Equine Models of Temporomandibular Joint Osteoarthritis: A Review of Feasibility, Biomarkers, and Molecular Signaling
Abstract
:1. Introduction
2. TMJ OA in Humans and Horses
3. Biomarkers of TMJ OA
3.1. Search Strategies and Selection Process of Equine TMJ OA Biomarkers
3.2. Biomarkers of Equine TMJ OA
4. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.D.; Zhang, J.N.; Gan, Y.H.; Zhou, Y.H. Current Understanding of Pathogenesis and Treatment of TMJ Osteoarthritis. J. Dent. Res. 2015, 94, 666–673. [Google Scholar] [CrossRef] [PubMed]
- Yamashita-Futani, Y.; Jokaji, R.; Ooi, K.; Kobayashi, K.; Kanakis, I.; Liu, K.; Kawashiri, S.; Bou-Gharios, G.; Nakamura, H. Metalloelastase-12 Is Involved in the Temporomandibular Joint Inflammatory Response as Well as Cartilage Degradation by Aggrecanases in Str/Ort Mice. Biomed. Rep. 2021, 14, 51. [Google Scholar] [CrossRef]
- Cui, C.; Zheng, L.; Fan, Y.; Zhang, J.; Xu, R.; Xie, J.; Zhou, X. Parathyroid Hormone Ameliorates Temporomandibular Joint Osteoarthritic-like Changes Related to Age. Cell Prolif. 2020, 53, E12755. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Lu, H.; Yu, F.; Zhou, Y. Trend of Cadherin-11 Expression and its Impact on Cartilage Degradation in the Temporomandibular Joints of Guinea Pigs with Spontaneous Osteoarthritis. J. Oral Pathol. Med. 2020, 45, 534–538. [Google Scholar] [CrossRef]
- Carmalt, J.L.; Gordon, J.R.; Allen, A.L. Temporomandibular joint cytokine profiles in the horse. J. Vet. Dent. 2006, 23, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Carmalt, J.L.; Kneissl, S.; Rawlinson, J.E.; Zwick, T.; Zekas, L.; Ohlerth, S.; Bienert-Zeit, A. Computed tomographic appearance of the temporomandibular joint in 1018 asymptomatic horses: A multi-institution study. Vet. Radiol. Ultrasound 2016, 57, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Smyth, T.; Allen, A.L.; Carmalt, J.L. Clinically significant, nontraumatic, degenerative joint disease of the temporomandibular joints in a horse. Equine Vet. Educ. 2017, 29, 72–77. [Google Scholar] [CrossRef]
- Smyth, T.T. Osteoarthritis of the Equine Temporomandibular Joint. 2017. Available online: http://hdl.handle.net/10388/7939 (accessed on 15 November 2023).
- Cota, J.M.G.; Leale, D.M.; Arzi, B.; Cissell, D.D. Regional and disease-related differences in properties of the equine temporomandibular joint disc. J. Biomech. 2019, 82, 54–61. [Google Scholar] [CrossRef]
- Smyth, T.T.; Allen, A.L.; Carmalt, J.L. Histologic Assessment of Age-Related Changes in the Temporomandibular Joints of Horses. Am. J. Vet. Res. 2019, 80, 1107–1113. [Google Scholar] [CrossRef]
- Monasterio, G.; Castillo, F.; Betancur, D.; Hernández, A.; Flores, G.; Díaz, W.; Hernández, M.; Vernal, R. Osteoarthritis of the Temporomandibular Joint: Clinical and Imagenological Diagnosis, Pathogenic Role of the Immuno-Inflammatory Response, and Immunotherapeutic Strategies Based on T Regulatory Lymphocytes. In Temporomandibular Joint Pathology-Current Approaches and Understanding; IntechOpen: London, UK, 2018. [Google Scholar]
- Lu, K.; Ma, F.; Yi, D.; Yu, H.; Tong, L.; Chen, D. Molecular signaling in temporomandibular joint osteoarthritis. J. Orthop. Transl. 2022, 32, 21–27. [Google Scholar] [CrossRef]
- Alzarea, B.K. Temporomandibular disorders (TMD) in edentulous patients: A review and proposed classification (dr. Bader’s classification). J. Clin. Diagn. Res. 2015, 9, ZE06–ZE09. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; An, Y.; Zhou, L.; Wu, F.; Wu, G.; Wang, J.; Chen, L. Animal models of temporomandibular joint osteoarthritis: Classification and selection. Front. Physiol. 2022, 13, 859517. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, E.; Detamore, M.S.; Mercuri, L.G. Degenerative Disorders of the Temporomandibular Joint: Etiology, Diagnosis, and Treatment. J. Dent. Res. 2008, 87, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Cardoneanu, A.; Macovei, L.A.; Burlui, A.M.; Mihai, I.R.; Bratoiu, I.; Rezus, I.I.; Rezus, E. Temporomandibular joint osteoarthritis: Pathogenic mechanisms involving the cartilage and subchondral bone, and potential therapeutic strategies for joint regeneration. Int. J. Mol. Sci. 2022, 24, 171. [Google Scholar] [CrossRef]
- Vapniarsky, N.; Huwe, L.W.; Arzi, B.; Houghton, M.K.; Wong, M.E.; Wilson, J.W.; Hatcher, D.C.; Hu, J.C.; Athanasiou, K.A. Tissue Engineering toward Temporomandibular Joint Disc Regeneration. Sci. Transl. Med. 2018, 10, eaaq1802. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, H.; Zhang, M.; Zhang, J.; Lu, L.; Yu, S.; Wu, Y.; Wang, M. Initiation and Progression of Dental-Stimulated Temporomandibular Joints Osteoarthritis. Osteoarthr. Cartil. 2021, 29, 633–642. [Google Scholar] [CrossRef]
- Almarza, A.J.; Brown, B.N.; Arzi, B.; Ângelo, D.F.; Chung, W.; Badylak, S.F.; Detamore, M. Preclinical animal models for temporomandibular joint tissue engineering. Tissue Eng. Part B Rev. 2018, 24, 171–178. [Google Scholar] [CrossRef]
- Lampropoulou-Adamidou, K.; Lelovas, P.; Karadimas, E.V.; Liakou, C.; Triantafillopoulos, I.K.; Dontas, I.; Papaioannou, N.A. Useful Animal Models for the Research of Osteoarthritis. Eur. J. Orthop. Surg. Traumatol. 2014, 24, 263–271. [Google Scholar] [CrossRef]
- McCoy, A.M. Animal Models of Osteoarthritis. Vet. Pathol. 2015, 52, 803–818. [Google Scholar] [CrossRef]
