics 2021, 11, 60. (In English) [Google Scholar] [CrossRef] [PubMed]
- Lee, G.T.; Hwang, S.Y.; Park, J.E.; Jo, I.J.; Kim, W.Y.; Chung, S.P.; Jo, Y.H.; Suh, G.J.; Choi, S.H.; Shin, T.G.; et al. Diagnostic accuracy of lactate levels after initial fluid resuscitation as a predictor for 28 day mortality in septic shock. Am. J. Emerg. Med. 2021, 46, 392–397. (In English) [Google Scholar] [CrossRef]
- Tonial, C.T.; Costa, C.A.D.; Andrades, G.R.H.; Crestani, F.; Bruno, F.; Piva, J.P.; Garcia, P.C.R. Performance of prognostic markers in pediatric sepsis. J. Pediatr. 2021, 97, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; He, L.; Zhang, N.; Lin, Q.; Zhong, L.; Song, J. Prediction of 90-Day Mortality among Sepsis Patients Based on a Nomogram Integrating Diverse Clinical Indices. Biomed. Res. Int. 2021, 2021, 1023513. [Google Scholar] [CrossRef]
- Ma, H.; Liu, H.; Wu, C.; Huang, L. Diagnostic Value of Serum Heparin Binding Protein, Blood Lactic Acid Combined with hs-CRP in Sepsis and Its Relationship with Prognosis. Evid. Based Complement. Alternat Med. 2021, 2021, 5023733. [Google Scholar] [CrossRef]
- Bou Chebl, R.; Geha, M.; Assaf, M.; Kattouf, N.; Haidar, S.; Abdeldaem, K.; Halawi, N.; Khamis, M.; Makki, M.; Tamim, H.; et al. The prognostic value of the lactate/albumin ratio for predicting mortality in septic patients presenting to the emergency department: A prospective study. Ann. Med. 2021, 53, 2268–2277. [Google Scholar] [CrossRef] [PubMed]
- Gharipour, A.; Razavi, R.; Gharipour, M.; Mukasa, D. Lactate/albumin ratio: An early prognostic marker in critically ill patients. Am. J. Emerg. Med. 2020, 38, 2088–2095. [Google Scholar] [CrossRef]
- Liu, Y.C.; Jiang, T.Y.; Chen, Z.S.; Qi, A.L.; Gao, Y.L.; Li, S.X.; Yu, M.M.; Chai, Y.F.; Shou, S.T. Thyroid hormone disorders: A predictor of mortality in patients with septic shock defined by Sepsis-3? Intern. Emerg. Med. 2021, 16, 967–973. [Google Scholar] [CrossRef]
- Lundberg, O.H.M.; Lengquist, M.; Spangfors, M.; Annborn, M.; Bergmann, D.; Schulte, J.; Levin, H.; Melander, O.; Frigyesi, A.; Friberg, H. Circulating bioactive adrenomedullin as a marker of sepsis, septic shock and critical illness. Crit. Care 2020, 24, 636. (In English) [Google Scholar] [CrossRef]
- Bou Chebl, R.; Jamali, S.; Sabra, M.; Safa, R.; Berbari, I.; Shami, A.; Makki, M.; Tamim, H.; Abou Dagher, G. Lactate/Albumin Ratio as a Predictor of In-Hospital Mortality in Septic Patients Presenting to the Emergency Department. Front. Med. 2020, 7, 550182. (In English) [Google Scholar] [CrossRef]
- Goyal, P.; Agarwal, R.; Srivastava, H.; Kar, R.; Sikka, M.; Mohta, M. Serial Serum Lactic Acid in Pregnancy-Associated Sepsis for Maternal Outcome. J. Obstet. Gynaecol. India 2020, 70, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.J.; Lan, T.F.; Guo, S.B. Outcome prediction value of National Early Warning Score in septic patients with community-acquired pneumonia in emergency department: A single-center retrospective cohort study. World J. Emerg. Med. 2020, 11, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Baysan, M.; Baroni, G.D.; van Boekel, A.M.; Steyerberg, E.W.; Arbous, M.S.; van der Bom, J.G. The Added Value of Lactate and Lactate Clearance in Prediction of In-Hospital Mortality in Critically Ill Patients With Sepsis. Crit. Care Explor. 2020, 2, e0087. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Lan, T.; Guo, S. Prognostic Prediction Value of qSOFA, SOFA, and Admission Lactate in Septic Patients with Community-Acquired Pneumonia in Emergency Department. Emerg. Med. Int. 2020, 2020, 7979353. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.C.; Spencer, E.; Hoskin, T.S.; Rosengrave, P.; Kettle, A.J.; Shaw, G. Circulating myeloperoxidase is elevated in septic shock and is associated with systemic organ failure and mortality in critically ill patients. Free Radic. Biol. Med. 2020, 152, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Nazir, M.; Wani, W.; Dar, S.A.; Mir, I.H.; Charoo, B.A.; Ahmad, Q.I.; Wajid, S. Lactate clearance prognosticates outcome in pediatric septic shock during first 24 h of intensive care unit admission. J. Intensive Care Soc. 2019, 20, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zheng, J.; Zhang, D.; Jing, L. Neutrophil-lymphocyte ratio and plasma lactate predict 28-day mortality in patients with sepsis. J. Clin. Lab. Anal. 2019, 33, e22942. [Google Scholar] [CrossRef] [PubMed]
- Ryoo, S.M.; Ahn, R.; Shin, T.G.; Jo, Y.H.; Chung, S.P.; Beom, J.H.; Choi, S.H.; Yoon, Y.H.; Ko, B.S.; Lee, H.J.; et al. Lactate normalization within 6 hours of bundle therapy and 24 hours of delayed achievement were associated with 28-day mortality in septic shock patients. PLoS ONE 2019, 14, e0217857. (In English) [Google Scholar] [CrossRef]
- Chae, B.R.; Kim, Y.J.; Lee, Y.S. Prognostic accuracy of the sequential organ failure assessment (SOFA) and quick SOFA for mortality in cancer patients with sepsis defined by systemic inflammatory response syndrome (SIRS). Support. Care Cancer 2020, 28, 653–659. [Google Scholar] [CrossRef]
- Samanta, S.; Singh, R.K.; Baronia, A.K.; Mishra, P.; Poddar, B.; Azim, A.; Gurjar, M. Early pH Change Predicts Intensive Care Unit Mortality. Indian J. Crit. Care Med. 2018, 22, 697–705. [Google Scholar] [CrossRef]
- Zhang, L.F.; Zhang, X.H. Serum sTREM-1, PCT, CRP, Lac as biomarkers for death risk within 28 days in patients with severe sepsis. Open Life Sci. 2018, 13, 42–47. (In English) [Google Scholar] [CrossRef]
