Effects of Different Therapeutic Approaches on Redox Balance in Psoriatic Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Healthy Controls
2.3. Disease Activity Outcomes
2.4. Patient Reported Outcomes
2.5. Blood Sampling
2.6. Redox Status
2.7. Determination of Index of Lipid Peroxidation measured as Thiobarbituric Acid Reactive Substances (TBARS)
2.8. Nitrite Determination
2.9. Superoxide Anion Radical Determination
2.10. Hydrogen Peroxide Determination
2.11. Determination of Catalase, Superoxide Dismutase, and Reduced Glutathione
2.12. Statistical Analysis
3. Results
3.1. Disease Activity Outcomes
3.2. Patient Reported Outcomes
3.3. Values of Superoxide Anion Radical (O2−) and Superoxide Dismutase (SOD)
3.4. Values of Hydrogen Peroxide (H2O2) and Catalase (CAT)
3.5. Values of TBARS, Nitrites (NO2−), and Reduced Glutathione (GSH)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Griffiths, C.E.M.; Armstrong, A.W.; Gudjonsson, J.E.; Barker, J.N.W.N. Psoriasis. Lancet 2021, 397, 1301–1315. [Google Scholar] [CrossRef]
- Boehncke, W.H.; Schön, M.P. Psoriasis. Lancet 2015, 386, 983–994. [Google Scholar] [CrossRef]
- Azuaga, A.B.; Ramírez, J.; Cañete, J.D. Psoriatic Arthritis: Pathogenesis and Targeted Therapies. Int. J. Mol. Sci. 2023, 24, 4901. [Google Scholar] [CrossRef]
- Bu, J.; Ding, R.; Zhou, L.; Chen, X.; Shen, E. Epidemiology of Psoriasis and Comorbid Diseases: A Narrative Review. Front. Immunol. 2022, 13, 880201. [Google Scholar] [CrossRef]
- Tonel, G.; Conrad, C. Interplay between keratinocytes and immune cells—Recent insights into psoriasis pathogenesis. Int. J. Biochem. Cell Biol. 2009, 41, 963–968. [Google Scholar] [CrossRef]
- Medovic, M.V.; Jakovljevic, V.L.; Zivkovic, V.I.; Jeremic, N.S.; Jeremic, J.N.; Bolevich, S.B.; Ravic Nikolic, A.B.; Milicic, V.M.; Srejovic, I.M. Psoriasis between Autoimmunity and Oxidative Stress: Changes Induced by Different Therapeutic Approaches. Oxidative Med. Cell. Longev. 2022, 2022, 2249834. [Google Scholar] [CrossRef]
- Hu, P.; Wang, M.; Gao, H.; Zheng, A.; Li, J.; Mu, D.; Tong, J. The Role of Helper T Cells in Psoriasis. Front. Immunol. 2021, 12, 788940. [Google Scholar] [CrossRef]
- Pan, Y.; Du, D.; Wang, L.; Wang, X.; He, G.; Jiang, X. The Role of T Helper 22 Cells in Dermatological Disorders. Front. Immunol. 2022, 13, 911546. [Google Scholar] [CrossRef]
- Kim, J.; Krueger, J.G. The Immunopathogenesis of Psoriasis. Dermatol. Clin. 2015, 33, 13–23. [Google Scholar] [CrossRef]
- Rizzo, H.L.; Kagami, S.; Phillips, K.G.; Kurtz, S.E.; Jacques, S.L.; Blauvelt, A. IL-23–Mediated Psoriasis-Like Epidermal Hyperplasia Is Dependent on IL-17A. J. Immunol. 2011, 186, 1495–1502. [Google Scholar] [CrossRef]
- Ten Bergen, L.L.; Petrovic, A.; Krogh Aarebrot, A.; Appel, S. The TNF/IL-23/IL-17 axis-Head-to-head trials comparing different biologics in psoriasis treatment. Scand. J. Immunol. 2020, 92, e12946. [Google Scholar] [CrossRef]
