Association of the rs1966265 and rs351855 FGFR4 Variants with Colorectal Cancer in a Mexican Population and Their Analysis In Silico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Subjects
2.2. Variant Analysis
2.3. In Silico Analysis
2.4. Analysis of the Relationships between Genes in Signaling Pathways
2.5. Statistical Analysis
3. Results
3.1. In Silico Analysis of the Biological Impact of the Variants
3.2. Analysis of the FGFR4 Expression Profiles in the Patient and Control Samples
3.3. In Silico Analysis of Genes with Expression Patterns Similar to FGFR4 and Their Relative Roles in Signaling Pathways
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xi, Y.; Xu, P. Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol. 2021, 14, 101174. [Google Scholar] [CrossRef]
- Global Cancer Observatory. International Agency for Research on Cancer. Available online: http://gco.iarc.fr/today/home (accessed on 16 October 2023).
- Xie, Y.H.; Chen, Y.X.; Fang, J.Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther. 2020, 5, 22. [Google Scholar] [CrossRef]
- Kommalapati, A.; Tella, S.H.; Borad, M.; Javle, M.; Mahipal, A. FGFR inhibitors in oncology: Insight on the management of toxicities in clinical practice. Cancers 2021, 13, 2968. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Y.; Yin, L.; Cai, B.; Huang, P.; Lu, X.; Liang, G. Fibroblast growth factor receptor fusions in cancer: Opportunities and challenges. J. Exp. Clin. Cancer Res. 2021, 40, 345. [Google Scholar] [CrossRef]
- Sobhani, N.; Fan, C.; Flores-Villanueva, P.O.; Generali, D.; Li, Y. The fibroblast growth factor receptors in breast cancer: From oncogenesis to better treatments. Int. J. Mol. Sci. 2020, 21, 2011. [Google Scholar] [CrossRef]
- Nan, H.; Qureshi, A.A.; Hunter, D.J.; Han, J. Genetic variants in FGFR2 and FGFR4 genes and skin cancer risk in the Nurses’ Health Study. BMC Cancer 2009, 9, 172. [Google Scholar] [CrossRef]
- Kostrzewa, M.; Müller, U. Genomic structure and complete sequence of the human FGFR4 gene. Mamm. Genome 1998, 9, 131–135. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.; Liu, J.; Chen, Q.; Pang, D.; Jiang, Y. Effects of FGFR1 gene polymorphisms on the risk of breast cancer and FGFR1 protein expression. Cell Physiol. Biochem. 2018, 47, 2569–2578. [Google Scholar] [CrossRef]
- Shiu, B.H.; Hsieh, M.H.; Ting, W.C.; Chou, M.C.; Chang, L.C.; Huang, C.C.; Su, S.C.; Yang, S.F. Impact of FGFR4 gene polymorphism on the progression of colorectal cancer. Diagnostics 2021, 11, 978. [Google Scholar] [CrossRef]
- Rezvani, M.; Wilde, J.; Vitt, P.; Mailaparambil, B.; Grychtol, R.; Krueger, M.; Heinzmann, A. Association of an FGFR-4 gene polymorphism with bronchopulmonary dysplasia and neonatal respiratory distress. Dis. Markers 2013, 35, 633–640. [Google Scholar] [CrossRef]