- Shin, J.; Hwang, S.Y.; Jo, I.J.; Kim, W.Y.; Ryoo, S.M.; Kang, G.H.; Kim, K.; Jo, Y.H.; Chung, S.P.; Joo, Y.S.; et al. Prognostic Value of The Lac-tate/Albumin Ratio for Predicting 28-Day Mortality in Critically ILL Sepsis Patients. Shock 2018, 50, 545–550. [Google Scholar] [CrossRef]
- Tarui, T.; Yamaguchi, Y.; Suzuki, K.; Tsuruta, R.; Ikeda, H.; Ogura, H.; Kushimoto, S.; Kotani, J.; Shiraishi, S.I.; Suzuki, Y.; et al. Early evaluation of severity in patients with severe sepsis: A comparison with “septic shock”—Subgroup analysis of the Japanese Association for Acute Medicine Sepsis Registry (JAAM-SR). Acute Med. Surg. 2017, 4, 426–431. [Google Scholar] [CrossRef]
- Brodska, H.; Valenta, J.; Pelinkova, K.; Stach, Z.; Sachl, R.; Balik, M.; Zima, T.; Drabek, T. Diagnostic and prognostic value of presepsin vs. established biomarkers in critically ill patients with sepsis or systemic inflammatory response syndrome. Clin. Chem. Lab. Med. 2018, 56, 658–668. [Google Scholar] [CrossRef]
- Jia, Y.F.; Wang, Y.; Yu, X.H. Relationship between blood lactic acid, blood procalcitonin, C-reactive protein and neonatal sepsis and corresponding prognostic significance in sick children. Exp. Ther. Med. 2017, 14, 2189–2193. (In English) [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.K.S.; Mehta, A.A.; James, P. Predictors of mortality of severe sepsis among adult patients in the medical Intensive Care Unit. Lung India 2017, 34, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.F.; Liu, S.H.; Li, C.H.; Wu, C.C.; Chaou, C.H.; Tzeng, I.S.; Hsieh, Y.H.; Blaney, G.N.; Liu, Z.Y.; Han, S.T.; et al. Develop-ment and validation of a parsimonious and pragmatic CHARM score to predict mortality in patients with suspect-ed sepsis. Am. J. Emerg. Med. 2017, 35, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, Z.; Yin, M.; Chen, X.M.; Ding, S.F.; Li, C.; Zhai, Q.; Li, Y.; Liu, H.; Wu, D.W. Combination of Acute Physiology and Chronic Health Evaluation II score, early lactate area, and N-terminal prohormone of brain natriuretic peptide lev-els as a predictor of mortality in geriatric patients with septic shock. J. Crit. Care 2015, 30, 304–309. (In English) [Google Scholar] [CrossRef] [PubMed]
- Jones, A.E.; Trzeciak, S.; Kline, J.A. The Sequential Organ Failure Assessment score for predicting outcome in patients with severe sepsis and evidence of hypoperfusion at the time of emergency department presentation. Crit. Care Med. 2009, 37, 1649–1654. [Google Scholar] [CrossRef] [PubMed]
- Gogos, C.A.; Lekkou, A.; Papageorgiou, O.; Siagris, D.; Skoutelis, A.; Bassaris, H.P. Clinical prognostic markers in patients with severe sepsis: A prospective analysis of 139 consecutive cases. J. Infect. 2003, 47, 300–306. [Google Scholar] [CrossRef]
- Marecaux, G.; Pinsky, M.R.; Dupont, E.; Kahn, R.J.; Vincent, J.L. Blood lactate levels are better prognostic indicators than TNF and IL-6 levels in patients with septic shock. Intensive Care Med. 1996, 22, 404–408. (In English) [Google Scholar] [CrossRef]
- Bakker, J.; Coffernils, M.; Leon, M.; Gris, P.; Vincent, J.L. Blood Lactate Levels Are Superior to Oxygen-Derived Variables in Predicting Outcome in Human Septic Shock. Chest 1991, 99, 956–962. (In English) [Google Scholar] [CrossRef]
- Chen, H.; Gong, S.R.; Yu, R.G. Increased normalized lactate load is associated with higher mortality in both sepsis and non-sepsis patients: An analysis of the MIMIC-IV database. BMC Anesth. 2022, 22, 79. (In English) [Google Scholar] [CrossRef]
- Perman, S.M.; Mikkelsen, M.E.; Goyal, M.; Ginde, A.; Bhardwaj, A.; Drumheller, B.; Sante, S.C.; Agarwal, A.K.; Gaieski, D.F. The sensitivity of qSOFA calculated at triage and during emergency department treatment to rapidly identify sepsis patients. Sci. Rep. 2020, 10, 20395. (In English) [Google Scholar] [CrossRef]
- Lu, N.F.; Jiang, L.; Zhu, B.; Yang, D.G.; Zheng, R.Q.; Shao, J.; Xi, X.M. Elevated plasma histone H4 level predicts increased risk of mortality in patients with sepsis. Ann. Palliat. Med. 2020, 9, 1084–1091. [Google Scholar] [CrossRef]
- Goonasekera, C.D.A.; Carcillo, J.A.; Deep, A. Oxygen Delivery and Oxygen Consumption in Pediatric Fluid Refractory Septic Shock During the First 42 h of Therapy and Their Relationship to 28-Day Outcome. Front. Pediatr. 2018, 6, 314. (In English) [Google Scholar] [CrossRef]
- Duman, A.; Turkdogan, K.A.; Avcil, M.; Yenisey, C.; Ture, M.; Akoz, A.; Dagli, B.; Kapci, M.; Orun, S. The predictive value of the inflammatory markers P-selectin and MCP1 in determining the length of stay and 30-day survival in the differ-entiation of sepsis patients. J. Pak. Med. Assoc. 2018, 68, 1321–1326. [Google Scholar] [PubMed]
- Yan, H.P.; Li, M.; Lu, X.L.; Zhu, Y.M.; Ou-Yang, W.X.; Xiao, Z.H.; Qiu, J.; Li, S.J. Use of plasma mitochondrial DNA levels for determining disease severity and prognosis in pediatric sepsis: A case control study. BMC Pediatr. 2018, 18, 267. [Google Scholar] [CrossRef] [PubMed]
- Khater, W.S.; Salah-Eldeen, N.N.; Khater, M.S.; Saleh, A.N. Role of suPAR and Lactic Acid in Diagnosing Sepsis and Pre-dicting Mortality in Elderly Patients. Eur. J. Microbiol. Immunol. 2016, 6, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Keçe, E.; Yaka, E.; Yılmaz, S.; Doğan, N.; Alyeşil, C.; Pekdemir, M. Comparison of diagnostic and prognostic utility of lactate and procalcitonin for sepsis in adult cancer patients presenting to emergency department with systemic in-flammatory response syndrome. Turk. J. Emerg. Med. 2016, 16, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Madabhushi, S.; Trikha, A.; Anand, R.K.; Ramachandran, R.; Singh, P.M.; Rewari, V. Temporal Evolution of the PcvCO(2)-PaCO(2)/CaO(2)-CcvO(2) Ratio vs Serum Lactate during Resuscitation in Septic Shock. Indian J. Crit. Care Med. 2021, 25, 1370–1376. (In English) [Google Scholar] [CrossRef]
