Using Liver Organoids as Models to Study the Pathobiology of Rare Liver Diseases
Abstract
:1. Introduction
2. Overview of Organoid Culture System
2.1. Essential Components and Methodologies for Growing Organoids
2.1.1. Cell Source
2.1.2. Soluble Factors
2.2. Biomaterials as Substrates for Growing Organoids
2.3. Bile Duct-Like Cystic Structures and Integration of Physical Cues
3. Organoid Technology as a Tool for Modeling Rare Liver Diseases
4. Limitations of the Current Organoid System
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trefts, E.; Gannon, M.; Wasserman, D.H. The Liver. Curr. Biol. CB 2017, 27, R1147–R1151. [Google Scholar] [CrossRef]
- Gilgenkrantz, H.; Collin de l’Hortet, A. Understanding Liver Regeneration: From Mechanisms to Regenerative Medicine. Am. J. Pathol. 2018, 188, 1316–1327. [Google Scholar] [CrossRef] [PubMed]
- Stanger, B.Z. Cellular Homeostasis and Repair in the Mammalian Liver. Annu. Rev. Physiol. 2015, 77, 179–200. [Google Scholar] [CrossRef]
- Asrani, S.K.; Devarbhavi, H.; Eaton, J.; Kamath, P.S. Burden of Liver Diseases in the World. J. Hepatol. 2019, 70, 151–171. [Google Scholar] [CrossRef] [PubMed]
- Matesanz, R.; Mahillo, B.; Alvarez, M.; Carmona, M. Global Observatory and Database on Donation and Transplantation: World Overview on Transplantation Activities. Transplant. Proc. 2009, 41, 2297–2301. [Google Scholar] [CrossRef] [PubMed]
- Schnitzler, M.A.; Whiting, J.F.; Brennan, D.C.; Lentine, K.L.; Desai, N.M.; Chapman, W.; Abbott, K.C.; Kalo, Z. The Life-Years Saved by a Deceased Organ Donor. Am. J. Transplant. Off. J. Am. Soc. Transplant. Am. Soc. Transpl. Surg. 2005, 5, 2289–2296. [Google Scholar] [CrossRef] [PubMed]
- Cippà, P.E. New Ideas for Old Problems: How Scientific Advances Can Change the Future of Organ Transplantation. Transpl. Int. Off. J. Eur. Soc. Organ Transplant. 2019, 32, 561–562. [Google Scholar] [CrossRef]
- Kitajima, T.; Kuno, Y.; Ivanics, T.; Lu, M.; Moonka, D.; Shimada, S.; Shamaa, T.; Abouljoud, M.S.; Nagai, S. Improved Survival With Higher-Risk Donor Grafts in Liver Transplant With Acute-on-Chronic Liver Failure. Transplant. Direct 2022, 8, e1283. [Google Scholar] [CrossRef]
- Kmieć, Z. Cooperation of Liver Cells in Health and Disease. Adv. Anat. Embryol. Cell Biol. 2001, 161, 1–151. [Google Scholar] [CrossRef]
- Ding, C.; Li, Y.; Guo, F.; Jiang, Y.; Ying, W.; Li, D.; Yang, D.; Xia, X.; Liu, W.; Zhao, Y.; et al. A Cell-Type-Resolved Liver Proteome. Mol. Cell. Proteom. 2016, 15, 3190–3202. [Google Scholar] [CrossRef]
- Deng, X.; Zhang, X.; Li, W.; Feng, R.X.; Li, L.; Yi, G.R.; Zhang, X.N.; Yin, C.; Yu, H.Y.; Zhang, J.P.; et al. Chronic Liver Injury Induces Conversion of Biliary Epithelial Cells into Hepatocytes. Cell Stem Cell 2018, 23, 114–122.e3. [Google Scholar] [CrossRef] [PubMed]
- Baptista, P.M.; Siddiqui, M.M.; Lozier, G.; Rodriguez, S.R.; Atala, A.; Soker, S. The Use of Whole Organ Decellularization for the Generation of a Vascularized Liver Organoid. Hepatology 2011, 53, 604–617. [Google Scholar] [CrossRef]
- Maepa, S.W.; Ndlovu, H. Advances in Generating Liver Cells from Pluripotent Stem Cells as a Tool for Modeling Liver Diseases. Stem Cells 2020, 38, 606–612. [Google Scholar] [CrossRef]
- Lancaster, M.A.; Knoblich, J.A. Organogenesis in a Dish: Modeling Development and Disease Using Organoid Technologies. Science 2014, 345, 1247125. [Google Scholar] [CrossRef]
- Hendriks, D.; Artegiani, B.; Hu, H.; Chuva de Sousa Lopes, S.; Clevers, H. Establishment of Human Fetal Hepatocyte Organoids and CRISPR-Cas9-Based Gene Knockin and Knockout in Organoid Cultures from Human Liver. Nat. Protoc. 2021, 16, 182–217. [Google Scholar] [CrossRef]
- Haugabook, S.J.; Ferrer, M.; Ottinger, E.A. In Vitro and in Vivo Translational Models for Rare Liver Diseases. Biochim. Biophys. Acta. Mol. Basis Dis. 2019, 1865, 1003–1018. [Google Scholar] [CrossRef] [PubMed]