- Mahil, S.; Ezejimofor, M.; Exton, L.; Manounah, L.; Burden, A.; Coates, L.; Brito, M.; McGuire, A.; Murphy, R.; Owen, C.; et al. Comparing the efficacy and tolerability of biologic therapies in psoriasis: An updated network meta-analysis. Br. J. Dermatol. 2020, 183, 638–649. [Google Scholar] [CrossRef]
- Baliwag, J.; Barnes, D.H.; Johnston, A. Cytokines in psoriasis. Cytokine 2015, 73, 342–350. [Google Scholar] [CrossRef]
- Alqarni, A.M.; Zeidler, M.P. How does methotrexate work? Biochem. Soc. Trans. 2020, 48, 559–567. [Google Scholar] [CrossRef]
- Ambrożewicz, E.; Wójcik, P.; Wroński, A.; Łuczaj, W.; Jastrząb, A.; Žarković, N.; Skrzydlewska, E. Pathophysiological Alterations of Redox Signaling and Endocannabinoid System in Granulocytes and Plasma of Psoriatic Patients. Cells 2018, 7, 159. [Google Scholar] [CrossRef]
- Bakić, M.; Klisić, A.; Kocić, G.; Kocić, H.; Karanikolić, V. Oxidative stress and metabolic biomarkers in patients with Psoriasis. J. Med. Biochem. 2024, 43, 97–105. [Google Scholar] [CrossRef]
- Müller, G.; Lübow, C.; Weindl, G. Lysosomotropic beta blockers induce oxidative stress and IL23A production in Langerhans cells. Autophagy 2020, 16, 1380–1395. [Google Scholar] [CrossRef]
- Xu, X.; Prens, E.; Florencia, E.; Leenen, P.; Boon, L.; Asmawidjaja, P.; Mus, A.-M.; Lubberts, E. Interleukin-17A Drives IL-19 and IL-24 Expression in Skin Stromal Cells Regulating Keratinocyte Proliferation. Front. Immunol. 2021, 12, 719562. [Google Scholar] [CrossRef]
- Stephen-Victor, E.; Fickenscher, H.; Bayry, J. IL-26: An Emerging Proinflammatory Member of the IL-10 Cytokine Family with Multifaceted Actions in Antiviral, Antimicrobial, and Autoimmune Responses. PLoS Pathog. 2016, 12, e1005624. [Google Scholar] [CrossRef]
- Menter, A.; Van Voorhees, A.S.; Hsu, S. Pustular Psoriasis: A Narrative Review of Recent Developments in Pathophysiology and Therapeutic Options. Dermatol. Ther. 2021, 11, 1917–1929. [Google Scholar] [CrossRef]
- Pleńkowska, J.; Gabig-Cimińska, M.; Mozolewski, P. Oxidative Stress as an Important Contributor to the Pathogenesis of Psoriasis. Int. J. Mol. Sci. 2020, 21, 6206. [Google Scholar] [CrossRef]
- Mrowietz, U.; Kragballe, K.; Reich, K.; Spuls, P.; Griffiths, C.E.M.; Nast, A.; Franke, J.; Antoniou, C.; Arenberger, P.; Balieva, F.; et al. Definition of treatment goals for moderate to severe psoriasis: A European consensus. Arch. Dermatol. Res. 2011, 303, 1–10. [Google Scholar] [CrossRef]
- Gourraud, P.-A.; Le Gall, C.; Puzenat, E.; Aubin, F.; Ortonne, J.-P.; Paul, C.F. Why Statistics Matter: Limited Inter-Rater Agreement Prevents Using the Psoriasis Area and Severity Index as a Unique Determinant of Therapeutic Decision in Psoriasis. J. Investig. Dermatol. 2012, 132, 2171–2175. [Google Scholar] [CrossRef]
- Gottlieb, A.B.; Germino, R.; Herrera, V.; Meng, X.; Merola, J.F. Exploration of the Product of the 5-Point Investigator’s Global As-sessment and Body Surface Area (IGA × BSA) as a Practical Minimal Disease Activity Goal in Patients with Moderate-to-Severe Psoriasis. Dermatology 2019, 235, 348–354. [Google Scholar] [CrossRef]