- Dubin, A.; Loudet, C.I.; Hurtado, F.J.; Pozo, M.O.; Comande, D.; Gibbons, L.; Cairoli, F.R.; Bardach, A. Comparison of central venous minus arterial carbon dioxide pressure to arterial minus central venous oxygen content ratio and lactate levels as predictors of mortality in critically ill patients: A systematic review and meta-analysis. Rev. Bras. Ter. Intensiv. 2022, 34, 279–286. [Google Scholar] [CrossRef]
- Basile-Filho, A.; Lago, A.F.; Menegueti, M.G.; Nicolini, E.A.; Rodrigues, L.A.B.; Nunes, R.S.; Auxiliadora-Martins, M.; Ferez, M.A. The use of APACHE II, SOFA, SAPS 3, C-reactive protein/albumin ratio, and lactate to predict mortality of surgical critically ill patients: A retrospective cohort study. Medicine 2019, 98, e16204. (In English) [Google Scholar] [CrossRef] [PubMed]
- Bruno, R.R.; Wernly, B.; Binneboessel, S.; Baldia, P.; Duse, D.A.; Erkens, R.; Kelm, M.; Mamandipoor, B.; Osmani, V.; Jung, C. Failure of Lactate Clearance Predicts the Outcome of Critically Ill Septic Patients. Diagnostics 2020, 10, 1105. (In English) [Google Scholar] [CrossRef] [PubMed]
- Yoshimatsu, S.; Sugaya, T.; Hossain, M.I.; Islam, M.M.; Chisti, M.J.; Kamoda, T.; Fukushima, T.; Wagatsuma, Y.; Sumazaki, R.; Ahmed, T. Urinary L-FABP as a mortality predictor in < 5-year-old children with sepsis in Bangladesh. Pediatr. Int. 2016, 58, 185–191. (In English) [Google Scholar] [CrossRef] [PubMed]
- Suetrong, B.; Walley, K.R. Lactic Acidosis in Sepsis: It’s Not All Anaerobic: Implications for Diagnosis and Management. Chest 2016, 149, 252–261. (In English) [Google Scholar] [CrossRef]
- Kabra, R.; Acharya, S.; Shukla, S.; Kumar, S.; Wanjari, A.; Mahajan, S.; Gaidhane, S.A.; Bhansali, P.J.; Wasnik, P. Serum Lac-tate-Albumin Ratio: Soothsayer for Outcome in Sepsis. Cureus 2023, 15, e36816. [Google Scholar] [CrossRef]
Author | Area | Year | Sepsis Criterion | Outcome | Study Design | Number of Patients | Number of Sepsis | Number of Deaths | Timing of Measurements | Comparisons | Assessment * |
---|---|---|---|---|---|---|---|---|---|---|---|
Han Chen | China | 2022 | Sepsis-3 | 28-day mortality | MIMIC-IV database | 21,333 | 4219 | 17,114 | within 24 h of ICU admission | Sepsis vs. Non-sepsis | a, d |
Lincui Zhong | China | 2022 | Sepsis-3 | In-ICU mortality | retrospective | 311 | 203 | 108 | within 2 h of ICU admission | Sepsis vs. septic shock | a |
Noa Galtung | Germany | 2022 | Sepsis-3 | in-hospital mortality | prospective | 301 | 279 | 22 | admission to ED | survival vs. death | a, b |
Matteo Guarino | Italy | 2022 | diagnosis | in-hospital mortality | retrospective | 1001 | 556 | 218 | admission to ED | c | |
Yan Cao | China | 2022 | Sepsis-3 | 28-day mortality | prospective | 86 | 65 | 21 | within 24 h of ED admission | survival vs. death | a, b |
Ying Wu | China | 2022 | 2013 SSC | 28-day mortality | Case-control | 112 | Sepsis vs. severe sepsis vs. septic shock vs. controls | a, c, d | |||
Yinjing Xie | China | 2021 | Sepsis-3 | 28-day mortality | retrospective | 90 | 67 | 23 | admission to ED | survival vs. death | a, b, c, d |
Harith Alataby | USA | 2021 | ICD-10 code | 30-day mortality | retrospective | 427 | 149 | within 24 h of hospital admission | c | ||
Junkun Liu | China | 2021 | Sepsis-3 | 28-day mortality | prospective | 66 | 49 | 17 | within 24 h of ICU admission | survival vs. death | a, b, c, d |
Han Chen | China | 2021 | Sepsis-3 | 28-day mortality | MIMIC-III | 1371 | 826 | 545 | within 24 h of ICU admission | survival vs. death | b, d |
Jong Eun Park | Korea | 2021 | Sepsis-3 | 28-day mortality | prospective | 755 | 635 | 102 | in ED or hematology-oncology department or ICU | survival vs. death | a, b, c, d |
Jongmin Lee | Korea | 2021 | Diagnosis | in-hospital mortality | prospective | 88 | 50 | 38 | Day 1 of hospital admission | survival vs. death | b |
Gun Tak Lee | Korea | 2021 | Diagnosis | 28-day mortality | retrospective | 2568 | 1977 | 591 | admission to ED | survival vs. death | a, b, d |
Cristian Tedesco Tonial | Brazil | 2021 | Diagnosis and SIRS | in-hospital mortality | retrospective | 294 | 267 | 25 | Highest within 24 h of PICU admission | survival vs. death | b, d |
Xiaoyuan Wei | China | 2021 | Diagnosis | 30-day mortality | retrospective | 2948 | 956 | admission to to ICU | c | ||
Xiaonan Chen | China | 2021 | ICD-9 code | in-hospital mortality | MIMIC-III | 4555 | 1712 | 2843 | first of ICU admission | survival vs. death | a |
Qingbo Zeng | China | 2021 | Sepsis-3 | 90-day mortality | retrospective | Training 161 Validation 70 | 112 46 | 49 24 | within 24 h of ICU admission | survival vs. death | b |
Hongsong Ma | China | 2021 | Diagnosis | in-hospital mortality | retrospective | 127 | 31 | Mild vs. severe vs. Sepsis shock survival vs. death | a, b | ||
Murat Erdogan | Turkey | 2021 | Sepsis-3 | 28-day mortality | prospective | 148 | 96 | 52 | survival vs. death | a, b, c | |
Utsav Nandi | USA | 2021 | SIRS | in-hospital mortality | retrospective | 160 | 127 | 33 | admission to ED | survival vs. death | a, c |
Yin Liu | China | 2021 | 2016 SSC | 28-day mortality | retrospective | 91 | 71 | 20 | Day 1 of ICU admission | survival vs. death | b, c, d |
Ralphe Bou Chebl | Lebanon | 2021 | Sepsis-3 | in-hospital mortality | prospective | 939 | 720 | 219 | admission to ED | survival vs. death | a, b, d |
Valentino D’Onofrio | Netherlands | 2020 | in-hospital mortality | prospective | 1690 | 90 | 1600 | admission to ED | survival vs. death | c | |