- Pitsillides, A.A.; Beier, F. Cartilage Biology in Osteoarthritis-Lessons from Developmental Biology. Nat. Rev. Rheumatol. 2011, 7, 654–663. [Google Scholar] [CrossRef]
- Imai, H.; Sakamoto, I.; Yoda, T.; Yamashita, Y. A Model for Internal Derangement and Osteoarthritis of the Temporomandibular Joint with Experimental Traction of the Mandibular Ramus in Rabbit. Oral Dis. 2001, 7, 185–191. [Google Scholar] [CrossRef]
- Saito, Y.; Tsutsui, T.; Takayama, A.; Moroi, A.; Yoshizawa, K.; Ueki, K. Effect of Low-Intensity Pulsed Ultrasound on Injured Temporomandibular Joints with or without Articular Disc Removal in A Rabbit Model. J. Dent. Sci. 2021, 16, 287–295. [Google Scholar] [CrossRef]
- Carmalt, J.L.; Bell, C.D.; Tatarniuk, D.M.; Suri, S.S.; Singh, B.; Waldner, C. Comparison of the response to experimentally induced short-term inflammation in the temporomandibular and metacarpophalangeal joints of horses. Am. J. Vet. Res. 2011, 72, 1586–1591. [Google Scholar] [CrossRef]
- Xu, L.; Guo, H.; Li, C.; Xu, J.; Fang, W.; Long, X. A Time-dependent Degeneration Manner of Condyle in Rat CFA-Induced Inflamed TMJ. Am. J. Transl. Res. 2016, 8, 556–567. [Google Scholar] [PubMed]
- Xu, T.; Xu, G.; Gu, Z.; Wu, H. Hedgehog Signal Expression in Articular Cartilage of Rat Temporomandibular Joint and Association with Adjuvant-Induced Osteoarthritis. J. Oral Pathol. Med. 2017, 46, 284–291. [Google Scholar] [CrossRef]
- Li, Y.; Yang, J.; Liu, Y.; Yan, X.; Zhang, Q.; Chen, J.; Zhang, Q.; Yuan, X. Inhibition of mTORC1 in the Rat Condyle Subchondral Bone Aggravates Osteoarthritis Induced by the Overly Forward Extension of the Mandible. Am. J. Transl. Res. 2021, 13, 270–285. [Google Scholar]
- Zou, Y.; Cai, S.; Lin, H.; Cai, J.; Zheng, D.L.; Lu, Y.G.; Xu, L. Experimental functional shift-induced osteoarthritis-like changes at the TMJ and altered integrin expression in a rat model. Ann. N. Y. Acad. Sci. 2022, 1511, 210–227. [Google Scholar] [CrossRef] [PubMed]
- Cohen, W.A.; Servais, J.M.; Polur, I.; Li, Y.; Xu, L. Articular Cartilage Degeneration in the Contralateral Non-surgical Temporomandibular Joint in Mice with A Unilateral Partial Discectomy. J. Oral Pathol. Med. 2014, 43, 162–165. [Google Scholar] [CrossRef] [PubMed]
- Bermejo, A.; González, O.; González, J.M. The Pig as an Animal Model for Experimentation on the Temporomandibular Articular Complex. Oral Surg. Oral Med. Oral Pathol. 1993, 75, 18–23. [Google Scholar] [CrossRef]
- Kuyinu, E.L.; Narayanan, G.; Nair, L.S.; Laurencin, C.T. Animal models of osteoarthritis: Classification, update, and measurement of outcomes. J. Orthop. Surg. Res. 2016, 11, 19. [Google Scholar] [CrossRef]
- Almarza, A.J.; Mercuri, L.G.; Arzi, B.; Gallo, L.M.; Granquist, E.; Kapila, S.; Detamore, M.S. Temporomandibular Joint Bioengineering Conference: Working together toward improving clinical outcomes. J. Biomech. Eng. 2020, 142, 020801. [Google Scholar] [CrossRef]
- Elzer, E.J.; Wulster, K.B.; Richardson, D.W.; Ortved, K.F. Standing arthroscopic treatment of temporomandibular joint sepsis in a horse. J. Vet. Dent. 2020, 37, 94–99. [Google Scholar] [CrossRef]
- McIlwraith, C.W.; Frisbie, D.D.; Kawcak, C.E. The horse as a model of naturally occurring osteoarthritis. Bone Jt. Res. 2012, 1, 297–309. [Google Scholar] [CrossRef]
- Jørgensen, E.; Christophersen, M.T.; Kristoffersen, M.; Puchalski, S.; Verwilghen, D. Does temporomandibular joint pathology affect performance in an equine athlete? Equine Vet. Educ. 2015, 27, 126–130. [Google Scholar] [CrossRef]
- Carmalt, J.L. Equine poor performance: The logical, progressive, diagnostic approach to determining the role of the temporomandibular joint. J. Am. Vet. Med. Assoc. 2023, 262, 397–404. [Google Scholar] [CrossRef]
- Baker, G.J. Equine temporomandibular joints (TMJ): Morphology, function and clinical disease. AAEP Proc. 2002, 48, 442–447. [Google Scholar]
- Ramzan, P. The temporomandibular joint: Component of clinical complexity. Equine Vet. J. 2006, 38, 102–104. [Google Scholar] [CrossRef]
- Carmalt, J.L. Equine temporomandibular joint (TMJ) disease: Fact or fiction? Equine Vet. Educ. 2014, 26, 64–65. [Google Scholar] [CrossRef]
- Carmalt, J.L.; Simhofer, H.; Bienert-Zeit, A.; Rawlinson, J.E.; Waldner, C.L. The association between oral examination findings and computed tomographic appearance of the equine temporomandibular joint. Equine Vet. J. 2017, 49, 780–783. [Google Scholar] [CrossRef]
- Frisbie, D.D.; Cross, M.W.; McIlwraith, C.W. A comparative study of articular cartilage thickness in the stifle of animal species used in human pre-clinical studies compared to articular cartilage thickness in the human knee. Vet. Comp. Orthop. Traumatol. 2006, 19, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Malda, J.; Benders, K.E.; Klein, T.J.; de Grauw, J.C.; Kik, M.J.; Hutmacher, D.W.; Saris, D.B.; van Weeren, P.R.; Dhert, W.J. Comparative study of depth-dependent characteristics of equine and human osteochondral tissue from the medial and lateral femoral condyles. Osteoarthr. Cartil. 2012, 20, 1147–1151. [Google Scholar] [CrossRef]
- Norrdin, R.W.; Kawcak, C.E.; Capwell, B.A.; McIlwraith, C.W. Subchondral bone failure in an equine model of overload arthrosis. Bone 1998, 22, 133–139. [Google Scholar] [CrossRef]
- Turley, S.M.; Thambyah, A.; Riggs, C.M.; Firth, E.C.; Broom, N.D. Microstructural changes in cartilage and bone related to repetitive overloading in an equine athlete model. J. Anat. 2014, 224, 647–658. [Google Scholar] [CrossRef]