- Melnikova, I. Rare Diseases and Orphan Drugs. Nat. Rev. Drug Discov. 2012, 11, 267–268. [Google Scholar] [CrossRef]
- Bhatia, S.N.; Underhill, G.H.; Zaret, K.S.; Fox, I.J. Cell and Tissue Engineering for Liver Disease. Sci. Transl. Med. 2014, 6, 245sr2. [Google Scholar] [CrossRef] [PubMed]
- Arai, K.; Yoshida, T.; Okabe, M.; Goto, M.; Mir, T.A.; Soko, C.; Tsukamoto, Y.; Akaike, T.; Nikaido, T.; Zhou, K.; et al. Fabrication of 3D-Culture Platform with Sandwich Architecture for Preserving Liver-Specific Functions of Hepatocytes Using 3D Bioprinter. J. Biomed. Mater. Res. Part A 2017, 105, 1583–1592. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, X.; Liang, L.; Li, J.; Demirci, U.; Wang, S. A Decade of Progress in Liver Regenerative Medicine. Biomaterials 2018, 157, 161–176. [Google Scholar] [CrossRef]
- Mir, T.A.; Nakamura, M.; Sakai, S.; Iwanaga, S.; Wani, S.I.; Alzhrani, A.; Arai, K.; Mir, B.A.; Kazmi, S.; Assiri, A.M.; et al. Mammalian-Specific Decellularized Matrices Derived Bioink for Bioengineering of Liver Tissue Analogues: A Review. Int. J. Bioprint. 2023, 9, 714. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Wang, X.; Wang, Z. Engineered Liver Tissue in Vitro to Mimic Liver Functions and Its Biomedical Applications. Mater. Adv. 2022, 3, 4132–4154. [Google Scholar] [CrossRef]
- Clevers, H. Modeling Development and Disease with Organoids. Cell 2016, 165, 1586–1597. [Google Scholar] [CrossRef] [PubMed]
- Takebe, T.; Wells, J.M. Organoids by Design. Science 2019, 364, 956–959. [Google Scholar] [CrossRef] [PubMed]
- Brassard, J.A.; Lutolf, M.P. Engineering Stem Cell Self-Organization to Build Better Organoids. Cell Stem Cell 2019, 24, 860–876. [Google Scholar] [CrossRef] [PubMed]
- Sampaziotis, F.; Muraro, D.; Tysoe, O.C.; Sawiak, S.; Beach, T.E.; Godfrey, E.M.; Upponi, S.S.; Brevini, T.; Wesley, B.T.; Garcia-Bernardo, J.; et al. Cholangiocyte Organoids Can Repair Bile Ducts after Transplantation in the Human Liver. Science 2021, 371, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Prior, N.; Inacio, P.; Huch, M. Liver Organoids: From Basic Research to Therapeutic Applications. Gut 2019, 68, 2228–2237. [Google Scholar] [CrossRef] [PubMed]
- Huch, M.; Dorrell, C.; Boj, S.F.; van Es, J.H.; Li, V.S.W.; van de Wetering, M.; Sato, T.; Hamer, K.; Sasaki, N.; Finegold, M.J.; et al. In Vitro Expansion of Single Lgr5+ Liver Stem Cells Induced by Wnt-Driven Regeneration. Nature 2013, 494, 247–250. [Google Scholar] [CrossRef] [PubMed]
- Takebe, T.; Sekine, K.; Enomura, M.; Koike, H.; Kimura, M.; Ogaeri, T.; Zhang, R.R.; Ueno, Y.; Zheng, Y.W.; Koike, N.; et al. Vascularized and Functional Human Liver from an IPSC-Derived Organ Bud Transplant. Nature 2013, 499, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Chen, X.; Dowbaj, A.M.; Sljukic, A.; Bratlie, K.; Lin, L.; Fong, E.L.S.; Balachander, G.M.; Chen, Z.; Soragni, A.; et al. Organoids. Nat. Rev. Methods Prim. 2022, 2, 94. [Google Scholar] [CrossRef]
- Hu, H.; Gehart, H.; Artegiani, B.; LÖpez-Iglesias, C.; Dekkers, F.; Basak, O.; van Es, J.; Chuva de Sousa Lopes, S.M.; Begthel, H.; Korving, J.; et al. Long-Term Expansion of Functional Mouse and Human Hepatocytes as 3D Organoids. Cell 2018, 175, 1591–1606.e19. [Google Scholar] [CrossRef]
- Peng, W.C.; Logan, C.Y.; Fish, M.; Anbarchian, T.; Aguisanda, F.; Álvarez-Varela, A.; Wu, P.; Jin, Y.; Zhu, J.; Li, B.; et al. Inflammatory Cytokine TNFα; Promotes the Long-Term Expansion of Primary Hepatocytes in 3D Culture. Cell 2018, 175, 1607–1619.e15. [Google Scholar] [CrossRef]