Shuang Li | China | 2020 | Diagnosis | 90-day mortality | retrospective | 146 | 113 | 33 | within 24 h after the collection of blood culture samples | Survivors vs. death | a, b, c |
S. Perez-San Martin | Spain | 2020 | Sepsis-3 | in-hospital mortality | prospective | 75 | 54 | 21 | admission to ICU | Survivors vs. death | a, b, c |
Sarah M. Perman | U.S.A | 2020 | Sepsis-3 | in-hospital mortality | retrospective | 2859 | admission to ED | d | |||
Amin Gharipour | Australia | 2020 | MIMIC-III | 28-day mortality | retrospective | 6414 | 5364 | 1050 | first 24 h of ICU admission | Survivors vs. death | a, b, d |
Yancun Liu | China | 2020 | Sepsis-3 | 28-day mortality | prospective | 63 | 38 | 25 | within 12 h after EICU admission | Survivors vs. death | a, b, d |
Oscar H. M. Lundberg | Sweden | 2020 | Sepsis-3 | 30-day mortality | retrospective | 632 | 458 | 174 | admission to ICU | Survivors vs. death | b |
Ralphe Bou Chebl 1 | Lebanon | 2020 | Sepsis-3 | in-hospital mortality | retrospective | 1381 | 575 | 806 | admission to ED | Survivors vs. death | a, b, d |
Ralphe Bou Chebl 2 | Lebanon | 2020 | Sepsis-3 | in-hospital mortality | retrospective | 1627 | admission to ED | lactate levels | a, c | ||
Romain Jouffroy | France | 2020 | SFAR-SRLF * | 30-day mortality | prospective | 177 | 118 | 59 | first ICU admission | Survivors vs. death | a, b, c |
Penzy Goyal | India | 2020 | Sepsis-3 | In-ICU mortality | 63 | 43 | 20 | admission to ICU | Survivors vs. death | a, b, d | |
Haijiang Zhou | China | 2020 | Sepsis-3 | 28-day mortality | retrospective | 340 | 250 | 90 | admission to ED | Survivors vs. death | a, b |
Tae Sik Hwang | Korea | 2020 | in-hospital mortality | retrospective | 165 | admission to ED | septic shock | a | |||
Priyanka Jaiswal | India | 2020 | SIRS | in-hospital mortality | prospective | 149 | 104 | 45 | admission to ED | Survivors vs. death | b, c, d |
ShengYuan Hsiao | Taiwan | 2020 | Sepsis-3 | in-hospital mortality | prospective | 100 | 80 | 20 | within 24 h of ED admission | Survivors vs. death | b, c, d |
Juhyun Song | Korea | 2020 | Sepsis-3 | 28-day mortality | prospective | 160 | 97 | 63 | within 6 h of the clinical diagnosis of sepsis | Survivors vs. death | b, c, d |
Keji Zhang | China | 2020 | Sepsis-3 | in-hospital mortality | retrospective | 185 | 158 | 27 | first EICU admission | Survivors vs. death | b, c |
Nianfang Lu | China | 2020 | Sepsis-3 | in-hospital mortality | prospective | 126 | 89 | 37 | within 24 h of ICU admission | Survivors vs. death | d |
Xiaomeng Tang | China | 2020 | Diagnosis | in-hospital mortality | Database | 819 | 720 | 99 | first batch of data after PICU admission | Survivors vs. death | a, b, c |
Wen Li | China | 2020 | Sepsis-3 | in-hospital mortality | prospective | 626 | 378 | 248 | admission to ICU | Survivors vs. death | a, b, c |
Meryem Baysan | Netherlands | 2020 | APACHE IV | in-hospital mortality | retrospective | 451 | 291 | 160 | first ICU admission | Survivors vs. death | a, b |
Filippo Mearelli | Italy | 2020 | Sepsis-3 | 30-day mortality | prospective | 828 | 148 | 680 | admission to ED | Survivors vs. death | b, c |
Haijiang Zhou | China | 2020 | Sepsis-3 | 28-day mortality | retrospective | 336 | 247 | 89 | admission to ED | Survivors vs. death | a, b, d |
Lifeng Wang | China | 2020 | Sepsis-3 | 28-day mortality | 107 | 81 | 26 | admission to ED | Survivors vs. death | a, b, c, d | |
Yusuke Hayashi | Japan | 2020 | in-hospital mortality | MIMIC-III | 781 | 523 | 258 | admission to ICU | Survivors vs. death | a, b, c | |
Bernhard Wernly | Austria | 2020 | Diagnosis | ICU mortality | MIMIC-III | 5586 | 3293 | 2293 | first 24 h of ICU admission | no acidosis vs. acidosis | c |
Areesha Alam | India | 2020 | International pediatric SCC | Early Mortality ≤48h | prospective | 116 | 58 | 58 | within 30 min of admission | Survivors vs. death | b, c, d |
Gina Yu | Korea | 2019 | Diagnosis | 28-day mortality | retrospective | 362 | 247 | 115 | within 12 h of ED admission | Survivors vs. death | c |
Anitra C. Carr | New Zealand | 2019 | in-hospital mortality | 44 | 32 | 12 | admission to ICU | Survivors vs. death | a, b | ||
Mudasir Nazir | India | 2019 | International pediatric SCC | 60-day mortality | prospective | 112 | 77 | 35 | admission to PICU | Survivors vs. death | a, b |
Francesca Innocenti | Italy | 2019 | 2001SCCM/ESICM/ACCP/ATS/SIS | in-hospital mortality | prospective | 268 | 153 74 | 115 41 | admission to ED | without shock vs. Sepsis shock Survivors vs. death | a, b, c |
Narani Sivayoham | UK | 2019 | Red Flag/SIRS | in-hospital mortality | prospective | 1078 | 938 | 140 | admission to ED/ICU | Survivors vs. death | c, d |
Julian Villar | USA | 2019 | ICD-9 | 30-day mortality | retrospective | 3325 | 546 | 2779 | admission to ED/ICU | Sepsis vs. non-sepsis | a, c |
Ali Jendoubi | Tunisia | 2019 | ACCP/SCCM | 28-day mortality | prospective | 75 | 34 | 41 | admission to ICU | Survivors vs. death | a, b, c |
Jie Jiang | China | 2019 | Sepsis-3 | in-hospital mortality | retrospective | 100 | 77 | 23 | within 24 h of ICU admission | Sepsis vs. non-sepsis | a |
Shengyuan Hsiao | Taiwan | 2019 | Sepsis-3 | in-hospital mortality | prospective | 126 | 39 16 68 | 87 71 19 | first 24 h of ED admission | Control vs. Sepsis Sepsis vs. Sepsis shock Survivors vs. death | a, b, c, d |
Elisa Estenssoro | Argentina | 2019 | Sepsis-3 | in-hospital mortality | prospective | 367 443 | within 24 h of ICU admission | Public hospitals vs. Private hospitals | a, c | ||
Yunlong Liu | China | 2019 | Sepsis-3 | 28-day mortality | prospective | 63 | 40 | 23 | Within 24 h after diagnosis | Survivors vs. death | b, d |