- Nazet, U.; Neubert, P.; Schatz, V.; Grässel, S.; Proff, P.; Jantsch, J.; Schröder, A.; Kirschneck, C. Differential gene expression response of synovial fibroblasts from temporomandibular joints and knee joints to dynamic tensile stress. J. Orofac. Orthop. 2022, 83, 361–375. [Google Scholar] [CrossRef]
- Murphy, M.K.; MacBarb, R.F.; Wong, M.E.; Athanasiou, K.A. Temporomandibular joint disorders: A review of etiology, clinical management, and tissue engineering strategies. Int. J. Oral Maxillofac. Implants. 2013, 28, e393. [Google Scholar] [CrossRef]
- Abrahamsson, A.K.; Kristensen, M.; Arvidsson, L.Z.; Kvien, T.K.; Larheim, T.A.; Haugen, I.K. Frequency of temporomandibular joint osteoarthritis and related symptoms in a hand osteoarthritis cohort. Osteoarthr. Cartil. 2017, 25, 654–657. [Google Scholar] [CrossRef] [PubMed]
- Schmitter, M.; Essig, M.; Seneadza, V.; Balke, Z.; Schroder, J.; Rammelsberg, P. Prevalence of clinical and radiographic signs of osteoarthrosis of the temporomandibular joint in an older persons community. Dentomaxillofacial Radiol. 2010, 39, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Haskin, C.L.; Milam, S.B.; Cameron, I.L. Pathogenesis of Degenerative Joint Disease in the Human Temporomandibular Joint. Crit. Rev. Oral Biol. Med. 1995, 6, 248–277. [Google Scholar] [CrossRef]
- Zhao, Y.P.; Zhang, Z.Y.; Wu, Y.T.; Zhang, W.L.; Ma, X.C. Investigation of the clinical and radiographic features of osteoarthrosis of the temporomandibular joints in adolescents and young adults. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 2011, 111, e27–e34. [Google Scholar] [CrossRef]
- Sellam, J.; Bernbaum, F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nature Rev. Rheum. 2010, 6, 625–635. [Google Scholar] [CrossRef] [PubMed]
- McIlwraith, C.W. Frank Milne Lecture: From arthroscopy to gene therapy: 30 years of looking in joints. Am. Assoc. Equine Pract. 2005, 51, 65–113. [Google Scholar]
- Trumble, T.N.; Trotter, G.W.; Oxford, J.R.; McIlwraith, C.W.; Cammarata, S.; Goodnight, J.L.; Billinghurst, R.C.; Frisbie, D.D. Synovial fluid gelatinase concentrations and matrix metalloproteinase and cytokine expression in naturally occurring joint disease in horses. Am. J. Vet. Res. 2001, 62, 1467–1477. [Google Scholar] [CrossRef] [PubMed]
- McIlwraith, C.W.; Fortier, L.A.; Frisbie, D.D.; Nixon, A.J. Equine models of articular cartilage repair. Cartilage 2011, 2, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Toller, P.A. Temporomandibular Arthropathy. Proc. R. Soc. Med. 1974, 67, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Adams, K.; Schulz-Kornas, E.; Arzi, B.; Failing, K.; Vogelsberg, J.; Staszyk, C. Functional anatomy of the equine temporomandibular joint: Collagen fiber texture of the articular surfaces. Vet. J. 2016, 217, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Adams, K.; Schulz-Kornas, E.; Arzi, B.; Failing, K.; Vogelsberg, J.; Staszyk, C. Functional anatomy of the equine temporomandibular joint: Histological characteristics of the articular surfaces and underlining tissues. Vet. J. 2018, 239, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Carmalt, J.L.; Reisbig, N.A. Arthroscopic treatment of bilateral mandibular condylar cysts and associated osteoarthritis of the temporomandibular joints in a horse. Equine Vet. Educ. 2022, 34, e352–e358. [Google Scholar] [CrossRef]
- Talmaceanu, D.; Lenghel, L.M.; Bolog, N.; Hedesiu, M.; Buduru, S.; Rotar, H.; Baciut, M.; Baciut, G. Imaging Modalities for Temporomandibular Joint Disorders: An Update. Clujul Med. 2018, 91, 280–287. [Google Scholar] [CrossRef]
- Rodríguez, M.J.; Latorre, R.; Lopez-Albors, O.; Soler, M.; Aguirre, C.; Vázquez, J.M.; Agut, A. Computed tomographic anatomy of the temporomandibular joint in the young horse. Equine Vet. J. 2008, 40, 566–571. [Google Scholar] [CrossRef]
- Rodríguez, M.J.; Agut, A.; Soler, M.; Lopez-Albors, O.; Arredondo, J.; Querol, M.; Latorre, R. Magnetic resonance imaging of the equine temporomandibular joint anatomy. Equine Vet. J. 2010, 42, 200–207. [Google Scholar] [CrossRef]
- Larheim, T.A.; Abrahamsson, A.K.; Kristensen, M.; Arvidsson, L.Z. Temporomandibular joint diagnostics using CBCT. Dentomaxillofacial Radiol. 2015, 44, 20140235. [Google Scholar] [CrossRef]
- Carmalt, J.L.; Pimentel, K.L. The Equine Temporomandibular Joint: Comparisons Between Standard and Needle Arthroscopic Examination of Cadaver Specimens and Standing Horses. Front. Vet. Sci. 2022, 9, 876041. [Google Scholar] [CrossRef]
- López, J.P.; Orjuela, M.P.; González, L.V.; Peraza-Labrador, A.J.; Díaz-Baez, D. Comparison of the Clinical Effectiveness of Intra-Articular Injection with Different Substances After TMJ Arthroscopy: A Systematic Review and Meta-Analysis. J. Maxillofac. Oral Surg. 2023, 1–10. [Google Scholar] [CrossRef]
- De Riu, G.; Vaira, L.A.; Carta, E.; Meloni, S.M.; Sembronio, S.; Robiony, M. Bone marrow nucleated cell concentrate autograft in temporomandibular joint degenerative disorders: 1-year results of a randomized clinical trial. J. Cranio Maxillofac. Surg. 2019, 47, 1728–1738. [Google Scholar] [CrossRef] [PubMed]
- Li, F.L.; Wu, C.B.; Sun, H.J.; Zhou, Q. Comparison of autologous platelet-rich plasma and chitosan in the treatment of temporomandibular joint osteoarthritis: A retrospective cohort study. J. Oral Maxillofac. Surg. 2021, 79, 324–332. [Google Scholar] [CrossRef]