- Kolios, G.; Moodley, Y. Introduction to Stem Cells and Regenerative Medicine. Respir. Int. Rev. Thorac. Dis. 2013, 85, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Okita, K.; Ichisaka, T.; Yamanaka, S. Generation of Germline-Competent Induced Pluripotent Stem Cells. Nature 2007, 448, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Vodyanik, M.A.; Smuga-Otto, K.; Antosiewicz-Bourget, J.; Frane, J.L.; Tian, S.; Nie, J.; Jonsdottir, G.A.; Ruotti, V.; Stewart, R.; et al. Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells. Science 2007, 318, 1917–1920. [Google Scholar] [CrossRef] [PubMed]
- Amimoto, N.; Mizumoto, H.; Nakazawa, K.; Ijima, H.; Funatsu, K.; Kajiwara, T. Hepatic Differentiation of Mouse Embryonic Stem Cells and Induced Pluripotent Stem Cells during Organoid Formation in Hollow Fibers. Tissue Eng. Part A 2011, 17, 2071–2078. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kim, Y.W.; Lee, S.B.; Kang, K.; Yoon, S.; Choi, D.; Park, S.-H.; Jeong, J. Hepatic Patch by Stacking Patient-Specific Liver Progenitor Cell Sheets Formed on Multiscale Electrospun Fibers Promotes Regenerative Therapy for Liver Injury. Biomaterials 2021, 274, 120899. [Google Scholar] [CrossRef] [PubMed]
- Goulart, E.; de Caires-Junior, L.C.; Telles-Silva, K.A.; Araujo, B.H.S.; Kobayashi, G.S.; Musso, C.M.; Assoni, A.F.; Oliveira, D.; Caldini, E.; Gerstenhaber, J.A.; et al. Adult and IPS-Derived Non-Parenchymal Cells Regulate Liver Organoid Development through Differential Modulation of Wnt and TGF-β. Stem Cell Res. Ther. 2019, 10, 258. [Google Scholar] [CrossRef]
- Ogawa, M.; Ogawa, S.; Bear, C.E.; Ahmadi, S.; Chin, S.; Li, B.; Grompe, M.; Keller, G.; Kamath, B.M.; Ghanekar, A. Directed Differentiation of Cholangiocytes from Human Pluripotent Stem Cells. Nat. Biotechnol. 2015, 33, 853–861. [Google Scholar] [CrossRef]
- Guye, P.; Ebrahimkhani, M.R.; Kipniss, N.; Velazquez, J.J.; Schoenfeld, E.; Kiani, S.; Griffith, L.G.; Weiss, R. Genetically Engineering Self-Organization of Human Pluripotent Stem Cells into a Liver Bud-like Tissue Using Gata6. Nat. Commun. 2016, 7, 10243. [Google Scholar] [CrossRef]
- Broutier, L.; Mastrogiovanni, G.; Verstegen, M.M.A.; Francies, H.E.; Gavarró, L.M.; Bradshaw, C.R.; Allen, G.E.; Arnes-Benito, R.; Sidorova, O.; Gaspersz, M.P.; et al. Human Primary Liver Cancer–Derived Organoid Cultures for Disease Modeling and Drug Screening. Nat. Med. 2017, 23, 1424–1435. [Google Scholar] [CrossRef]
- Huch, M.; Gehart, H.; Van Boxtel, R.; Hamer, K.; Blokzijl, F.; Verstegen, M.M.A.; Ellis, E.; van Wenum, M.; Fuchs, S.A.; de Ligt, J.; et al. Long-Term Culture of Genome-Stable Bipotent Stem Cells from Adult Human Liver. Cell 2015, 160, 299–312. [Google Scholar] [CrossRef]
- Prior, N.; Hindley, C.J.; Rost, F.; Meléndez, E.; Lau, W.W.Y.; Göttgens, B.; Rulands, S.; Simons, B.D.; Huch, M. Lgr5(+) Stem and Progenitor Cells Reside at the Apex of a Heterogeneous Embryonic Hepatoblast Pool. Development 2019, 146, dev174557. [Google Scholar] [CrossRef]
- Carter, M.; Essner, R.; Goldstein, N.; Iyer, M. (Eds.) Chapter 13—Cell Culture Techniques. In Guide to Research Techniques in Neuroscience, 3rd ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 291–308. ISBN 978-0-12-818646-6. [Google Scholar]
- Oz, O.; Iscan, E.; Batur, T.; Ozturk, M. 3D Organoid Modelling of Hepatoblast-like and Mesenchymal-like Hepatocellular Carcinoma Cell Lines. Hepatoma Res. 2021, 7, 60. [Google Scholar] [CrossRef]
- Fan, H.; Demirci, U.; Chen, P. Emerging Organoid Models: Leaping Forward in Cancer Research. J. Hematol. Oncol. 2019, 12, 142. [Google Scholar] [CrossRef] [PubMed]
- Gamboa, C.M.; Wang, Y.; Xu, H.; Kalemba, K.; Wondisford, F.E.; Sabaawy, H.E. Optimized 3d Culture of Hepatic Cells for Liver Organoid Metabolic Assays. Cells 2021, 10, 3280. [Google Scholar] [CrossRef]