Anibal Basile-Filho | Brasil | 2019 | Sepsis-3 | in-hospital mortality | retrospective | 83 | 35 | 48 | first 24 h after ICU admission | Survivors vs. death | a |
Han Li | China | 2019 | diagnosis | in-hospital mortality | 245 | 183 | 62 | admission to hospitals | Survivors vs. death | c | |
Guillaume Dumas | France | 2019 | 2001SCCM/ESICM/ACCP/ATS/SIS | 14-day mortality | prospective | 256 | 164 | 95 | at 0, 12, 24 h after ICU admission | Survivors vs. death | b, c |
Seung Mok Ryoo1 | Korea | 2019 | Goal-directed resuscitation | 28-day mortality | prospective | 2102 | 1653 | 449 | within 24 h after ED admission | Survivors vs. death | a, b |
BoRa Chae | Korea | 2019 | SIRS | 30-day mortality | retrospective | 301 | 258 | 43 | admission to ED | Survivors vs. death | a, b |
Chulananda D. A. Goonasekera | Turkey | 2019 | international consensus conference | 28-day mortality | retrospective | 62 | 53 | 9 | admission to PICU | Survivors vs. death | d |
Steven J.Weiss | USA | 2019 | diagnosis | in-hospital mortality | retrospective | 351 | 323 | 28 | admission to ICU | Survivors vs. death | b, c |
Sujay Samanta | India | 2019 | 28-day mortality | prospective | 104 | 36 | 68 | within 24 h of ICU admission | Survivors vs. death | b | |
Zhiqiang Liu | China | 2019 | diagnosis | 30-day mortality 90-day mortality hospital mortality 1-year mortality | MIMIC III | 1865 | 1166 | 699 | first 24 h from ICU admission | Lactate < 3.225 vs. Lactate ≥ 3.225 | a, c, d |
Glenn Hernández | Chile | 2019 | Sepsis-3 | 28-day mortality | randomized clinical trial | 212 | 115 | 97 | admission to the ICU | Survivors vs. death | a, c |
Seung Mok Ryoo2 | Korea | 2019 | Sepsis-3 | 28-day mortality | retrospective | 1060 | 795 | 265 | initial and 6 h from septic shock recognition | Survivors vs. death | b, c, d |
Ali Duman | Aydin | 2018 | Sepsis-3 | 30-day mortality | prospective | 46 | 46 | admission to ED | Infection vs. sepsis | a, d | |
Zhengliang Peng | China | 2018 | Sepsis-3 | 30-day mortality | retrospective | 166 | 11 | 55 | admission to EICU | Survivors vs. death | a, c, d |
Haipeng Yan | China | 2018 | 2012SSC | in-hospital mortality | case–control | 183 | 70 30 | 53 30 | 1 h of the hospital admission | Sepsis vs. severe sepsis vs. non-sepsis vs. health | a, d |
Lama H Nazer | Jordan | 2018 | Sepsis-2 | in-hospital mortality | retrospective | 401 | 98 | 303 | admission to ICU | Survivors vs. death | a, b, c, d |
Li Xing | China | 2018 | Sepsis-3 | 28-day mortality | prospective | 120 | 88 | 32 | within 24 h after diagnosis | Survivors vs. death | b, c |
Lefeng Zhang | China | 2018 | SCCM/ESICM | 28-day mortality | retrospective | 51 | 39 | 12 | admission to ICU | Survivors vs. death | b, d |
HsienHung Cheng | China | 2018 | ICD-9 | 28-day mortality | retrospective | 7087 | 5414 | 1673 | within 6 h of ED admission | Survivors vs. death | b, c, d |
Jikyoung Shin | Korea | 2018 | diagnosis | 28-day mortality | retrospective | 946 | 733 | 213 | admission to ED | Survivors vs. death | a, b, d |
Takehiko Tarui | Japan | 2018 | 2001SCCM/ESICM/ACCP/ATS/SIS | in-hospital mortality | prospective | 554 | 399 | 155 | Worst lactate during the initial 24 h | Survivors vs. death | b |
Ata Mahmoodpoor | Iran, USA | 2018 | diagnosis | 28-day mortality | prospective | 82 | 50 | 32 | within 24 h of ICU admission | Survivors vs. death | b, c, d |
Chenggong Hu | China | 2017 | Sepsis-3 | 28-day mortality | 141 | 99 | 42 | day 0, 3, 7 of hospitalization | Survivors vs. death | b, c, d | |
Julian Jimenez | Spain | 2017 | Sepsis-3 | 30-day mortality | prospective | 136 | 123 | 13 | initial admission to ED | Survivors vs. death | b, c, d |
Helena Brodska | USA | 2017 | 1992ACCP/SCCM | 28-day mortality | 30 | 22 | 8 | day 1, 2, 3 of ICU admission | Survivors vs. death | a, b, d | |
Yongfeng Jia | China | 2017 | diagnosis | in-hospital mortality | retrospective | 90 | 61 | 29 | admission to PICU | Survivors vs. death | b |
Dong Hyun Oh | South Korea | 2017 | 2012SSC | 28-day mortality | retrospective | 1022 | 653 | 369 | admission to ED | High lactate vs. Low lactate | c |
Motohiro Sekino | Japan | 2017 | 2001SCCM/ESICM/ACCP/ATS/SIS | 28-day mortality | prospective | 57 | 44 | 13 | within 24 h of ICU admission | Survivors vs. death | a, b, c |
Aziz Kallikunnel Sayed Mohamed | India | 2017 | SIRS | in-hospital mortality | prospective | 80 | 26 | 54 | admission to ICU | Survivors vs. death | b |
Adnan Javed | USA | 2017 | diagnosis | 24 h mortality | prospective | 410 | 390 | 20 | admission to ED | Survivors vs. death | a, b, c |
Mengshi Chen | China | 2017 | Sepsis-3 | in-hospital mortality | retrospective | 592 | 438 | 154 | within 24h of PICU admission | Survivors vs. death | b, c |
Huaiwu He | China | 2017 | 2001SCCM/ESICM/ACCP/ATS/SIS | ICU mortality | clinical investigation | 61 | 49 | 12 | admission to ICU | Survivors vs. death | a, c, d |
Richa Choudhary | India | 2017 | 2005pediatric SCC | in-hospital mortality | prospective | 148 | 54 | 94 | 0 h, 24 h, 48 h of PICU admission | Survivors vs. death | b, c, d |
Juandi Zhou | China | 2017 | 2001SCCM/ESICM/ACCP/ATS/SIS | 28-day mortality | retrospective | 144 | after the first 6 h of resuscitation | c | |||
Luregn J. Schlapbach | Australia | 2017 | 2005pediatric SCC | 30-day mortality | multicenter binational cohort study | 1697 | admission to ICU | c | |||
KuanFu Chen | Taiwan | 2017 | ICD-9 | in-hospital mortality | retrospective | 7011 | 6532 | 479 | admission to ED | Survivors vs. death | a, b |