- Derwich, M.; Mitus-Kenig, M.; Pawlowska, E. Interdisciplinary approach to the temporomandibular joint osteoarthritis—Review of the literature. Medicina 2020, 56, 225. [Google Scholar] [CrossRef] [PubMed]
- Manso-Díaz, G.; Taeymans, O.; García-López, J.M.; Weller, R. Application and indications of magnetic resonance imaging and computed tomography of the equine head. Equine Vet. Educ. 2021, 33, 31–46. [Google Scholar] [CrossRef]
- Huthmann, S.; Staszyk, C.; Jacob, H.G.; Rohn, K.; Gasse, H. Biomechanical evaluation of the equine masticatory action: Calculation of the masticatory forces occurring on the cheek tooth battery. J. Biomech. 2009, 42, 67–70. [Google Scholar] [CrossRef]
- Bonin, S.J.; Clayton, H.M.; Lanovaz, J.L.; Johnson, T.J. Kinematics of the equine temporomandibular joint. Am. J. Vet. Res. 2006, 67, 423–428. [Google Scholar] [CrossRef]
- Orset, E.; Chaffanjon, P.; Bettega, G. Temporomandibular JointModel: Anatomic and Radiologic Comparison between Rat and Human. Surg. Radiol. Anat. 2014, 36, 163–166. [Google Scholar] [CrossRef] [PubMed]
- Alomar, X.; Medrano, J.; Cabratosa, J.; Clavero, J.A.; Lorente, M.; Serra, I.; Salvador, A. Anatomy of the temporomandibular joint. Semin. Ultrasound CT MRI 2007, 28, 170–183. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.D.; Chubinskaya, S.; Guilak, F.; Martin, J.A.; Oegema, T.R.; Olson, S.A.; Buckwalter, J.A. Post-traumatic osteoarthritis: Improving understanding and opportunities for early intervention. J. Orthop. Res. 2011, 29, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Milam, S.B. Pathogenesis of Degenerative Temporomandibular Joint Arthritides. Odontology 2005, 93, 7–15. [Google Scholar] [CrossRef]
- Gesch, D.; Bernhardt, O.; Kirbschus, A. Association of malocclusion and functional occlusion with temporomandibular disorders (TMD) in adults: A systematic review of population-based studies. Quintessence Int. 2004, 35, 211–221. [Google Scholar] [PubMed]
- Utreja, A.; Dyment, N.A.; Yadav, S.; Villa, M.M.; Li, Y.; Jiang, X.; Nanda, R.; Rowe, D.W. Cell and Matrix Response of Temporomandibular Cartilage to Mechanical Loading. Osteoarthr. Cartil. 2016, 24, 335–344. [Google Scholar] [CrossRef]
- Kalladka, M.; Quek, S.; Heir, G.; Eliav, E.; Mupparapu, M.; Viswanath, A. Temporomandibular Joint Osteoarthritis: Diagnosis and Long-Term Conservative Management: A Topic Review. J. Indian Prosthodont. Soc. 2013, 14, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wen, Y.; Zhang, M.; Liu, Q.; Zhang, H.; Zhang, J.; Lu, L.; Ye, T.; Bai, X.; Xiao, G.; et al. MTORC1 Coordinates the Autophagy and Apoptosis Signaling in Articular Chondrocytes in Osteoarthritic Temporomandibular Joint. Autophagy 2019, 16, 271–288. [Google Scholar] [CrossRef]
- Yan, J.; Qin, W.; Xiao, B.; Wan, Q.; Tay, F.R.; Niu, L.; Jiao, K. Pathological Calcification in Osteoarthritis: An Outcome or a Disease Initiator? Biol. Rev. 2020, 95, 960–985. [Google Scholar] [CrossRef]
- Cheng, N.-T.; Guo, A.; Meng, H. The Protective Role of Autophagy in Experimental Osteoarthritis, and the Therapeutic Effects of Torin 1 on Osteoarthritis by Activating Autophagy. BMC Musculoskelet. Disord. 2016, 17, 150. [Google Scholar] [CrossRef]
- Li, B.; Guan, G.; Mei, L.; Jiao, K.; Li, H. Pathological Mechanism of Chondrocytes and the Surrounding Environment during Osteoarthritis of Temporomandibular Joint. J. Cell. Mol. Med. 2021, 25, 4902–4911. [Google Scholar] [CrossRef]
- Qin, W.; Zhang, Z.; Yan, J.; Han, X.; Niu, L.-N.; Jiao, K. Interaction of Neurovascular Signals in the Degraded Condylar Cartilage. Front. Bioeng. Biotechnol. 2022, 10, 901749. [Google Scholar] [CrossRef]
- Wadhwa, S.; Kapila, S. TMJ disorders: Future innovations in diagnostics and therapeutics. J. Dent. Educ. 2008, 72, 930–947. [Google Scholar] [CrossRef]
- Shi, Y.; Hu, X.; Cheng, J.; Zhang, X.; Zhao, F.; Shi, W.; Ren, B.; Yu, H.; Yang, P.; Li, Z.; et al. A Small Molecule Promotes Cartilage Extracellular Matrix Generation and Inhibits Osteoarthritis Development. Nat. Commun. 2019, 10, 1914. [Google Scholar] [CrossRef]
- Lian, C.; Wang, X.; Qiu, X.; Wu, Z.; Gao, B.; Liu, L.; Liang, G.; Zhou, H.; Yang, X.; Peng, Y.; et al. Collagen Type II Suppresses Articular Chondrocyte Hypertrophy and Osteoarthritis Progression by Promoting Integrin β1-SMAD1 Interaction. Bone Res. 2019, 7, 8. [Google Scholar] [CrossRef]
- Embree, M.; Ono, M.; Kilts, T.; Walker, D.; Langguth, J.; Mao, J.; Bi, Y.; Barth, J.L.; Young, M. Role of subchondral bone during early-stage experimental TMJ osteoarthritis. J. Dent. Res. 2011, 90, 1331–1338. [Google Scholar] [CrossRef]
- Burr, D.B.; Gallant, M.A. Bone remodelling in osteoarthritis. Nat. Rev. Rheumatol. 2012, 8, 665–673. [Google Scholar] [CrossRef]
- Li, G.; Yin, J.; Gao, J.; Cheng, T.S.; Pavlos, N.J.; Zhang, C.; Zheng, M.H. Subchondral Bone in Osteoarthritis: Insight into Risk Factors and Microstructural Changes. Arthritis Res. Ther. 2013, 15, 223. [Google Scholar] [CrossRef]
- Borciani, G.; Montalbano, G.; Baldini, N.; Cerqueni, G.; Vitale-Brovarone, C.; Ciapetti, G. Co-Culture Systems of Osteoblasts and Osteoclasts: Simulating in vitro Bone Remodeling in Regenerative Approaches. Acta Biomater. 2020, 108, 22–45. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Onal, M.; Jilka, R.L.; Weinstein, R.S.; Manolagas, S.C.; O’Brien, C.A. Matrix-Embedded Cells Control Osteoclast Formation. Nat. Med. 2011, 17, 1235–1241. [Google Scholar] [CrossRef] [PubMed]