- Bange, J.; Precht, D.; Churkin, Y.; Specht, K.; Harbeck, N.; Schmitt, M.; Knyazeva, T.; Müller, S.; Gärtner, S.; Sures, I.; et al. Cancer progression and tumor cell motility are associated with the FGFR4 Arg(388) allele. Cancer Res. 2002, 62, 840–847. [Google Scholar] [PubMed]
- Ulaganathan, V.; Sperl, B.; Rapp, U.; Ullrich, A. Germline variant FGFR4 p.G388R exposes a membrane-proximal STAT3 binding site. Nature 2015, 528, 570–574. [Google Scholar] [CrossRef]
- Xu, W.; Li, Y.; Wang, X.; Chen, B.; Wang, Y.; Liu, S.; Xu, J.; Zhao, W.; Wu, J. FGFR4 transmembrane domain polymorphism and cancer risk: A meta-analysis including 8555 subjects. Eur. J. Cancer 2010, 46, 3332–3338. [Google Scholar] [CrossRef] [PubMed]
- Tiong, K.H.; Mah, L.Y.; Leong, C.O. Functional roles of fibroblast growth factor receptors (FGFRs) signaling in human cancers. Apoptosis 2013, 18, 1447–1468. [Google Scholar] [CrossRef]
- Xiong, S.; Ma, J.; Feng, F.; Fu, W.; Shu, S.; Ma, T.; Wu, C.; Liu, G.; Zhu, J. Functional FGFR4 Gly388Arg polymorphism contributes to cancer susceptibility: Evidence from meta-analysis. Oncotarget 2017, 8, 25300–25309. [Google Scholar] [CrossRef]
- Heinzle, C.; Gsur, A.; Hunjadi, M.; Erdem, Z.; Gauglhofer, C.; Stättner, S.; Karner, J.; Klimpfinger, M.; Wrba, F.; Reti, A.; et al. Differential effects of polymorphic alleles of FGF receptor 4 on colon cancer growth and metastasis. Cancer Res. 2012, 72, 5767–5777. [Google Scholar] [CrossRef]
- Adzhubei, I.A.; Schmidt, S.; Peshki, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar] [CrossRef]
- Zefang, T.; Chenwei, L.; Kang, B.; Ge, G.; Cheng, L.; Zemin, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017, 45, W98–W102. [Google Scholar]
- GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 2013, 45, 580–585. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef]
- Shi, Y.Y.; He, L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res. 2005, 15, 97–98. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, S.; Taguchi, Y.; Shimamoto, A.; Mukasa, H.; Tahara, H.; Okamoto, T. Generation of human induced pluripotent stem (Ips) cells in serum- and feeder-free defined culture and TGF-Β1 regulation of pluripotency. PLoS ONE 2014, 9, e87151. [Google Scholar] [CrossRef]
- Siegel, R.L.; Wagle, N.S.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 233–254. [Google Scholar] [CrossRef] [PubMed]
- Hon, K.W.; Zainal Abidin, S.A.; Othman, I.; Naidu, R. The crosstalk between signaling pathways and cancer metabolism in colorectal cancer. Front. Pharmacol. 2021, 12, 768861. [Google Scholar] [CrossRef] [PubMed]
- Mathonnet, M.; Perraud, A.; Christou, N.; Akil, H.; Melin, C.; Battu, S.; Jauberteau, M.O.; Denizot, Y. Hallmarks in colorectal cancer: Angiogenesis and cancer stem-like cells. World J. Gastroenterol. 2014, 20, 4189–4196. [Google Scholar] [CrossRef] [PubMed]
- Repana, D.; Ross, P. Targeting FGF19/FGFR4 pathway: A novel therapeutic strategy for hepatocellular carcinoma. Diseases 2015, 3, 294–305. [Google Scholar] [CrossRef]