Kimie Oedorf | Israel | 2016 | diagnosis | in-hospital mortality | prospective | 488 | 202 | 286 | during their ED stay | Without infection vs. With infection | c |
Walaa S. Khater | Egypt | 2016 | 2001SCCM/ESICM/ACCP/ATS/SIS | in-hospital mortality | prospective | 80 | 40 | 40 | admission to ICU | Sepsis vs. control | d |
Roberto Rabello Filho | Brazil | 2016 | SSC | 30-day mortality | retrospective | 260 | 227 | 33 | first 24 h of ED admission | Survivors vs. death | b, c, d |
Ar-aishah Dadeh | Thailand | 2016 | SIRS | 28-day mortality | prospective | 131 | 34 | 97 | within 24 h and at day 3 of ED admission | Septic shock vs. non-septic shock | a, c |
Esra Keçe | Turkey | 2016 | SIRS | 28-day mortality | prospective case–control | 86 | 64 | 22 | admission to ED | Sepsis vs. non-sepsis | d |
Young Kun Lee | Korea | 2016 | 2001SCCM/ESICM/ACCP/ATS/SIS | 28-day mortality | retrospective | 363 | 298 | 65 | admission to ED | Survivors vs. death | a, b, c |
Aletta P. I. Houwink | Netherlands | 2016 | diagnosis | ICU mortality | retrospective | 821 | first 24 h after admission | c | |||
Jan Philipp Bewersdorf | Netherlands | 2016 | 1992ACCP/SCCM | 28-day mortality | prospective | 440 | admission to ED | a, c | |||
Sebastian A Haas | Germany | 2016 | ICU mortality | retrospective | 400 | 87 | 313 | Survivors vs. death | b, c | ||
Sen Kuan, Win | Singapore | 2016 | in-hospital mortality | open label randomized controlled trial | 122 | 61 | 61 | Intervention vs. control | c | ||
Yanyan Zhou | China | 2015 | 2001SCCM/ESICM/ACCP/ATS/SIS | in-hospital mortality | 69 | 38 | 31 | within the first 24 h of ICU admission | Survivors vs. death | b, c, d | |
Min Hyung Kim | Korea | 2015 | 2004SSC | 180-day mortality | retrospective | 690 | first 24 h of ED admission | c | |||
Ivo Casagranda | Italy | 2015 | 2001SCCM/ESICM/ACCP/ATS/SIS | 7-day mortality 30-day mortality | prospective | 130 | 59 | 71 | admission to ED | Sepsis vs. severe sepsis or septic shock | a |
Hao Wang | China | 2015 | 2008SSC | 28-day mortality | prospective | 115 | 38 | 77 | within the first 30 min after ICU admission | Survivors vs. death | b |
Leonardo Lorente | Spain | 2014 | 2001SCCM/ESICM/ACCP/ATS/SIS | 30-day mortality | prospective | 224 | 144 | 80 | at the time severe sepsis was diagnosed in ICU | Survivors vs. death | b, c |
Yunxia Chen | China | 2014 | 2001SCCM/ESICM/ACCP/ATS/SIS | 28-day mortality | prospective | 680 | 502 | 178 | within 1h after ED arrival | Survivors vs. death | a, b, c |
Wei Zhang | China | 2014 | 1992ACCP/SCCM | in-hospital mortality | 58 | 34 | 24 | day 1 and 3 after diagnosis | Survivors vs. death | a, b, c, d | |
Hwang Sung Yeon | Korea | 2014 | SIRS | 28-day mortality | retrospective | 591 | within 3 h of ED admission | a, c | |||
Young A Kim | Korea | 2013 | 2005International pediatric SCC | 28-day mortality | retrospective | 65 | 48 | 17 | admission to PICU | Survivors vs. death | a, b, c |
Leonardo Lorente | Spain | 2013 | 2001SCCM/ESICM/ACCP/ATS/SIS | 30-day mortality | prospective | 228 | 145 | 83 | at the time of the diagnosis | Survivors vs. death | b, c |
Nik Hisamuddin Nik Ab Rahman | Malaysia | 2012 | diagnosis | 30-day mortality | prospective | 41 | admission to ED | a, c | |||
Kana Ram Jat | India | 2011 | diagnosis | in-hospital mortality | prospective | 30 | 15 | 15 | admission to PICU | Survivors vs. death | a, b, c |
P. Y. Boelle | France | 2011 | 2001SCCM/ESICM/ACCP/ATS/SIS | 14-day mortality | prospective | 60 | 6h after ICU admission | c | |||
Leonardo Lorente | Spain | 2009 | 2001SCCM/ESICM/ACCP/ATS/SIS | in-hospital mortality | prospective | 192 | 125 | 67 | at the time of the diagnosis | Survivors vs. death | b, c |
Alan E. Jones | USA | 2009 | diagnosis | in-hospital mortality | prospective | 248 | 197 | 51 | admission to ED | Survivors vs. death | a, b |
C Vorwerk | England | 2009 | SIRS | 28-day mortality | retrospective | 307 | 235 | 72 | admission to ED | Survivors vs. death | b, c |
Mikkelsen | Canada | 2009 | 2001SCCM/ESICM/ACCP/ATS/SIS | 28-day mortality | retrospective | 830 | 634 | 196 | admission to ED | Non-shock vs. sepsis shock | c |
Stephen Trzeciak | USA | 2007 | diagnosis | in-hospital mortality | prospective | 1177 | c | ||||
Charalambos A. Gogos | Greece | 2003 | 1992ACCP/SCCM | in-hospital mortality | prospective | 139 | 101 | 38 | at admission | Survivors vs. death | b |
T.D.Duke | Australia | 1997 | 1990Septic shock in children | in-hospital mortality | prospective | 31 | 21 | 10 | at 0, 12, 24,48 h after admission | Survivors vs. death | b, c |
G. Marecaux | Belgium | 1996 | in-hospital mortality | 38 | 18 | 20 | Survivors vs. death | b | |||
J Bakker | Belgium | 1991 | in-hospital mortality | 48 | 27 | 21 | Survivors vs. death | b |
Study | Risk of Bias | Applicability Concerns | |||||
---|---|---|---|---|---|---|---|
Patient Selection | Index Test | Reference Standard | Flow and Timing | Patient Selection | Index Test | Reference Standard | |
Han Chen 2022 | H | H | L | L | H | L | L |
Ying Wu 2022 | L | L | L | ? | L | L | L |
Yinjing Xie 2021 | L | L | L | L | L | L | L |
Junkun Liu 2021 | L | L | L | L | L | L | L |
Han Chen 2021 | H | H | L | L | H | L | L |
Jong Eun Park 2021 | L | L | L | L | L | L | L |
Gun Tak Lee 2021 | L | L | L | L | L | L | L |
Cristian Tedesco Tonial 2021 | H | L | L | L | L | L | L |
Yin Liu 2021 | L | H | L | L | L | L | L |
Ralphe Bou Chebl 1 2021 | L | H | L | L | L | L | L |
Sarah M. Perman 2020 | L | H | L | H | L | L | L |
Amin Gharipour 2020 | H | H | L | L | H | L | L |
Yancun Liu 2020 | L | L | L | L | L | L | L |
Ralphe Bou Chebl 2020 | L | H | L | L | L | L | L |
Penzy Goyal 2020 | H | L | L | L | H | L | L |