- Chhabra, A.; Song, H.-H.G.; Grzelak, K.A.; Polacheck, W.J.; Fleming, H.E.; Chen, C.S.; Bhatia, S.N. A Vascularized Model of the Human Liver Mimics Regenerative Responses. Proc. Natl. Acad. Sci. USA 2022, 119, e2115867119. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Gao, Y.; Hoyle, D.L.; Cheng, T.; Wang, Z.Z. Suppression of Transforming Growth Factor-β Signaling Delays Cellular Senescence and Preserves the Function of Endothelial Cells Derived from Human Pluripotent Stem Cells. Stem Cells Transl. Med. 2017, 6, 589–600. [Google Scholar] [CrossRef]
- Guan, Y.; Enejder, A.; Wang, M.; Fang, Z.; Cui, L.; Chen, S.-Y.; Wang, J.; Tan, Y.; Wu, M.; Chen, X.; et al. A Human Multi-Lineage Hepatic Organoid Model for Liver Fibrosis. Nat. Commun. 2021, 12, 6138. [Google Scholar] [CrossRef] [PubMed]
- Verstegen, M.M.A.; Roos, F.J.M.; Burka, K.; Gehart, H.; Jager, M.; de Wolf, M.; Bijvelds, M.J.C.; de Jonge, H.R.; Ardisasmita, A.I.; van Huizen, N.A.; et al. Human Extrahepatic and Intrahepatic Cholangiocyte Organoids Show Region-Specific Differentiation Potential and Model Cystic Fibrosis-Related Bile Duct Disease. Sci. Rep. 2020, 10, 21900. [Google Scholar] [CrossRef] [PubMed]
- Sampaziotis, F.; de Brito, M.C.; Geti, I.; Bertero, A.; Hannan, N.R.; Vallier, L. Directed Differentiation of Human Induced Pluripotent Stem Cells into Functional Cholangiocyte-like Cells. Nat. Protoc. 2017, 12, 814–827. [Google Scholar] [CrossRef]
- Urbischek, M.; Rannikmae, H.; Foets, T.; Ravn, K.; Hyvönen, M.; de la Roche, M. Organoid Culture Media Formulated with Growth Factors of Defined Cellular Activity. Sci. Rep. 2019, 9, 6193. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Cui, K.; Guo, Y.; Zhang, X.; Qin, J. Advances in Hydrogels in Organoids and Organs-on-a-Chip. Adv. Mater. 2019, 31, 1902042. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Min, S.; Choi, Y.S.; Jo, S.-H.; Jung, J.H.; Han, K.; Kim, J.; An, S.; Ji, Y.W.; Kim, Y.-G.; et al. Tissue Extracellular Matrix Hydrogels as Alternatives to Matrigel for Culturing Gastrointestinal Organoids. Nat. Commun. 2022, 13, 1692. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Mun, S.; Pham, D.M.; Kim, P. Extracellular Matrix-Based Hydrogels to Tailoring Tumor Organoids. ACS Biomater. Sci. Eng. 2021, 7, 4128–4135. [Google Scholar] [CrossRef]
- Blatchley, M.R.; Anseth, K.S. Middle-out Methods for Spatiotemporal Tissue Engineering of Organoids. Nat. Rev. Bioeng. 2023, 1, 329–345. [Google Scholar] [CrossRef]
- Gjorevski, N.; Lutolf, M.P. Synthesis and Characterization of Well-Defined Hydrogel Matrices and Their Application to Intestinal Stem Cell and Organoid Culture. Nat. Protoc. 2017, 12, 2263–2274. [Google Scholar] [CrossRef]
- Klotz, B.J.; Oosterhoff, L.A.; Utomo, L.; Lim, K.S.; Vallmajo-Martin, Q.; Clevers, H.; Woodfield, T.B.F.; Rosenberg, A.J.W.P.; Malda, J.; Ehrbar, M.; et al. A Versatile Biosynthetic Hydrogel Platform for Engineering of Tissue Analogues. Adv. Healthc. Mater. 2019, 8, 1900979. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Zhang, M.; Wang, H.; Chen, W.; Qin, J. One-Step Synthesis of Composite Hydrogel Capsules to Support Liver Organoid Generation from HiPSCs. Biomater. Sci. 2020, 8, 5476–5488. [Google Scholar] [CrossRef]
- Takebe, T.; Zhang, R.-R.; Koike, H.; Kimura, M.; Yoshizawa, E.; Enomura, M.; Koike, N.; Sekine, K.; Taniguchi, H. Generation of a Vascularized and Functional Human Liver from an IPSC-Derived Organ Bud Transplant. Nat. Protoc. 2014, 9, 396–409. [Google Scholar] [CrossRef] [PubMed]
- Takebe, T.; Sekine, K.; Kimura, M.; Yoshizawa, E.; Ayano, S.; Koido, M.; Funayama, S.; Nakanishi, N.; Hisai, T.; Kobayashi, T.; et al. Massive and Reproducible Production of Liver Buds Entirely from Human Pluripotent Stem Cells. Cell Rep. 2017, 21, 2661–2670. [Google Scholar] [CrossRef]