- Basra, M.; Fenech, R.; Gatt, R.; Salek, M.; Finlay, A. The Dermatology Life Quality Index 1994–2007: A comprehensive review of validation data and clinical results. Br. J. Dermatol. 2008, 159, 997–1035. [Google Scholar] [CrossRef] [PubMed]
- Gavra, H.; Tirosh, I.; Spielman, S.; Greenberger, S.; Amarylio, G.; Harel, L.; Ben-Amitai, D.; Avitan-Hersh, E.; Yonatan, B.A. Validation of the psoriasis epidemiology screening tool (PEST) and the new early arthritis for psoriatic patients (EARP) in pediatric popula-tion: Pilot study. Clin. Rheumatol. 2022, 41, 1125–1130. [Google Scholar] [CrossRef] [PubMed]
- Jovic, J.J.; Antic, S.; Nikolic, T.; Andric, K.; Petrovic, D.; Bolevich, S.; Jakovljevic, V. Erythropoietin Resistance Development in Hemodialysis Patients: The Role of Oxidative Stress. Oxidative Med. Cell. Longev. 2022, 2022, 9598211. [Google Scholar] [CrossRef]
- Milosavljevic, I.; Jakovljevic, V.; Petrovic, D.; Draginic, N.; Jeremic, J.; Mitrovic, M.; Zivkovic, V.; Srejovic, I.; Stojic, V.; Bolevich, S.; et al. Standardized Aronia melanocarpa extract regulates redox status in patients receiving hemodialysis with anemia. Mol. Cell. Biochem. 2021, 476, 4167–4175. [Google Scholar] [CrossRef] [PubMed]
- Stojanovic, A.; Veselinovic, M.; Draginic, N.; Rankovic, M.; Andjic, M.; Bradic, J.; Bolevich, S.; Antovic, A.; Jakovljevic, V. The Influence of Menopause and Inflammation on Redox Status and Bone Mineral Density in Patients with Rheumatoid Arthritis. Oxidative Med. Cell. Longev. 2021, 2021, 9458587. [Google Scholar] [CrossRef] [PubMed]
- Dogra, S.; Singh, N.; Kumar, S.; Narang, T.; Handa, S. Comparison of overall efficacy and safety of oral versus subcutaneous methotrexate in severe psoriasis. Dermatol. Ther. 2022, 35, e15656. [Google Scholar] [CrossRef] [PubMed]
- Wcisło-Dziadecka, D.; Grabarek, B.; Kruszniewska-Rajs, C.; Gola, J.; Simka, K.; Mazurek, U. Analysis of the clinical response and changes in the expression of TNF-α and its TNFR1 and TNFR2 receptors in patients with psoriasis vulgaris treated with ustekinumab. Adv. Clin. Exp. Med. 2020, 29, 235–241. [Google Scholar] [CrossRef]
- Strober, B.; Patil, D.; McLean, R.R.; Moore-Clingenpeel, M.; Guo, N.; Levi, E.; Lebwohl, M. Utilization Trends and Impact of Secuki-numab Treatment on Clinical Outcomes in Biologic-Naive Patients with Psoriasis in a US Real-World Setting. Dermatol. Ther. 2022, 12, 1351–1365. [Google Scholar] [CrossRef]
- Bronckers, I.M.G.J.; Paller, A.S.; West, D.P.; Lara-Corrales, I.; Tollefson, M.M.; Tom, W.L.; Hogeling, M.; Belazarian, L.; Zachariae, C.; Mahé, E.; et al. A Comparison of Psoriasis Severity in Pediatric Patients Treated with Methotrexate vs Biologic Agents. JAMA Dermatol. 2020, 156, 384–392. [Google Scholar] [CrossRef]