- Jiang, Y.; Sun, S.; Wei, W.; Ren, Y.; Liu, J.; Pang, D. Association of FGFR3 and FGFR4 gene polymorphisms with breast cancer in Chinese women of Heilongjiang province. Oncotarget 2015, 6, 34023–34029. [Google Scholar] [CrossRef]
- Tsay, M.D.; Hsieh, M.J.; Lee, C.Y.; Wang, S.S.; Chen, C.S.; Hung, S.C.; Lin, C.Y.; Yang, S.F. Involvement of FGFR4 gene variants on the clinicopathological severity in urothelial cell carcinoma. Int. J. Environ. Res. Public Health 2019, 17, 129. [Google Scholar] [CrossRef]
- Sheu, M.J.; Hsieh, M.J.; Chiang, W.L.; Yang, S.F.; Lee, H.L.; Lee, L.M.; Yeh, C.B. Fibroblast growth factor receptor 4 polymorphism is associated with liver cirrhosis in hepatocarcinoma. PLoS ONE 2015, 10, e0122961. [Google Scholar] [CrossRef]
- Li, J.P.; Huang, H.C.; Yang, P.J.; Chang, C.Y.; Chao, Y.H.; Tsao, T.C.; Huang, H.; Hung, Y.C.; Hsieh, M.J.; Yang, S.F. FGFR4 gene polymorphism reduces the risk of distant metastasis in lung adenocarcinoma in Taiwan. Int. J. Environ. Res. Public Health 2020, 17, 5694. [Google Scholar] [CrossRef]
- Camilleri, M.; Klee, E.W.; Shin, A.; Carlson, P.; Li, Y.; Grover, M.; Zinsmeister, A.R. Irritable bowel syndrome-diarrhea: Characterization of genotype by exome sequencing, and phenotypes of bile acid synthesis and colonic transit. Am. J. Physiol. Gastrointest. Liver Physiol. 2014, 306, G13–G26. [Google Scholar] [CrossRef]
- Wong, B.S.; Camilleri, M.; Carlson, P.J.; Guicciardi, M.E.; Burton, D.; McKinzie, S.; Rao, A.S.; Zinsmeister, A.R.; Gores, G.J. A Klothoβ variant mediates protein stability and associates with colon transit in irritable bowel syndrome with diarrhea. Gastroenterology 2011, 140, 1934–1942. [Google Scholar] [CrossRef]
- Rumgay, H.; Murphy, N.; Ferrari, P.; Soerjomataram, I. Alcohol and cancer: Epidemiology and biological mechanisms. Nutrients 2021, 13, 3173. [Google Scholar] [CrossRef]
- The importance of aging in cancer research. Nat. Aging 2022, 2, 365–366. [CrossRef] [PubMed]
- Frullanti, E.; Berking, C.; Harbeck, N.; Jézéquel, P.; Haugen, A.; Mawrin, C.; Parise, O., Jr.; Sasaki, H.; Tsuchiya, N.; Dragani, T.A. Meta and pooled analyses of FGFR4 Gly388Arg polymorphism as a cancer prognostic factor. Eur. J. Cancer Prev. 2011, 4, 340–347. [Google Scholar] [CrossRef]
- Xie, Y.; Su, N.; Yang, J.; Tan, Q.; Huang, S.; Jin, M.; Ni, Z.; Zhang, B.; Zhang, D.; Luo, F.; et al. FGF/FGFR signaling in health and disease. Signal Transduct. Target. Ther. 2020, 5, 181. [Google Scholar] [CrossRef]
- Moazeni-Roodi, A.; Sarabandi, S.; Karami, S.; Hashemi, M.; Ghavami, S. An updated meta-analysis of the association between fibroblast growth factor receptor 4 polymorphisms and susceptibility to cancer. Biosci. Rep. 2020, 40, BSR20192051. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Chen, S.; Yang, W.; Cheng, X.; Ye, Y.; Mao, J.; Wu, X.; Huang, L.; Ji, J. FGFR4 links glucose metabolism and chemotherapy resistance in breast cancer. Cell Physiol. Biochem. 2018, 47, 151–160. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Selzer, E.; Dörr, W.; Jomrich, G.; Harpain, F.; Silberhumer, G.R.; Müllauer, L.; Holzmann, K.; Grasl-Kraupp, B.; Grusch, M.; et al. Fibroblast growth factor receptor 4 induced resistance to radiation therapy in colorec-tal cancer. Oncotarget 2016, 7, 69976–69990, Erratum in Oncotarget 2019, 10, 5385–5386. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.H.; Hsieh, M.J.; Chuang, C.Y.; Lin, J.T.; Yeh, C.M.; Tseng, P.Y.; Yang, S.F.; Chen, M.K.; Lin, C.W. Functional FGFR4 Gly388Arg polymorphism contributes to oral squamous cell carcinoma susceptibility. Oncotarget 2017, 8, 96225–96238. [Google Scholar] [CrossRef]
- McKinnon, T.; Venier, R.; Yohe, M.; Sindiri, S.; Gryder, B.E.; Shern, J.F.; Kabaroff, L.; Dickson, B.; Schleicher, K.; Chouinard-Pelletier, G.; et al. Functional screening of FGFR4-driven tumorigenesis identifies PI3K/mTOR inhibition as a therapeutic strategy in rhabdomyosarcoma. Oncogene 2018, 37, 2630–2644. [Google Scholar] [CrossRef]
- Yu, T.; Wang, L.N.; Li, W.; Zuo, Q.F.; Li, M.M.; Zou, Q.M.; Xiao, B. Downregulation of miR-491-5p promotes gastric cancer metastasis by regulating SNAIL and FGFR4. Cancer Sci. 2018, 109, 1393–1403. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, M.; Cai, Y.; Li, X.; Zhao, C.; Cui, R. Dissecting the role of the FGF19-FGFR4 signaling pathway in cancer development and progression. Front. Cell Dev. Biol. 2020, 8, 95. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, C.; Li, J.; Zhu, J.; Zhao, C.; Xu, H. Novel regulatory factors and small-molecule inhibitors of FGFR4 in cancer. Front. Pharmacol. 2021, 12, 633453. [Google Scholar] [CrossRef] [PubMed]
- Dai, M.D.; Wang, Y.L.; Fan, J.; Dai, Y.; Ji, Y.C.; Sun, Y.M.; Peng, X.; Li, L.L.; Wang, Y.M.; Duan, W.H.; et al. DW14383 is an irreversible pan-FGFR inhibitor that suppresses FGFR-dependent tumor growth in vitro and in vivo. Acta Pharmacol. Sin. 2021, 42, 1498–1506. [Google Scholar] [CrossRef] [PubMed]
- Zaid, T.M.; Yeung, T.L.; Thompson, M.S.; Leung, C.S.; Harding, T.; Co, N.N.; Schmandt, R.S.; Kwan, S.Y.; Rodriguez-Aguay, C.; Lopez-Berestein, G.; et al. Identification of FGFR4 as a potential therapeutic target for advanced-stage, high-grade serous ovarian cancer. Clin. Cancer Res. 2013, 19, 809–820. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Feng, S.; Dakhova, O.; Creighton, C.J.; Cai, Y.; Wang, J.; Li, R.; Frolov, A.; Ayala, G.; Ittmann, M. FGFR-4 Arg388 enhances prostate cancer progression via extracellular signal-related kinase and serum response factor signaling. Clin. Cancer Res. 2011, 17, 4355–4366. [Google Scholar] [CrossRef] [PubMed]
- Whittle, S.B.; Reyes, S.; Du, M.; Gireud, M.; Zhang, L.; Woodfield, S.E.; Ittmann, M.; Scheurer, M.E.; Bean, A.J.; Zage, P.E. A Polymorphism in the FGFR4 Gene Is Associated with Risk of Neuroblastoma and Altered Receptor Degradation. J. Pediatr. Hematol. Oncol. 2016, 38, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Stergiou, I.E.; Papadakos, S.P.; Karyda, A.; Tsitsilonis, O.E.; Dimopoulos, M.A.; Theocharis, S. EPH/Ephrin signaling in normal hematopoiesis and hematologic malignancies: Deciphering their intricate role and unraveling possible new therapeutic targets. Cancers 2023, 15, 3963. [Google Scholar] [CrossRef] [PubMed]