- Koike, H.; Iwasawa, K.; Ouchi, R.; Maezawa, M.; Giesbrecht, K.; Saiki, N.; Ferguson, A.; Kimura, M.; Thompson, W.L.; Wells, J.M. Modelling Human Hepato-Biliary-Pancreatic Organogenesis from the Foregut–Midgut Boundary. Nature 2019, 574, 112–116. [Google Scholar] [CrossRef]
- Koike, H.; Iwasawa, K.; Ouchi, R.; Maezawa, M.; Kimura, M.; Kodaka, A.; Nishii, S.; Thompson, W.L.; Takebe, T. Engineering Human Hepato-Biliary-Pancreatic Organoids from Pluripotent Stem Cells. Nat. Protoc. 2021, 16, 919–936. [Google Scholar] [CrossRef]
- Vyas, D.; Baptista, P.M.; Brovold, M.; Moran, E.; Gaston, B.; Booth, C.; Samuel, M.; Atala, A.; Soker, S. Self-assembled Liver Organoids Recapitulate Hepatobiliary Organogenesis In Vitro. Hepatology 2018, 67, 750–761. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Kim, J.; Lee, J.S.; Min, S.; Kim, S.; Ahn, D.; Kim, Y.; Cho, S. Vascularized Liver Organoids Generated Using Induced Hepatic Tissue and Dynamic Liver-specific Microenvironment as a Drug Testing Platform. Adv. Funct. Mater. 2018, 28, 1801954. [Google Scholar] [CrossRef]
- Ouchi, R.; Togo, S.; Kimura, M.; Shinozawa, T.; Koido, M.; Koike, H.; Thompson, W.; Karns, R.A.; Mayhew, C.N.; McGrath, P.S. Modeling Steatohepatitis in Humans with Pluripotent Stem Cell-Derived Organoids. Cell Metab. 2019, 30, 374–384. [Google Scholar] [CrossRef]
- Ramli, M.N.B.; Lim, Y.S.; Koe, C.T.; Demircioglu, D.; Tng, W.; Gonzales, K.A.U.; Tan, C.P.; Szczerbinska, I.; Liang, H.; Soe, E.L.; et al. Human Pluripotent Stem Cell-Derived Organoids as Models of Liver Disease. Gastroenterology 2020, 159, 1471–1486.e12. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, G.; Chi, K.Y.; Kim, H.; Jang, Y.J.; Jo, S.; Lee, J.; Lee, Y.; Woo, D.-H.; Han, C.; et al. Generation of Multilineage Liver Organoids with Luminal Vasculature and Bile Ducts from Human Pluripotent Stem Cells via Modulation of Notch Signaling. Stem Cell Res. Ther. 2023, 14, 19. [Google Scholar] [CrossRef] [PubMed]
- Salerno, S.; Tasselli, F.; Drioli, E.; de Bartolo, L. Poly(ε-Caprolactone) Hollow Fiber Membranes for the Biofabrication of a Vascularized Human Liver Tissue. Membranes 2020, 10, 112. [Google Scholar] [CrossRef]
- He, J.; Cui, H.; Shi, X.; Jin, Q.; Han, X.; Han, T.; Peng, J.; Guo, S.; Zhang, L.; Zhao, Y.; et al. Functional Hepatobiliary Organoids Recapitulate Liver Development and Reveal Essential Drivers of Hepatobiliary Cell Fate Determination. Life Med. 2022, 1, 345–358. [Google Scholar] [CrossRef]
- Maschmeyer, I.; Lorenz, A.K.; Schimek, K.; Hasenberg, T.; Ramme, A.P.; Hübner, J.; Lindner, M.; Drewell, C.; Bauer, S.; Thomas, A.; et al. A Four-Organ-Chip for Interconnected Long-Term Co-Culture of Human Intestine, Liver, Skin and Kidney Equivalents. Lab Chip 2015, 15, 2688–2699. [Google Scholar] [CrossRef] [PubMed]
- Grebenyuk, S.; Abdel Fattah, A.R.; Kumar, M.; Toprakhisar, B.; Rustandi, G.; Vananroye, A.; Salmon, I.; Verfaillie, C.; Grillo, M.; Ranga, A. Large-Scale Perfused Tissues via Synthetic 3D Soft Microfluidics. Nat. Commun. 2023, 14, 193. [Google Scholar] [CrossRef]
- Bonanini, F.; Kurek, D.; Previdi, S.; Nicolas, A.; Hendriks, D.; de Ruiter, S.; Meyer, M.; Clapés Cabrer, M.; Dinkelberg, R.; García, S.B.; et al. In Vitro Grafting of Hepatic Spheroids and Organoids on a Microfluidic Vascular Bed. Angiogenesis 2022, 25, 455. [Google Scholar] [CrossRef]
- Guan, Y.; Xu, D.; Garfin, P.M.; Ehmer, U.; Hurwitz, M.; Enns, G.; Michie, S.; Wu, M.; Zheng, M.; Nishimura, T.; et al. Human Hepatic Organoids for the Analysis of Human Genetic Diseases. JCI Insight 2017, 2, e94954. [Google Scholar] [CrossRef]
- Chung, P.H.-Y.; Babu, R.O.; Wu, Z.; Wong, K.K.-Y.; Tam, P.K.-H.; Lui, V.C.-H. Developing Biliary Atresia-like Model by Treating Human Liver Organoids with Polyinosinic:Polycytidylic Acid (Poly (I:C)). Curr. Issues Mol. Biol. 2022, 44, 644–653. [Google Scholar] [CrossRef] [PubMed]