- Reich, K.; Langley, R.G.; Papp, K.A.; Ortonne, J.-P.; Unnebrink, K.; Kaul, M.; Valdes, J.M. A 52-Week Trial Comparing Briakinumab with Methotrexate in Patients with Psoriasis. N. Engl. J. Med. 2011, 365, 1586–1596. [Google Scholar] [CrossRef]
- Czarnecka-Operacz, M.; Sadowska-Przytocka, A. The possibilities and principles of methotrexate treatment of psoriasis—The updated knowledge. Adv. Dermatol. Allergol. 2014, 31, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, M.C.; Clemens, D.L.; Duryee, M.J.; Sarmiento, C.; Chiou, A.; Hunter, C.D.; Tian, J.; Klassen, L.W.; O’dell, J.R.; Thiele, G.M.; et al. Direct antioxidant properties of methotrexate: Inhibition of malondialdehyde-acetaldehyde-protein adduct formation and superoxide scavenging. Redox Biol. 2017, 13, 588–593. [Google Scholar] [CrossRef] [PubMed]
- Noack, M.; Miossec, P. Effects of Methotrexate Alone or Combined with Arthritis-Related Biotherapies in an in vitro Co-culture Model with Immune Cells and Synoviocytes. Front. Immunol. 2019, 10, 2992. [Google Scholar] [CrossRef] [PubMed]
- Roghani, M.; Kalantari, H.; Khodayar, M.J.; Khorsandi, L.; Kalantar, M.; Goudarzi, M.; Kalantar, H. Alleviation of Liver Dysfunction, Oxidative Stress and Inflammation Underlies the Protective Effect of Ferulic Acid in Methotrexate-Induced Hepatotoxicity. Drug Des. Dev. Ther. 2020, 14, 1933–1941. [Google Scholar] [CrossRef] [PubMed]
- Khudhair, D.H.; Al-Gareeb, A.I.; Al-Kuraishy, H.M.; El-Kadem, A.H.; Elekhnawy, E.; Negm, W.A.; Saber, S.; Cavalu, S.; Tirla, A.; Alotaibi, S.S.; et al. Combination of Vitamin C and Curcumin Safeguards Against Methotrexate-Induced Acute Liver Injury in Mice by Synergistic Antioxidant Effects. Front. Med. 2022, 9, 866343. [Google Scholar] [CrossRef] [PubMed]
- Tufan, E.; Sivas, G.G.; Gürel-Gökmen, B.; Yılmaz-Karaoğlu, S.; Dursun, E.; Çalışkan-Ak, E.; Muhan, A.; Özbeyli, D.; Şener, G.; Tunali-Akbay, T. Whey protein concentrate ameliorates the methotrexate-induced liver and kidney damage. Br. J. Nutr. 2023, 130, 1704–1711. [Google Scholar] [CrossRef]
- Elango, T.; Dayalan, H.; Gnanaraj, P.; Malligarjunan, H.; Subramanian, S. Impact of methotrexate on oxidative stress and apoptosis markers in psoriatic patients. Clin. Exp. Med. 2014, 14, 431–437. [Google Scholar] [CrossRef]
- Schüler, R.; Brand, A.; Klebow, S.; Wild, J.; Veras, F.P.; Ullmann, E.; Roohani, S.; Kolbinger, F.; Kossmann, S.; Wohn, C.; et al. Antagonization of IL-17A Attenuates Skin Inflammation and Vascular Dysfunction in Mouse Models of Psoriasis. J. Investig. Dermatol. 2019, 139, 638–647. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Zhou, L. Anti-IL-23 exerted protective effects on cerebral ischemia-reperfusion injury through JAK2/STAT3 signaling pathway. Mol. Biol. Rep. 2021, 48, 3475–3784. [Google Scholar] [CrossRef]
- Oztanir, M.N.; Dogan, M.F.; Turkmen, N.B.; Taslidere, A.; Sahin, Y.; Ciftci, O. Secukinumab ameliorates oxidative damage induced by cerebral ischemia-reperfusion in rats. Turk. Neurosurg. 2022, 32, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Tekin, N.S.; Ilter, N.; Sancak, B.; Ozden, M.G.; Gurer, M.A. Nitric Oxide Levels in Patients with Psoriasis Treated with Methotrexate. Mediat. Inflamm. 2006, 2006, 016043. [Google Scholar] [CrossRef]