- Dole, N.S.; Mazur, C.M.; Acevedo, C.; Lopez, J.P.; Monteiro, D.A.; Fowler, T.W.; Gludovatz, B.; Walsh, F.; Regan, J.N.; Messina, S.; et al. Osteocyte-Intrinsic TGF-β Signaling Regulates Bone Quality through Perilacunar/Canalicular Remodeling. Cell Rep. 2017, 21, 2585–2596. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Lu, H.; Deng, L.; Lin, C.-H.; Pennington Klein, K.; Wu, M. HMGB2 Is Associated with Pressure Loading in Chondrocytes of Temporomandibular Joint: In Vitro and In Vivo Study. Cytokine 2020, 126, 154875. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, B.; Zhu, Y.; Zhao, H.; Ma, C. HIF-1-VEGF-Notch mediates angiogenesis in temporomandibular joint osteoarthritis. Am. J. Transl. Res. 2019, 11, 2969–2982. [Google Scholar] [PubMed]
- Shirakura, M.; Tanimoto, K.; Eguchi, H.; Miyauchi, M.; Nakamura, H.; Hiyama, K.; Tanimoto, K.; Tanaka, E.; Takata, T.; Tanne, K. Activation of the Hypoxia-Inducible Factor-1 in Overloaded Temporomandibular Joint, and Induction of Osteoclastogenesis. Biochem. Biochem. Biophys. Res. Commun. 2010, 393, 800–805. [Google Scholar] [CrossRef] [PubMed]
- Vernal, R.; Velasquez, E.; Gamonal, J.; Garcia–Sanz, J.A.; Silva, A.; Sanz, M. Expression of proinflammatory cytokines in osteoarthritis of the temporomandibular joint. Arch. Oral Biol. 2008, 53, 910–915. [Google Scholar] [CrossRef]
- Wehmeyer, C.; Pap, T.; Buckley, C.D.; Naylor, A.J. The Role of Stromal Cells in Inflammatory Bone Loss. Clin. Exp. Immunol. 2017, 189, 1–11. [Google Scholar] [CrossRef]
- Deschner, J.; Rath-Deschner, B.; Agarwal, S. Regulation of matrix metalloproteinase expression by dynamic tensile strain in rat fibrochondrocytes. Osteoarthr. Cartil. 2006, 14, 264–272. [Google Scholar] [CrossRef]
- Schaible, H.G. Nociceptive neurons detect cytokines in arthritis. Arthritis Res. Ther. 2014, 16, 470. [Google Scholar] [CrossRef] [PubMed]
- Ogura, N.; Satoh, K.; Akutsu, M.; Tobe, M.; Kuyama, K.; Kuboyama, N.; Sakamaki, H.; Kujiraoka, H.; Kondoh, T. MCP-1 Production in Temporomandibular Joint Inflammation. J. Dent. Res. 2010, 89, 1117–1122. [Google Scholar] [CrossRef]
- Ibi, M.; Horie, S.; Kyakumoto, S.; Chosa, N.; Yoshida, M.; Kamo, M.; Ohtsuka, M.; Ishisaki, A. Cell–Cell Interactions between Monocytes/Macrophages and Synoviocyte-like Cells Promote Inflammatory Cell Infiltration Mediated by Augmentation of MCP-1 Production in Temporomandibular Joint. Biosci. Rep. 2018, 38, BSR20171217. [Google Scholar] [CrossRef]
- Xu, J.; Cai, H.; Meng, Q.; Li, Y.; Chen, G.; Fang, W.; Long, X. IL-1β-Regulating Angiogenic Factors Expression in Perforated Temporomandibular Disk Cells via NF–KB Pathway. J. Oral Pathol. Med. 2016, 45, 605–612. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.Y.; Zhang, M.; Qiu, Z.Y.; Wu, Y.P.; Callaway, D.A.; Jiang, J.X.; Lu, L.; Jing, L.; Yang, T.; et al. Connexin43 hemichannels mediate small molecule exchange between chondrocytes and matrix in biomechanically-stimulated temporomandibular joint cartilage. Osteoarthr. Cartil. 2014, 22, 822–830. [Google Scholar] [CrossRef]
- Wagner, D.O.; Sieber, C.; Bhushan, R.; Borgermann, J.H.; Graf, D.; Knaus, P. BMPs: From bone to body morphogenetic proteins. Sci. Signal. 2010, 3, mr1. [Google Scholar]
- Tang, Y.; Wu, X.; Lei, W.; Pang, L.; Wan, C.; Shi, Z.; Zhao, L.; Nagy, T.R.; Peng, X.; Hu, J.; et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat. Med. 2009, 15, 757–765. [Google Scholar] [CrossRef]
- Li, W.; Zhao, S.; Yang, H.; Zhang, C.; Kang, Q.; Deng, J.; Xu, Y.; Ding, Y.; Li, S. Potential Novel Prediction of TMJ-Oa: Mir-140-5p Regulates Inflammation through SMAD/TGF-β Signaling. Front. Pharmacol. 2019, 10, 15. [Google Scholar] [CrossRef]
- Zheng, L.; Pi, C.; Zhang, J.; Fan, Y.; Cui, C.; Zhou, Y.; Sun, J.; Yuan, Q.; Xu, X.; Ye, L.; et al. Aberrant Activation of Latent Transforming Growth Factor-β Initiates the Onset of Temporomandibular Joint Osteoarthritis. Bone Res. 2018, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Jiao, K.; Zhang, M.; Niu, L.; Yu, S.; Zhen, G.; Xian, L.; Yu, B.; Yang, K.; Liu, P.; Cao, X.; et al. Overexpressed TGF-beta in subchondral bone leads to mandibular condyle degradation. J. Dent. Res. 2014, 93, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Lenardo, M.J.; Baltimore, D. 30 Years of NF–κB: A blossoming of relevance to human pathobiology. Cell 2017, 168, 37–57. [Google Scholar] [CrossRef] [PubMed]
- Abed, É.; Delalandre, A.; Lajeunesse, D. Beneficial Effect of Resveratrol on Phenotypic Features and Activity of Osteoarthritic Osteoblasts. Arthritis Res. Ther. 2017, 19, 151. [Google Scholar] [CrossRef] [PubMed]
- Chijimatsu, R.; Kunugiza, Y.; Taniyama, Y.; Nakamura, N.; Tomita, T.; Yoshikawa, H. Expression and pathological effects of periostin in human osteoarthritis cartilage. BMC Musculoskelet. Disord. 2015, 16, 215. [Google Scholar] [CrossRef] [PubMed]
- Jiao, K.; Zeng, G.; Niu, L.-N.; Yang, H.-X.; Ren, G.-T.; Xu, X.-Y.; Li, F.-F.; Tay, F.R.; Wang, M.-Q. Activation of α2A-Adrenergic Signal Transduction in Chondrocytes Promotes Degenerative Remodelling of Temporomandibular Joint. Sci. Rep. 2016, 6, 30085. [Google Scholar] [CrossRef]
- Liu, X.; Cai, H.X.; Cao, P.Y.; Feng, Y.; Jiang, H.H.; Liu, L.; Ke, J.; Long, X. TLR4 contributes to the damage of cartilage and subchondral bone in discectomy–induced TMJOA mice. J. Cell. Mol. Med. 2020, 24, 11489–11499. [Google Scholar] [CrossRef]