Priyanka Jaiswal 2020 | H | L | L | L | H | L | L |
ShengYuan Hsiao 2020 | L | L | L | L | L | L | L |
Juhyun Song 2020 | L | L | L | L | L | L | L |
Nianfang Lu 2020 | L | L | L | L | L | L | L |
Haijiang Zhou 2020 | H | H | L | L | H | L | L |
Lifeng Wang 2020 | L | L | L | L | L | L | L |
Areesha Alam 2020 | H | L | L | L | H | L | L |
Narani Sivayoham 2019 | L | H | L | L | L | L | L |
Shengyuan Hsiao 2019 | L | L | L | L | L | L | L |
Yunlong Liu 2019 | L | L | L | L | L | L | L |
Chulananda D.A.Goonasekera 2019 | H | H | L | L | H | L | L |
Zhiqiang Liu 2019 | L | H | L | L | L | H | L |
Seung Mok Ryoo 2019 | L | H | L | L | L | L | L |
Ali Duman 2018 | L | L | L | L | L | L | L |
Zhengliang Peng 2018 | L | L | L | L | L | L | L |
Haipeng Yan 2018 | H | H | L | L | H | H | L |
Lama H Nazer 2018 | H | L | L | H | H | L | L |
Lefeng Zhang 2018 | L | L | L | L | L | L | L |
HsienHung Cheng 2018 | L | H | L | L | L | L | L |
Jikyoung Shin 2018 | L | H | L | L | L | L | L |
Ata Mahmoodpoor 2018 | L | L | L | H | L | L | L |
Chenggong Hu 2017 | L | L | L | L | L | L | L |
Julian Jimenez 2017 | H | H | L | L | H | L | L |
Helena Brodska 2017 | L | L | L | L | L | L | L |
Huaiwu He 2017 | L | L | L | L | L | L | L |
Richa Choudhary 2017 | H | H | L | L | H | L | L |
Walaa S. Khater 2016 | H | L | L | L | H | L | L |
Roberto Rabello Filho 2016 | L | H | L | H | L | H | L |
Esra Keçe 2016 | H | L | L | H | H | H | L |
Yanyan Zhou 2015 | L | L | L | L | L | L | L |
Wei Zhang 2014 | L | L | H | L | L | L | H |
Study | Selection (Maximum 5 Stars) | Comparability (Maximum 2 Stars) | Outcome (Maximum 3 Stars) | Score (Maximum 10 Stars) | |||||
---|---|---|---|---|---|---|---|---|---|
Representativenes of Exposed Cohort | Selection of Non-Exposed Cohort | Exposure Ascertainment | Outcome Not Present at Start of Study | Comparability of Cohorts on the Basis of the Design or Analysis | Assessment of Outcome | Length of Follow-Up | Adequacy of Follow-Up | ||
Han Chen 2022 | ★ | ★ | ★ | ★ | ★ | ★ | 6 | ||
Lincui Zhong 2022 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Noa Galtung 2022 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Matteo Guarino 2022 | ★ | ★ | ★ | ★★ | ★ | ★ | 7 | ||
Yan Cao 2022 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Ying Wu 2022 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Yinjing Xie 2021 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Harith Alataby 2021 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Junkun Liu 2021 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Han Chen 2021 | ★ | ★ | ★ | ★ | ★ | ★ | 6 | ||
Jong Eun Park 2021 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Jongmin Lee 2021 | ★ | ★ | ★ | ★ | ★ | ★ | ★ | 7 | |
Gun Tak Lee 2021 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Cristian Tedesco Tonial 2021 | ★ | ★ | ★ | ★ | ★ | ★ | 6 | ||
Xiaoyuan Wei 2021 | ★ | ★ | ★ | ★ | ★ | ★ | 6 | ||
Xiaonan Chen 2021 | ★ | ★ | ★ | ★ | ★ | ★ | 6 | ||
Qingbo Zeng 2021 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Hongsong Ma 2021 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Murat Erdogan 2021 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Utsav Nandi 2021 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Yin Liu 2021 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Ralphe Bou Chebl 2021 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Valentino D’Onofrio 2020 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Shuang Li 2020 | ★ | ★ | ★ | ★ | ★ | ★ | 6 | ||
S. Perez-San Martin 2020 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Amin Gharipour 2020 | ★ | ★ | ★ | ★ | ★ | 5 | |||
Yancun Liu 2020 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Oscar H. M. Lundberg 2020 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Ralphe Bou Chebl 1 2020 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Ralphe Bou Chebl 2 2020 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Romain Jouffroy 2020 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Penzy Goyal 2020 | ★ | ★ | ★ | ★ | ★ | ★ | 6 | ||
Haijiang Zhou 2020 | ★ | ★ | ★★ | ★ | ★ | ★ | 7 | ||
Tae Sik Hwang 2020 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Priyanka Jaiswal 2020 | ★ | ★ | ★ | ★ | ★ | ★ | ★ | 7 | |
ShengYuan Hsiao 2020 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Juhyun Song 2020 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Keji Zhang 2020 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Nianfang Lu 2020 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Xiaomeng Tang 2020 | ★ | ★ | ★ | ★ | ★ | 5 | |||
Wen Li 2020 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Meryem Baysan 2020 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Filippo Mearelli 2020 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Haijiang Zhou 2020 | ★ | ★ | ★★ | ★ | ★ | ★ | 7 | ||
Lifeng Wang 2020 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Yusuke Hayashi 2020 | ★ | ★ | ★ | ★ | ★ | ★ | 6 | ||
Bernhard Wernly 2020 | ★ | ★ | ★ | ★ | ★ | ★ | 6 | ||
Areesha Alam 2020 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Gina Yu 2019 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Anitra C. Carr 2019 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Mudasir Nazir 2019 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Francesca Innocenti 2019 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Narani Sivayoham 2019 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Julian Villar 2019 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Ali Jendoubi 2019 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Jie Jiang 2019 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Shengyuan Hsiao 2019 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Elisa Estenssoro 2019 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Yunlong Liu 2019 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Anibal Basile-Filho 2019 | ★ | ★ | ★★ | ★ | ★ | ★ | 7 | ||