- Aktürk, A.; Özdoğan, H.; Bayramgürler, D.; Çekmen, M.; Bilen, N.; Kıran, R. Nitric oxide and malondialdehyde levels in plasma and tissue of psoriasis patients. J. Eur. Acad. Dermatol. Venereol. 2012, 26, 833–837. [Google Scholar] [CrossRef]
- Alba, B.K.; Greaney, J.L.; Ferguson, S.B.; Alexander, L.M. Endothelial function is impaired in the cutaneous microcirculation of adults with psoriasis through reductions in nitric oxide-dependent vasodilation. Am. J. Physiol. Heart Circ. Physiol. 2018, 314, H343–H349. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.; Chiasson, V.L.; Chatterjee, P.; Kopriva, S.E.; Young, K.J.; Mitchell, B.M. Interleukin-17 causes Rho-kinase-mediated endothelial dysfunction and hypertension. Cardiovasc. Res. 2013, 97, 696–704. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, J.; Hou, H.; Li, J.; Li, J.; Liang, J.; Li, J.; Niu, X.; Hou, R.; Zhang, K. Autophagy Inhibits Inflammation via Down-Regulation of p38 MAPK/mTOR Signaling Cascade in Endothelial Cells. Clin. Cosmet. Investig. Dermatol. 2023, 16, 659–669. [Google Scholar] [CrossRef]
- Virág, L.; Szabó, E.; Bakondi, E.; Bai, P.; Gergely, P.; Hunyadi, J.; Szabó, C. Nitric oxide-peroxynitrite-poly(ADP-ribose) polymerase pathway in the skin. Exp. Dermatol. 2002, 11, 189–202. [Google Scholar] [CrossRef]
- Klisic, A.; Bakic, M.; Karanikolic, V. Comparative Analysis of Redox Homeostasis Biomarkers in Patients with Psoriasis and Atopic Dermatitis. Antioxidants 2023, 12, 1875. [Google Scholar] [CrossRef] [PubMed]
Healthy Controls | MTX Treated Patients | Secukinumab Treated Patients | Ustekinumab Treated Patients | |
---|---|---|---|---|
Number of participants | 15 | 23 | 28 | 27 |
Age | 44.27 ± 11.61 | 46.70 ± 14.65 | 46.04 ± 13.95 | 46.00 ± 16.20 |
Female | 5 | 7 | 8 | 9 |
Male | 10 | 16 | 20 | 18 |
Female (%) | 33.3 | 30.43 | 28.57 | 33.3 |
Male (%) | 66.67 | 69.57 | 71.43 | 66.67 |
Superoxide Anion Radical (O2−) | ||
---|---|---|
Before the initiation | 52nd week | |
Control vs. MTX | p < 0.01 ** | p > 0.05 |
Control vs. secukinumab | p < 0.01 ** | p > 0.05 |
Control vs. ustekinumab | p < 0.01 ** | p > 0.05 |
MTX vs. secukinumab | p > 0.05 | p > 0.05 |
MTX vs. ustekinumab | p > 0.05 | p > 0.05 |
Secukinumab vs. ustekinumab | p > 0.05 | p > 0.05 |
Superoxide Dismutase (SOD) | ||
Control vs. MTX | p < 0.01 ** | p < 0.01 ** |
Control vs. secukinumab | p < 0.01 ** | p < 0.01 ** |
Control vs. ustekinumab | p < 0.01 ** | p < 0.01 ** |
MTX vs. secukinumab | p > 0.05 | p < 0.05 * |
MTX vs. ustekinumab | p > 0.05 | p < 0.01 ** |
Secukinumab vs. ustekinumab | p > 0.05 | p < 0.01 ** |
Hydrogen Peroxide (H2O2) | ||
---|---|---|
Before the initiation | 52nd week | |
Control vs. MTX | p < 0.05 * | p < 0.05 * |