- Ornitz, D.M.; Itoh, N. The Fibroblast Growth Factor Signaling Pathway. Wiley Interdiscip. Rev. Dev. Biol. 2015, 4, 215–266. [Google Scholar] [CrossRef]
- Su, N.; Du, X.; Chen, L. FGF signaling: Its role in bone development and human skeleton diseases. Front. Biosci. 2008, 13, 2842–2865. [Google Scholar] [CrossRef]
- Foldynova-Trantirkova, S.; Wilcox, W.R.; Krejci, P. Sixteen years and counting: The current understanding of fibroblast growth factor receptor 3 (FGFR3) signaling in skeletal dysplasias. Hum. Mutat. 2012, 33, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Lin, S.; Li, T.; Jiang, Y.; Huang, Z.; Wen, J.; Cheng, W.; Li, H. Mechanical Force-Mediated Pathological Cartilage Thinning Is Regulated by Necroptosis and Apoptosis. Osteoarthr. Cartil. 2017, 25, 1324–1334. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Huang, J.; Zhou, S.; Luo, F.; Tan, Q.; Sun, X.; Ni, Z.; Chen, H.; Du, X.; Xie, Y.; et al. Loss of Fgfr1 in chondrocytes inhibits osteoarthritis by promoting autophagic activity in temporomandibular joint. J. Biol. Chem. 2018, 293, 8761–8774. [Google Scholar] [CrossRef] [PubMed]
- Cevidanes, L.H.; Walker, D.; Schilling, J.; Sugai, J.; Giannobile, W.; Paniagua, B.; Benavides, E.; Zhu, H.; Marron, J.S.; Jung, B.T.; et al. 3D osteoarthritic changes in TMJ condylar morphology correlates with specific systemic and local biomarkers of disease. Osteoarthr. Cartil. 2014, 22, 1657–1667. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Tang, D.; Wu, Q.; Hao, S.; Chen, M.; Xie, C.; Rosier, R.N.; O’Keefe, R.J.; Zuscik, M.; Chen, D. Activation of β-Catenin Signaling in Articular Chondrocytes Leads to Osteoarthritis-like Phenotype in Adult β-Catenin Conditional Activation Mice. J. Bone Miner. Res. 2009, 24, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Zhang, J.; Cao, Y.; Zhang, M.; Jing, L.; Jiao, K.; Yu, S.; Chang, W.; Chen, D.; Wang, M. Wnt5a/Ror2 mediates temporomandibular joint subchondral bone remodeling. J. Dent. Res. 2015, 94, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Shu, B.; Xie, R.; Huang, J.; Zheng, L.; Zhou, X.; Xiao, G.; Zhao, L.; Chen, D. Deletion of axin1 in Condylar Chondrocytes Leads to Osteoarthritis–like Phenotype in Temporomandibular Joint via Activation of β-Catenin and FGF Signaling. J. Cell. Physiol. 2018, 234, 1720–1729. [Google Scholar] [CrossRef] [PubMed]
- Nachury, M.V.; Mick, D.U. Establishing and regulating the composition of cilia for signal transduction. Nat. Rev. Mol. Cell Biol. 2019, 20, 389–405. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zhang, M.; Liu, Q.; Zhang, H.; Zhang, J.; Lu, L.; Xie, M.; Chen, D.; Wang, M. Inhibition of Ihh reverses temporomandibular joint osteoarthritis via a PTH1R signaling dependent mechanism. Int. J. Mol. Sci. 2019, 20, 3797. [Google Scholar] [CrossRef] [PubMed]
- Alman, B.A. The role of hedgehog signalling in skeletal health and disease. Nat. Rev. Rheumatol. 2015, 11, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Lanske, B.; Karaplis, A.C.; Lee, K.; Luz, A.; Vortkamp, A.; Pirro, A.; Karperien, M.; Defize, L.H.; Ho, C.; Mulligan, R.C.; et al. PTH/PTHrP receptor in early development and Indian hedgehog—Regulated bone growth. Science 1996, 273, 663–666. [Google Scholar] [CrossRef]
- D’Souza, B.; Meloty-Kapella, L.; Weinmaster, G. Canonical and non–canonical Notch ligands. Curr. Top. Dev. Biol. 2010, 92, 73–129. [Google Scholar]
- Kopan, R.; Ilagan, M.X. The canonical Notch signaling pathway: Unfolding the activation mechanism. Cell 2009, 137, 216–233. [Google Scholar] [CrossRef]
- Saito, T.; Tanaka, S. Molecular mechanisms underlying osteoarthritis development: Notch and NF-κB. Arthritis Res. Ther. 2017, 19, 94. [Google Scholar] [CrossRef]
- Yoon, K.; Gaiano, N. Notch signaling in the mammalian central nervous system: Insights from mouse mutants. Nat. Neurosci. 2005, 8, 709–715. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Dai, J.; Kuang, B.; Zhang, J.; Yu, S.B.; Duan, Y.Z.; Wang, M.Q. Osteochondral angiogenesis in rat mandibular condyles with osteoarthritis-like changes. Arch. Oral Biol. 2012, 57, 620–629. [Google Scholar] [CrossRef]
- Mahjoub, M.; Sassi, N.; Driss, M.; Laadhar, L.; Allouche, M.; Hamdoun, M.; Romdhane, K.B.; Sellami, S.; Makni, S. Expression patterns of Notch receptors and their ligands in human osteoarthritic and healthy articular cartilage. Tissue Cell 2012, 44, 182–194. [Google Scholar] [CrossRef]
- Liao, L.; Zhang, S.; Zhou, G.Q.; Ye, L.; Huang, J.; Zhao, L.; Chen, D. Deletion of Runx2 in condylar chondrocytes disrupts TMJ tissue homeostasis. J. Cell. Physiol. 2019, 234, 3436–3444. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Chen, Y.; Tang, X.J.; Jiang, L.H.; Ji, P. AMD3100 attenuates matrix metalloprotease-3 and -9 expressions and prevents cartilage degradation in a monosodium iodo-acetate—Induced rat model of temporomandibular osteoarthritis. J. Oral Maxillofac. Surg. 2016, 74, 927.e1–927.e13. [Google Scholar] [CrossRef]
- Du, J.; Jiang, Q.; Mei, L.; Yang, R.; Wen, J.; Lin, S.; Li, H. Effect of high fat diet and excessive compressive mechanical force on pathologic changes of temporomandibular joint. Sci. Rep. 2020, 10, 17457. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Hu, Y.; Wang, C.; Zhang, X.; He, D. CircGCN1L1 promotes synoviocyte proliferation and chondrocyte apoptosis by targeting miR-330-3p and TNF-α in TMJ osteoarthritis. Cell Death Dis. 2020, 11, 284. [Google Scholar] [CrossRef]