- Nachef, M.; Ali, A.K.; Almutairi, S.M.; Lee, S.H. Targeting SLC1A5 and SLC3A2/SLC7A5 as a potential strategy to strengthen anti-tumor immunity in the tumor microenvironment. Front. Immunol. 2021, 12, 624324. [Google Scholar] [CrossRef] [PubMed]
- D’Agosto, S.; Pezzini, F.; Veghini, L.; Delfino, P.; Fiorini, C.; Temgue Tane, G.D.; Del Curatolo, A.; Vicentini, C.; Ferrari, G.; Pasini, D.; et al. Loss of FGFR4 promotes the malignant phenotype of PDAC. Oncogene 2022, 41, 4371–4384. [Google Scholar] [CrossRef] [PubMed]
CRC Patients (n = 475) | Controls (n = 412) | p | |||
---|---|---|---|---|---|
Age at diagnosis (years) | |||||
Mean (SD) * | 59.45 | (12.34) | 59.40 | (13.37) | 0.951 |
≤49 (n, %) ** | 92 | 19 | 81 | 20 | 1.0 |
≥50 (n, %) ** | 383 | 81 | 331 | 80 | |
Sex | |||||
Male (n, %) ** | 260 | 55 | 225 | 55 | 1.0 |
Female (n, %) ** | 215 | 45 | 187 | 45 | |
Tobacco consumption | |||||
Yes (n, %) ** | 161 | 34 | 142 | 34 | 0.94 |
No (n, %) ** | 314 | 66 | 270 | 66 | |
Alcohol consumption | |||||
Yes (n, %) ** | 178 | 37 | 145 | 35 | 0.50 |
No (n, %) ** | 297 | 63 | 267 | 65 |
CRC Patients (n = 475) | |||||
---|---|---|---|---|---|
n | % | n | % | ||
Location | Histological classification of adenocarcinoma | ||||
Rectum | 242 | 51 | Moderately differentiated | 404 | 85 |
Colon | 233 | 49 | Not differentiated | 27 | 5 |
Stage | Differentiated | 44 | 10 | ||
I | 16 | 3 | |||
II | 154 | 32 | Lymph node metastasis | ||
III | 177 | 37 | Positive | 203 | 43 |
IV | 128 | 28 | Negative | 272 | 57 |
Variant | CRC Patients | Controls * | OR | 95% CI | p | ||||
---|---|---|---|---|---|---|---|---|---|
rs1966265 | Model | Genotype | n = 455 | % | n = 392 | % | |||
GG | 88 | 19 | 124 | 32 | 1.0 | ||||
GA | 266 | 58 | 184 | 47 | 1.59 | 1.21–2.08 | 0.001 | ||
AA | 101 | 23 | 84 | 21 | 1.04 | 0.75–1.45 | 0.851 | ||
Dominant | GG | 88 | 19 | 124 | 32 | ||||
GA + AA | 367 | 81 | 268 | 68 | 1.92 | 1.41–2.64 | 0.001 | ||
Recessive | AA | 101 | 23 | 84 | 21 | 1.04 | 0.75–1.45 | 0.787 | |
GG + GA | 354 | 77 | 308 | 79 | |||||
Allele | 2n = 910 | 2n = 784 | |||||||
G | 442 | 49 | 432 | 55 | 0.76 | 0.63–0.93 | 0.007 | ||
A | 468 | 51 | 352 | 45 | 1.29 | 1.07–1.57 | 0.007 | ||
rs351855 | Model | Genotype | n = 460 | % | n = 406 | % | |||
GG | 212 | 46 | 244 | 60 | 1.0 | ||||
GA | 148 | 32 | 138 | 34 | 1.07 | 0.80–1.42 | 0.685 | ||
AA | 100 | 22 | 24 | 6 | 4.42 | 2.77–7.06 | 0.001 | ||
Dominant | GG | 212 | 46 | 244 | 60 | ||||
GA + AA | 248 | 54 | 162 | 40 | 1.76 | 1.34–2.30 | 0.001 | ||
Recessive | AA | 100 | 22 | 24 | 23 | 4.42 | 2.77–7.06 | 0.001 | |
GG + GA | 360 | 78 | 382 | 77 | |||||