Control vs. secukinumab | p < 0.05 * | p < 0.05 * |
Control vs. ustekinumab | p < 0.05 * | p < 0.05 * |
MTX vs. secukinumab | p > 0.05 | p > 0.05 |
MTX vs. ustekinumab | p > 0.05 | p > 0.05 |
Secukinumab vs. ustekinumab | p > 0.05 | p > 0.05 |
Catalase (CAT) | ||
Control vs. MTX | p < 0.01 ** | p < 0.01 ** |
Control vs. secukinumab | p < 0.01 ** | p < 0.01 ** |
Control vs. ustekinumab | p < 0.01 ** | p < 0.01 ** |
MTX vs. secukinumab | p > 0.05 | p < 0.05 * |
MTX vs. ustekinumab | p > 0.05 | p < 0.05 * |
Secukinumab vs. ustekinumab | p > 0.05 | p < 0.05 * |
TBARS | ||
---|---|---|
Before the initiation | 52nd week | |
Control vs. MTX | p > 0.05 | p > 0.05 |
Control vs. secukinumab | p > 0.05 | p > 0.05 |
Control vs. ustekinumab | p > 0.05 | p > 0.05 |
MTX vs. secukinumab | p > 0.05 | p > 0.05 |
MTX vs. ustekinumab | p > 0.05 | p > 0.05 |
Secukinumab vs. ustekinumab | p > 0.05 | p > 0.05 |
Nitrites (NO2−) | ||
Control vs. MTX | p > 0.05 | p > 0.05 |
Control vs. secukinumab | p > 0.05 | p > 0.05 |
Control vs. ustekinumab | p > 0.05 | p > 0.05 |
MTX vs. secukinumab | p > 0.05 | p > 0.05 |
MTX vs. ustekinumab | p > 0.05 | p > 0.05 |
Secukinumab vs. ustekinumab | p > 0.05 | p > 0.05 |
Reduced glutathione (GSH) | ||
Control vs. MTX | p < 0.05 * | p < 0.05 * |
Control vs. secukinumab | p > 0.05 | p > 0.05 |
Control vs. ustekinumab | p > 0.05 | p > 0.05 |
MTX vs. secukinumab | p < 0.05 * | p < 0.05 * |
MTX vs. ustekinumab | p < 0.05 * | p < 0.05 * |
Secukinumab vs. ustekinumab | p > 0.05 | p > 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medovic, M.V.; Milicic, V.M.; Nikolic, A.B.R.; Ristic, G.J.; Medovic, R.H.; Nikolic, M.R.; Stojanovic, A.Z.; Bolevich, S.B.; Bondarchuk, N.G.; Gorbunov, A.A.; et al. Effects of Different Therapeutic Approaches on Redox Balance in Psoriatic Patients. Biomedicines 2024, 12, 587. https://doi.org/10.3390/biomedicines12030587
Medovic MV, Milicic VM, Nikolic ABR, Ristic GJ, Medovic RH, Nikolic MR, Stojanovic AZ, Bolevich SB, Bondarchuk NG, Gorbunov AA, et al. Effects of Different Therapeutic Approaches on Redox Balance in Psoriatic Patients. Biomedicines. 2024; 12(3):587. https://doi.org/10.3390/biomedicines12030587
Chicago/Turabian StyleMedovic, Marija V., Vesna M. Milicic, Ana B. Ravic Nikolic, Gordana J. Ristic, Rasa H. Medovic, Marina R. Nikolic, Aleksandra Z. Stojanovic, Sergey B. Bolevich, Natalia G. Bondarchuk, Alexander A. Gorbunov, and et al. 2024. "Effects of Different Therapeutic Approaches on Redox Balance in Psoriatic Patients" Biomedicines 12, no. 3: 587. https://doi.org/10.3390/biomedicines12030587
APA StyleMedovic, M. V., Milicic, V. M., Nikolic, A. B. R., Ristic, G. J., Medovic, R. H., Nikolic, M. R., Stojanovic, A. Z., Bolevich, S. B., Bondarchuk, N. G., Gorbunov, A. A., Mitrovic, S. L., Jakovljevic, V. L., & Srejovic, I. M. (2024). Effects of Different Therapeutic Approaches on Redox Balance in Psoriatic Patients. Biomedicines, 12(3), 587. https://doi.org/10.3390/biomedicines12030587