- Pereira, T.P.; Staut, F.T.; Machado, T.S.; Brossi, P.M.; Baccarin, R.Y.; Michelotto, P.V. Effects of the oral examination on the equine temporomandibular joint. J. Equine Vet. Sci. 2016, 43, 48–54. [Google Scholar] [CrossRef]
- Rashed, M.Z.; Sharawy, M.M.; Koole, P. Histopathological and immunocytochemical studies of the effect of raised occlusal vertical dimension on the condylar cartilage of the rabbit. CRANIO 1993, 11, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Little, C.; Smith, M. Animal models of osteoarthritis. Curr. Rheumatol. Rev. 2008, 4, 175–182. [Google Scholar] [CrossRef]
- Slavicek, G. Human mastication. J. Stomat. Occ. Med. 2010, 3, 29–41. [Google Scholar] [CrossRef]
- Wall, C.E.; Smith, K.K. Ingestion in Mammals. Enc. Life Sci. 2001, 1, 1–6. [Google Scholar]
- Sella-Tunis, T.; Pokhojaev, A.; Sarig, R.; O’Higgins, P.; May, H. Human mandibular shape is associated with masticatory muscle force. Sci. Rep. 2018, 8, 6042. [Google Scholar] [CrossRef]
- Duizer, L.M.; Winger, R.J. Instrumental measures of bite forces associated with crisp products. J. Texture Stud. 2006, 37, 1–15. [Google Scholar] [CrossRef]
- Kohyama, K.; Sasaki, T.; Hayakawa, F.; Hatakeyama, E. Effects of cross-sectional area on human bite studied with raw carrot and Surimi gel. Biosci. Biotechnol. Biochem. 2004, 68, 2104–2110. [Google Scholar] [CrossRef]
- Kamegai, T.; Tatsuki, T.; Nagano, H.; Mitsuhashi, H.; Kumeta, J.; Tatsuki, Y.; Kamegai, T.; Inaba, D. A determination of bite force in northern Japanese children. Eur. J. Orthod. 2005, 27, 53–57. [Google Scholar] [CrossRef]
- Stieger-Vanegas, S.M.; Hanna, A.L. The role of computed tomography in imaging non-neurologic disorders of the head in equine patients. Front. Vet. Sci. 2022, 9, 798216. [Google Scholar] [CrossRef]
- Brounts, S.H.; Henry, T.; Lund, J.R.; Whitton, R.C.; Ergun, D.L.; Muir, P. Use of a novel helical fan beam imaging system for computed tomography of the head and neck in sedated standing horses: 120 cases (2019–2020). J. Am. Vet. Med. Assoc. 2022, 260, 1361–1368. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Xiao, L.; Chen, R.; Zhao, Z. Conditional removal of the canonical TGF-β1 signaling delays condylar cartilage degeneration induced by a partial discectomy in mice. PLoS ONE 2017, 12, e0177826. [Google Scholar] [CrossRef]
- Yuan, J.; Ding, W.; Wu, N.; Jiang, S.; Li, W. Protective effect of genistein on condylar cartilage through downregulating NF-κB expression in experimentally created osteoarthritis rats. BioMed. Res. Int. 2019, 2019, 2629791. [Google Scholar] [CrossRef] [PubMed]
- Ou, F.; Huang, Y.; Sun, J.; Su, K.; He, Y.; Zeng, R.; Tang, D.; Liao, G. Yohimbine ameliorates temporomandibular joint chondrocyte inflammation with suppression of NF-κB pathway. Inflammation 2021, 44, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Bechtold, T.E.; Saunders, C.; Decker, R.S.; Um, H.B.; Cottingham, N.; Salhab, I.; Kurio, N.; Billings, P.C.; Pacifici, M.; Nah, H.D.; et al. Osteophyte formation and matrix mineralization in a TMJ osteoarthritis mouse model are associated with ectopic hedgehog signaling. Matrix Biol. 2016, 52–54, 339–354. [Google Scholar] [CrossRef]
- Luo, X.; Jiang, Y.; Bi, R.; Jiang, N.; Zhu, S. Inhibition of notch signaling pathway temporally postpones the cartilage degradation progress of temporomandibular joint arthritis in mice. J. Cranio. Maxillo. Facial Surg. 2018, 46, 1132–1138. [Google Scholar] [CrossRef]
- Hendriks, J.; Sharif, M.; Saris, D.B.; Karperien, M. A highly sensitive multiplex biomarker assay for the early diagnosis of osteoarthritis. Osteoarthr. Cartil. 2019, 27, S108. [Google Scholar] [CrossRef]
- Hendriks, J.; Karperien, M.; Krabbe, H. Clinically feasible multiplex biomarker assay for assessing joint health and stratifying osteoarthritis patient population. Osteoarthr. Cartil. 2021, 29, S160. [Google Scholar] [CrossRef]
- Maloley, P.M.; England, B.R.; Sayles, H.R.; Thiele, G.M.; Duryee, M.J.; Hunter, C.D.; Payne, J.B.; Mikuls, T.R. Performance of a commercially available multiplex platform in the assessment of circulating cytokines and chemokines in patients with rheumatoid arthritis and osteoarthritis. J. Immunol. Methods 2021, 495, 113048. [Google Scholar] [CrossRef] [PubMed]
- Bernotiene, E.; Bagdonas, E.; Kirdaite, G.; Bernotas, P.; Kalvaityte, U.; Uzieliene, I.; Thudium, C.S.; Hannula, H.; Lorite, G.S.; Dvir-Ginzberg, M.; et al. Emerging technologies and platforms for the immunodetection of multiple biochemical markers in osteoarthritis research and therapy. Front. Med. 2020, 7, 572977. [Google Scholar] [CrossRef] [PubMed]
- Ratneswaran, A.; Rockel, J.S.; Antflek, D.; Matelski, J.J.; Shestopaloff, K.; Kapoor, M.; Baltzer, H. Investigating Molecular Signatures Underlying Trapeziometacarpal Osteoarthritis Through the Evaluation of Systemic Cytokine Expression. Front. Immunol. 2022, 12, 794792. [Google Scholar] [CrossRef] [PubMed]
Signaling | Members | Biological Role | Activation | Role in TMJ OA |
---|---|---|---|---|
TGF-β/BMP | Over forty members: TGF-βs, BMPs, activin [104] | Modulation of bone or cartilage production and modeling [105] | Activation of TGF-β /Smad3 signaling [106]; degradation of Col2 [86]; increase secretion of TGF-β [107] | Cartilage degradation [106,108]; chondrocyte hypertrophy [86]; subchondral bone sclerosis [105,107] |