- Babu, R.O.; Lui, V.C.H.; Chen, Y.; Yiu, R.S.W.; Ye, Y.; Niu, B.; Wu, Z.; Zhang, R.; Yu, M.O.N.; Chung, P.H.Y.; et al. Beta-Amyloid Deposition around Hepatic Bile Ducts Is a Novel Pathobiological and Diagnostic Feature of Biliary Atresia. J. Hepatol. 2020, 73, 1391–1403. [Google Scholar] [CrossRef]
- Amarachintha, S.P.; Mourya, R.; Ayabe, H.; Yang, L.; Luo, Z.; Li, X.; Thanekar, U.; Shivakumar, P.; Bezerra, J.A. Biliary Organoids Uncover Delayed Epithelial Development and Barrier Function in Biliary Atresia. Hepatology 2022, 75, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Kruitwagen, H.S.; Oosterhoff, L.A.; van Wolferen, M.E.; Chen, C.; Nantasanti Assawarachan, S.; Schneeberger, K.; Kummeling, A.; van Straten, G.; Akkerdaas, I.C.; Vinke, C.R.; et al. Long-Term Survival of Transplanted Autologous Canine Liver Organoids in a COMMD1-Deficient Dog Model of Metabolic Liver Disease. Cells 2020, 9, 410. [Google Scholar] [CrossRef]
- Nantasanti, S.; Spee, B.; Kruitwagen, H.S.; Chen, C.; Geijsen, N.; Oosterhoff, L.A.; van Wolferen, M.E.; Pelaez, N.; Fieten, H.; Wubbolts, R.W.; et al. Disease Modeling and Gene Therapy of Copper Storage Disease in Canine Hepatic Organoids. Stem Cell Rep. 2015, 5, 895–907. [Google Scholar] [CrossRef]
- Soroka, C.J.; Assis, D.N.; Alrabadi, L.S.; Roberts, S.; Cusack, L.; Jaffe, A.B.; Boyer, J.L. Bile-Derived Organoids From Patients With Primary Sclerosing Cholangitis Recapitulate Their Inflammatory Immune Profile. Hepatology 2019, 70, 871–882. [Google Scholar] [CrossRef] [PubMed]
- Loarca, L.; De Assuncao, T.M.; Jalan-Sakrikar, N.; Bronk, S.; Krishnan, A.; Huang, B.; Morton, L.; Trussoni, C.; Bonilla, L.M.; Krueger, E.; et al. Development and Characterization of Cholangioids from Normal and Diseased Human Cholangiocytes as an in Vitro Model to Study Primary Sclerosing Cholangitis. Lab. Investig. 2017, 97, 1385–1396. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Li, Y.; Wang, Y.; Liu, J.; Lavrijsen, M.; Li, Y.; Zhang, R.; Verstegen, M.M.A.; Wang, Y.; Li, T.C.; et al. Recapitulating Hepatitis E Virus–Host Interactions and Facilitating Antiviral Drug Discovery in Human Liver–Derived Organoids. Sci. Adv. 2022, 8, eabj5908. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Ni, C.; Gao, R.; Wang, Y.; Yang, L.; Wei, J.; Lv, T.; Liang, J.; Zhang, Q.; Xu, W.; et al. Recapitulation of SARS-CoV-2 Infection and Cholangiocyte Damage with Human Liver Ductal Organoids. Protein Cell 2020, 11, 771–775. [Google Scholar] [CrossRef]
- Nie, Y.-Z.; Zheng, Y.-W.; Ogawa, M.; Miyagi, E.; Taniguchi, H. Human Liver Organoids Generated with Single Donor-Derived Multiple Cells Rescue Mice from Acute Liver Failure. Stem Cell Res. Ther. 2018, 9, 5. [Google Scholar] [CrossRef]
- Shi, S.; Roest, H.P.; van den Bosch, T.P.P.; Bijvelds, M.J.C.; Boehnert, M.U.; de Jonge, J.; Dekker, S.O.; de Vries, A.A.F.; de Jonge, H.R.; Verstegen, M.M.A.; et al. Modeling Bile Duct Ischemia and Reoxygenation Injury in Human Cholangiocyte Organoids for Screening of Novel Cholangio-Protective Agents. eBioMedicine 2023, 88, 104431. [Google Scholar] [CrossRef]
- Hendriks, D.; Brouwers, J.F.; Hamer, K.; Geurts, M.H.; Luciana, L.; Massalini, S.; López-Iglesias, C.; Peters, P.J.; Rodríguez-Colman, M.J.; Chuva de Sousa Lopes, S.; et al. Engineered Human Hepatocyte Organoids Enable CRISPR-Based Target Discovery and Drug Screening for Steatosis. Nat. Biotechnol. 2023; online ahead of print. [Google Scholar] [CrossRef]
- Tao, T.; Deng, P.; Wang, Y.; Zhang, X.; Guo, Y.; Chen, W.; Qin, J. Microengineered Multi-Organoid System from HiPSCs to Recapitulate Human Liver-Islet Axis in Normal and Type 2 Diabetes. Adv. Sci. 2022, 9, e2103495. [Google Scholar] [CrossRef]
Reference | Culture | Cell Source | Liver Organoids | Outcome |