Han Li 2019 | ★ | ★ | ★★ | ★ | ★ | ★ | 7 | ||
Guillaume Dumas 2019 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Seung Mok Ryoo 1 2019 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
BoRa Chae 2019 | ★ | ★ | ★★ | ★ | ★ | ★ | 7 | ||
Steven J.Weiss 2019 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Sujay Samanta 2019 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Zhiqiang Liu 2019 | ★ | ★ | ★ | ★ | ★ | ★ | 6 | ||
Glenn Hernández 2019 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Seung Mok Ryoo 2 2019 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Ali Duman 2018 | ★ | ★ | ★ | ★ | ★ | ★ | ★ | ★ | 8 |
Zhengliang Peng 2018 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Haipeng Yan 2018 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Lama H Nazer 2018 | ★ | ★ | ★★ | ★ | ★ | ★ | 7 | ||
Li Xing 2018 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Lefeng Zhang 2018 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
HsienHung Cheng 2018 | ★ | ★ | ★ | ★ | ★ | ★ | ★ | 7 | |
Jikyoung Shin 2018 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Takehiko Tarui 2018 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Ata Mahmoodpoor 2018 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Chenggong Hu 2017 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Julian Jimenez 2017 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Helena Brodska 2017 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Yongfeng Jia 2017 | ★ | ★ | ★★ | ★ | ★ | ★ | 7 | ||
Dong Hyun Oh 2017 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Motohiro Sekino 2017 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Aziz Kallikunnel Sayed 2017 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Adnan Javed 2017 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Mengshi Chen 2017 | ★ | ★ | ★★ | ★ | ★ | ★ | 7 | ||
Huaiwu He 2017 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Richa Choudhary 2017 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Juandi Zhou 2017 | ★ | ★ | ★ | ★ | ★ | ★ | ★ | 7 | |
Luregn J. Schlapbach 2017 | ★ | ★ | ★★ | ★ | ★ | ★ | 7 | ||
KuanFu Chen 2017 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Kimie Oedorf 2016 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Roberto Rabello Filho 2016 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Ar-aishah Dadeh 2016 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Young Kun Lee 2016 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Aletta P. I. Houwink 2016 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Jan Philipp Bewersdorf 2016 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Sebastian A Haas 2016 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Sen Kuan Win 2016 | ★ | ★ | ★ | ★ | ★ | ★ | ★ | 7 | |
Yanyan Zhou 2015 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Min Hyung Kim 2015 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Ivo Casagranda 2015 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Hao Wang 2015 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Leonardo Lorente 2014 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Yunxia Chen 2014 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Wei Zhang 2014 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Hwang Sung Yeon 2014 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Young A Kim 2013 | ★ | ★ | ★★ | ★ | ★ | ★ | 7 | ||
Leonardo Lorente 2013 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Nik Hisamuddin Nik Ab Rahman 2012 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Kana Ram Jat 2011 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
P. Y. Boelle 2011 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Leonardo Lorente 2009 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
Alan E. Jones 2009 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
C Vorwerk 2009 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Mikkelsen 2009 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
Stephen Trzeciak 2007 | ★ | ★ | ★ | ★ | ★ | ★ | ★ | 7 | |
Charalambos A. Gogos 2003 | ★ | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 9 |
T.D.Duke 1997 | ★ | ★ | ★ | ★★ | ★ | ★ | ★ | 8 | |
G. Marecaux 1996 | ★ | ★ | ★ | ★ | ★ | ★ | 6 | ||
J Bakker 1991 | ★ | ★ | ★ | ★ | ★ | ★ | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, B.; Zhou, R.; Qin, J.; Li, Y. Hierarchical Capability in Distinguishing Severities of Sepsis via Serum Lactate: A Network Meta-Analysis. Biomedicines 2024, 12, 447. https://doi.org/10.3390/biomedicines12020447
Zhu B, Zhou R, Qin J, Li Y. Hierarchical Capability in Distinguishing Severities of Sepsis via Serum Lactate: A Network Meta-Analysis. Biomedicines. 2024; 12(2):447. https://doi.org/10.3390/biomedicines12020447
Chicago/Turabian StyleZhu, Binlu, Ruixi Zhou, Jiangwei Qin, and Yifei Li. 2024. "Hierarchical Capability in Distinguishing Severities of Sepsis via Serum Lactate: A Network Meta-Analysis" Biomedicines 12, no. 2: 447. https://doi.org/10.3390/biomedicines12020447
APA StyleZhu, B., Zhou, R., Qin, J., & Li, Y. (2024). Hierarchical Capability in Distinguishing Severities of Sepsis via Serum Lactate: A Network Meta-Analysis. Biomedicines, 12(2), 447. https://doi.org/10.3390/biomedicines12020447