NF-κB | RelA, RelB, c-Rel, NF-κB1, NF-κB2 [109]; engaging TNF-R, TLR, TCL [109], and RANKL [110] | Mediation of inflammatory responses, cell proliferation, and cell death [109] | Increase transcription of MMPs, cytokines [111], and ADAMTS-5 [89]; increase transcription of osteopontin, stimulate MMP production [112]; increase transcription of IL-1β and IL-6, stimulate VEGF secretion [102]; increase transcription of IL-1β, stimulate MCP-1 secretion [100]; increasing RANKL modulate osteoclast production by TNF-α, IL-1β, and IL-17 secretion [97] | Cartilage degeneration [89,112,113]; subchondral bone sclerosis [97,113]; inflammation [100,102,111], angiogenesis [102] |
FGF | FGFs [114]; engaging PI3K, PLC, STAT, MAPK [115] | Regulation of skeletal development [114], predominately articular cartilage [116] | Activation of death receptor (MEK/ERK) pathway [117]; increase transcription of TNF-α [117,118] | Chondrocyte apoptosis [118] |
Wnt/β-Catenin | Wnt glycoprotein, β-Catenin, LRP5/6 [119] | Regulation of cell proliferation and differentiation [120] | Increase transcription of MMP-13, ADAMTS-4, and ADAMTS-5 [12,121] | Cartilage degeneration [12,121]; chondrocyte apoptosis [122] |
Ihh | Hh proteins [123,124] | Regulation of skeletal development [125], predominately chondrocyte in cartilage [126] | Increase transcription of Ihh and PTHrP [124] | Chondrocyte hypertrophy [27,124] induced by the mechanical load on cartilage [124] |
Notch | Notch ligands, Notch receptors, and transcriptional effectors [127,128] | Regulation of cell differentiation and apoptosis [127]; involved in cartilage synthesis and degradation [129] | Increase transcription of MMP-13, IL-1β, and IL-6 [130] | Cartilage degeneration [131]; inflammation [132]; angiogenesis [130] |
Role in TMJ OA | Biomarkers |
---|---|
Cartilage degradation | MMP-3 [98,112,133,134,135], MMP-13 [12,27,98,112,118,121,130,133,135], TIMP-1 [82,94,95], ADAMTS-5 [2,12,27,89,118,121,133]; * (MMP-3, MMP-13 upregulated by IL-1β [98] and VEGF [94,95]), * (TIMP-1 downregulated by VEGF [94,95]), * (ADAMTS-5 upregulated by IL-6 [2]) |
Chondrocyte apoptosis | TNF-α [117,118,136] |
Chondrocyte hypertrophy | Col2 [86], Ihh and PTHrP [124] |
Subchondral bone sclerosis | TNF-α, IL-1β, and IL-17 [97], TGF-β [107] |
Inflammation | IL-1β [96,97,98,99,100,101,102,130], IL-6 [2,102,130], IL-12 [96], TNF-α [97,98,99], MCP-1 [100,101] * (MCP-1 upregulated by IL-1β [100]) |
Angiogenesis | VEGF [82,83,94,102] * (VEGF upregulated by IL-1β, IL-6 [102], and HIF-1 [94]) |
Pain | IL-1β, TNF-α [99], PGE2 [103] |
Overload | HMGB2 [93], sequence of HIF-1, VEGF, MMP-13, and TIMP-1 [82,94,95] |
Biomarkers | TMJ OA Model | Demographics | Methods | Results | Reference |
---|---|---|---|---|---|
IL-l, IL-6, IL-8, TNF-α, TGF-β | No OA-related grouping; Age-related grouping; Dental disease-related grouping | 25 horses 0.25 to 21 years | Synovial fluid; LM-l cell proliferation assay (IL-1), TTDI cell proliferation assay (IL-6), microchemotaxis assay (IL-8), L929 cell cytotoxicity assay (TNF-α), ELISA (TGF-β) | IL-8 and TGF-β concentration increased with horses’ age. | [5] |
GAG, TC | Naturally occurring OA; OA severity-related grouping | 16 horses 5 to 25 years | Intra-articular disc (fibrocartilaginous); DMMB assay (GAG), hydroxyproline assay (TC) | GAG content was higher in severe OA than in normal TMJ or mild OA. GAG content increased with horses’ age. | [9] |
IL-6, TNF-α, TGF-β, TP | Chemically induced OA model in the TMJ and the MCP | 7 horses 5 to 10 years | Synovial fluid; ELISA | TNF-α concentration was higher in the TMJ OA than control TMJ. TP concentration was lower in the TMJ OA than control TMJ. TNF-α and TP concentrations were higher in the TMJ OA than the MCP OA. TGF-β concentration was lower in the TMJ OA than the MCP OA. | [25] |
PGE2, WBC, TP, GAG, HA, CS | Mechanical loading OA (1 h open month load) | 12 horses 12.1 ± 1.5 years | Synovial fluid; Neubauer chamber (WBC), Bradford method (TP), EIA (PGE2), DMMB assay (GAG, HA, CS) | Only WBC was higher 5 h after 1 h open month load. | [137] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jasiński, T.; Turek, B.; Kaczorowski, M.; Brehm, W.; Skierbiszewska, K.; Bonecka, J.; Domino, M. Equine Models of Temporomandibular Joint Osteoarthritis: A Review of Feasibility, Biomarkers, and Molecular Signaling. Biomedicines 2024, 12, 542. https://doi.org/10.3390/biomedicines12030542
Jasiński T, Turek B, Kaczorowski M, Brehm W, Skierbiszewska K, Bonecka J, Domino M. Equine Models of Temporomandibular Joint Osteoarthritis: A Review of Feasibility, Biomarkers, and Molecular Signaling. Biomedicines. 2024; 12(3):542. https://doi.org/10.3390/biomedicines12030542
Chicago/Turabian StyleJasiński, Tomasz, Bernard Turek, Michał Kaczorowski, Walter Brehm, Katarzyna Skierbiszewska, Joanna Bonecka, and Małgorzata Domino. 2024. "Equine Models of Temporomandibular Joint Osteoarthritis: A Review of Feasibility, Biomarkers, and Molecular Signaling" Biomedicines 12, no. 3: 542. https://doi.org/10.3390/biomedicines12030542
APA StyleJasiński, T., Turek, B., Kaczorowski, M., Brehm, W., Skierbiszewska, K., Bonecka, J., & Domino, M. (2024). Equine Models of Temporomandibular Joint Osteoarthritis: A Review of Feasibility, Biomarkers, and Molecular Signaling. Biomedicines, 12(3), 542. https://doi.org/10.3390/biomedicines12030542