---|---|---|---|---|
[28] | In vitro ASC expansion | ASC (Lgr5+) | Hepatocytes and cholangiocytes | Liver organoid |
[62] | In vitro iPSC expansion | iPSCs, ECs, MSCs | Hepatocytes | Vascularized and functional human liver |
[66] | In vitro decellularized liver matrix (LEM) | ASCs | Hepatocytes and cholangiocytes | Self-assembled liver organoids were recapitulated: hepatobiliary organogenesis, metabolic and secretory functions |
[67] | In vitro-induced hepatic cells in LEM | iPSCs with ECs and MCs | Hepatocytes and cholangiocytes | Vascularized liver organoids were generated using induced hepatic tissue and dynamic liver-specific microenvironment as a drug testing platform |
[64] | In vitro HBPO organoid structure | iPSCs with ECs and MSCs | Hepatocytes and cholangiocytes | Modeling of human hepato-biliary-pancreatic organogenesis from the foregut–midgut boundary |
[68] | In vitro multi-cellular liver organoids composed of hepatocyte-, stellate-, and Kupffer-like cells | iPSCs and ECs | Hepatocyte-like cells, Kupffer-like cells, hepatic stellate-like cells | This model offers a new approach for studying inflammation and fibrosis in human liver disease such as steatohepatitis |
[69] | In vitro chemically defined and serum-free environment | iPSCs and ESCs | Hepatocytes and cholangiocytes | Organized functional bile canaliculi system |
[70] | In vitro expansion via modulation of Notch signaling | iPSCs | Hepatic endoderm, HscLCs, and endothelial cells | Functional vasculature and bile ducts in individual maps |
Reference | Co-Culture System | Method | Results | Cell Source |
---|---|---|---|---|
[71] | Hollow fiber (HF) in bioreactor | HF membranes compartmentalize human hepatocytes on the external surface and between the fibers and compartmentalize endothelial cells into the fiber lumen | It retained its functional activity at high levels for up to 18 days | ASCs, ECs, hepatocytes |
[72] | Spinning bioreactor | The spinning provides a flow suspension environment, enhances nutrient absorption, and promotes the self-assembly of cells into substantial functional | Generated self-assembled functional hepatobiliary organoids | ASCs (hepatocytes) |
[67] | MOC | Microfluidic-based cell culture device with a continuous dynamic flow of media | The system produced functional vascularized liver organoids | iPSCs with ECs and MSCs |
[73] | Multi-chamber chip | Multi-chamber chip for long-term co-culture of four tissue types | Multi-organoid chips consisting of functional intestine, liver, skin, and kidney organoids | iPSCs |
[74] | Perfused tissues via synthetic 3D soft microfluidics | A 3D-printable 2-photon-polymerizable hydrogel formulation uniquely enables a 3D soft microfluidic strategy | The system enhanced tissue growth and differentiation compared to previously reported in vitro tissue vascularization strategies | iPSCs |
[75] | In vitro MOC organoids on a microfluidic vascular bed | The microvascular bed consists of 64 microfluidic chips; each chip has a microfluidic chamber, which permits tissue grafting | The platform provided in vitro vascularization of tissues for routine grafting of spheroids, organoids, or (patient-derived) explants | ASCs (hepatocytes) |
Rare Liver Disease | Co-Culture Type, Species | Major Findings | Reference |
---|---|---|---|
ALGS | - iPSC-derived hepatocyte | - The organoids had a regenerative property that is similar to that of the human liver, and a set of mutations related to ALGS was found to have a significant effect on the pathogenesis of liver disease. | [76] |
Biliary Atresia | - Biliary atresia-BA-like model, human-derived | - Created BA model from a non-sick individual and demonstrated drug effectiveness. | [77] |