Allele | 2n = 920 | 2n = 812 | |||||||
G | 572 | 62 | 626 | 77 | 0.48 | 0.39–0.60 | 0.019 | ||
A | 348 | 38 | 186 | 23 | 2.04 | 1.65–2.52 | 0.019 |
Variant | Genotype | Variable | OR | 95% CI | p |
---|---|---|---|---|---|
rs351855 | GA | ≥50 years old | 1.59 | 0.45–0.13 | 0.001 |
GA | Alcohol consumption | 1.58 | 0.46–0.13 | 0.001 |
Variant | Genotype | Variable | OR | 95% CI | p |
---|---|---|---|---|---|
rs1966265 | GA | Rectal cancer and III–IV stage | 1.83 | 1.03–3.31 | 0.044 |
rs351855 | AA | Partial chemotherapy response | 2.34 | 1.02–5.36 | 0.038 |
GA + AA | ≥50 years old | 1.94 | 1.04–3.64 | 0.038 | |
GA + AA | Rectal cancer and partial chemotherapy response | 3.2 | 1.12–8.09 | 0.028 |
CRC Group 2n = 870 | Control Group 2n = 772 | ||||||
---|---|---|---|---|---|---|---|
rs1966265 | rs351855 | n | % | n | % | OR (95% CI) | p |
G | A | 124 | 14 | 72 | 9 | 14 (7.70–27.9) | 0.0001 |
A | A | 207 | 24 | 110 | 14 | 1.8 (1.45–2.42) | 0.0001 |
G | G | 302 | 35 | 356 | 46 | 0.6 (0.50–0.75) | 0.0001 |
A | G | 237 | 27 | 234 | 31 | 0.8 (0.69–1.06) | 0.187 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrillo-Dávila, I.A.; Garibaldi-Ríos, A.F.; Figuera, L.E.; Gómez-Meda, B.C.; Zúñiga-González, G.M.; Puebla-Pérez, A.M.; García-Verdín, P.M.; Castro-García, P.B.; Gutiérrez-Hurtado, I.A.; Torres-Mendoza, B.M.; et al. Association of the rs1966265 and rs351855 FGFR4 Variants with Colorectal Cancer in a Mexican Population and Their Analysis In Silico. Biomedicines 2024, 12, 602. https://doi.org/10.3390/biomedicines12030602
Carrillo-Dávila IA, Garibaldi-Ríos AF, Figuera LE, Gómez-Meda BC, Zúñiga-González GM, Puebla-Pérez AM, García-Verdín PM, Castro-García PB, Gutiérrez-Hurtado IA, Torres-Mendoza BM, et al. Association of the rs1966265 and rs351855 FGFR4 Variants with Colorectal Cancer in a Mexican Population and Their Analysis In Silico. Biomedicines. 2024; 12(3):602. https://doi.org/10.3390/biomedicines12030602
Chicago/Turabian StyleCarrillo-Dávila, Irving Alejandro, Asbiel Felipe Garibaldi-Ríos, Luis E. Figuera, Belinda Claudia Gómez-Meda, Guillermo M. Zúñiga-González, Ana María Puebla-Pérez, Patricia Montserrat García-Verdín, Paola Beatriz Castro-García, Itzae Adonai Gutiérrez-Hurtado, Blanca Miriam Torres-Mendoza, and et al. 2024. "Association of the rs1966265 and rs351855 FGFR4 Variants with Colorectal Cancer in a Mexican Population and Their Analysis In Silico" Biomedicines 12, no. 3: 602. https://doi.org/10.3390/biomedicines12030602
APA StyleCarrillo-Dávila, I. A., Garibaldi-Ríos, A. F., Figuera, L. E., Gómez-Meda, B. C., Zúñiga-González, G. M., Puebla-Pérez, A. M., García-Verdín, P. M., Castro-García, P. B., Gutiérrez-Hurtado, I. A., Torres-Mendoza, B. M., & Gallegos-Arreola, M. P. (2024). Association of the rs1966265 and rs351855 FGFR4 Variants with Colorectal Cancer in a Mexican Population and Their Analysis In Silico. Biomedicines, 12(3), 602. https://doi.org/10.3390/biomedicines12030602