- The study found that beta-amyloid accumulates around bile ducts in patients’ livers. | [78] | ||
- Organoids derived from patients revealed molecular and functional evidence of delayed epithelial development in BA patients. | [79] | ||
Wilson’s Disease | - Derived hepatocyte, dog model | - Survival of genetically corrected autologous organoid-derived hepatocyte-like cells in vivo. | [80] |
- Gene supplementation in hepatic organoids of COMMD1-deficient dogs restores function and can effectively cure copper storage disease. | [81] | ||
Primary Sclerosing Cholangitis (PSC) | - Human bile duct organoid model | - Organoids recapitulate disease inflammatory immune profile. | [82] |
- Organoids recapitulate the senescence, pro-inflammatory factors, and macrophage recruitment observed in PSC. | [83] | ||
Infectious Diseases | |||
HEV | - ASC human organoids inoculated with HEV particles in a transwell system | - This model can be used for drug screening, identifying new HEV inhibitors, and improving our insights to study virus–host interaction and antiviral therapies. | [84] |
SARS-CoV-2 | - ASC human liver bile duct organoids | - Liver damage caused directly by SARS-CoV-2 infection should be valued when treating COVID-19 patients. | [85] |
Common Diseases with Liver Model | |||
ALF | - ASC mouse-derived model | - Human liver organoids generated with single-donor-derived multiple cells rescued mice from acute liver failure. | [86] |
Steatohepatitis | - MOC human-derived organoid | - The model displayed genetic dysfunction of lysosomal acid lipase, which is found in severe steatohepatitis. The model can also be used to study inflammation and fibrosis in humans. | [68] |
Ischemia | - Intrahepatic cholangiocyte organoids (ICOs), human-derived ASC | - The organoids recapitulate ischemic cholangiopathy in vitro and enable drug assessment studies for the discovery of new therapeutics for ischemic cholangiopathies. | [87] |
NAFLD | - APOB or MTTP knockout organoids derived from human hepatocyte cell line | - This model facilitated steatosis etiology and provided a drug screening platform. | [88] |
Diabetes Mellitus | - MOC model derived from humans | - This model showed the cellular functions of diabetic patients and their response to external stimuli and drugs. | [89] |
Cystic Fibrosis | - ASC, human-derived, extrahepatic cholangiocyte organoids (ECOs) | - Organoid model derived from cystic fibrosis patient showed no CFTR channel activity but showed normal chloride channel and MDR1 transporter activity. | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obeid, D.A.; Mir, T.A.; Alzhrani, A.; Altuhami, A.; Shamma, T.; Ahmed, S.; Kazmi, S.; Fujitsuka, I.; Ikhlaq, M.; Shabab, M.; et al. Using Liver Organoids as Models to Study the Pathobiology of Rare Liver Diseases. Biomedicines 2024, 12, 446. https://doi.org/10.3390/biomedicines12020446
Obeid DA, Mir TA, Alzhrani A, Altuhami A, Shamma T, Ahmed S, Kazmi S, Fujitsuka I, Ikhlaq M, Shabab M, et al. Using Liver Organoids as Models to Study the Pathobiology of Rare Liver Diseases. Biomedicines. 2024; 12(2):446. https://doi.org/10.3390/biomedicines12020446
Chicago/Turabian StyleObeid, Dalia A., Tanveer Ahmad Mir, Alaa Alzhrani, Abdullah Altuhami, Talal Shamma, Sana Ahmed, Shadab Kazmi, Iriya Fujitsuka, Mohd Ikhlaq, Mohammad Shabab, and et al. 2024. "Using Liver Organoids as Models to Study the Pathobiology of Rare Liver Diseases" Biomedicines 12, no. 2: 446. https://doi.org/10.3390/biomedicines12020446
APA StyleObeid, D. A., Mir, T. A., Alzhrani, A., Altuhami, A., Shamma, T., Ahmed, S., Kazmi, S., Fujitsuka, I., Ikhlaq, M., Shabab, M., Assiri, A. M., & Broering, D. C. (2024). Using Liver Organoids as Models to Study the Pathobiology of Rare Liver Diseases. Biomedicines, 12(2), 446. https://doi.org/10.3390/biomedicines12020446