Evaluation of Trabecular Bone Microarchitecture and Bone Mineral Density in Young Women, Including Selected Hormonal Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Assumptions and Objectives of the Study
2.2. Participation in the Study
2.3. Basic Procedures
2.4. Laboratory Parameters
2.5. Bone Mineral Density Assessment
2.6. Statistical Analysis
3. Results
3.1. Characteristics of the Group
3.1.1. Factors Affecting Bone Mineral Density and Values of the Trabecular Bone Score in the Lumbar Spine—Results of Unidimensional Analysis
3.1.2. Results of Multivariate Analysis on Factors Influencing Lumbar Spine Bone Mineral Density
3.2. Summary of Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Messina, C.; Bignotti, B.; Bazzocchi, A.; Phan, C.M.; Tagliafico, A.; Guglielmi, G.; Sardanelli, F.; Sconfienza, L.M. A critical appraisal of the quality of adult dual-energy X-ray absorptiometry guidelines in osteoporosis using the AGREE II tool: An EuroAIM initiative. Insights Imaging 2017, 8, 311–317. [Google Scholar] [CrossRef]
- Kanis, J.A.; McCloskey, E.V.; Johansson, H.; Cooper, C.; Rizzoli, R.; Reginster, J.-Y. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos. Int. 2013, 24, 23–57. [Google Scholar] [CrossRef] [PubMed]
- Kong, S.H.; Hong, N.; Kim, J.-W.; Kim, D.Y.; Kim, J.H. Application of the Trabecular Bone Score in Clinical Practice. J. Bone Metab. 2021, 28, 101–113. [Google Scholar] [CrossRef]
- Shevroja, E.; Reginster, J.-Y.; Lamy, O.; Al-Daghri, N.; Chandran, M.; Demoux-Baiada, A.-L.; Kohlmeier, L.; Lecart, M.-P.; Messina, D.; Camargos, B.M.; et al. Update on the clinical use of trabecular bone score (TBS) in the management of osteoporosis: Results of an expert group meeting organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO), and the International Osteoporosis Foundation (IOF) under the auspices of WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Aging. Osteoporos. Int. 2023, 34, 1501–1529. [Google Scholar] [CrossRef] [PubMed]
- Dowthwaite, J.N.; Winzenrieth, R.; Binkley, N.; Krueger, D.; Scerpella, T.A. A focused evaluation of lumbar spine trabecular bone score in the first year post-menarche. Arch. Osteoporos. 2017, 12, 90. [Google Scholar] [CrossRef]
- Ambrosio, M.R.; Aliberti, L.; Gagliardi, I.; Franceschetti, P.; Zatelli, M.C. Bone health in adolescence. Minerva Obstet. Gynecol. 2021, 73, 662–677. [Google Scholar] [CrossRef] [PubMed]
- Proia, P.; Amato, A.; Drid, P.; Korovljev, D.; Vasto, S.; Baldassano, S. The Impact of Diet and Physical Activity on Bone Health in Children and Adolescents. Front. Endocrinol. 2021, 12, 704647. [Google Scholar] [CrossRef]
- Hung, C.; Muñoz, M.; Shibli-Rahhal, A. Anorexia Nervosa and Osteoporosis. Calcif. Tissue Int. 2022, 110, 562–575. [Google Scholar] [CrossRef] [PubMed]
- Adolescent Girls, the Menstrual Cycle, and Bone Health—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/12795370/ (accessed on 26 December 2023).
- Seeman, E. Reduced bone density in women with fractures: Contribution of low peak bone density and rapid bone loss. Osteoporos. Int. 1994, 4 (Suppl. 1), S15–S25. [Google Scholar] [CrossRef]
- Weaver, C.M.; Gordon, C.M.; Janz, K.F.; Kalkwarf, H.J.; Lappe, J.M.; Lewis, R.; O’karma, M.; Wallace, T.C.; Zemel, B.S. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: A systematic review and implementation recommendations. Osteoporos. Int. 2016, 27, 1281–1386. [Google Scholar] [CrossRef]
- Sabatier, J.-P.; Guaydier-Souquières, G.; Laroche, D.; Benmalek, A.; Fournier, L.; Guillon-Metz, F.; Delavenne, J.; Denis, A.Y. Bone mineral acquisition during adolescence and early adulthood: A study in 574 healthy females 10–24 years of age. Osteoporos. Int. 1996, 6, 141–148. [Google Scholar] [CrossRef]
- Chevalley, T.; Rizzoli, R. Acquisition of peak bone mass. Best Pr. Res. Clin. Endocrinol. Metab. 2022, 36, 101616. [Google Scholar] [CrossRef]
- Theintz, G.; Buchs, B.; Rizzoli, R.; Slosman, D.; Clavien, H.; Sizonenko, P.C.; Bonjour, J.P. Longitudinal monitoring of bone mass accumulation in healthy adolescents: Evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J. Clin. Endocrinol. Metab. 1992, 75, 1060–1065. [Google Scholar] [CrossRef] [PubMed]
- Bonjour, J.-P.; Chevalley, T.; Ferrari, S.; Rizzoli, R. The importance and relevance of peak bone mass in the prevalence of osteoporosis. Salud Publica Mex. 2009, 51 (Suppl. 1), S5–S17. [Google Scholar] [CrossRef] [PubMed]
- Cadogan, J.; Blumsohn, A.; Barker, M.E.; Eastell, R. A Longitudinal Study of Bone Gain in Pubertal Girls: Anthropometric and Biochemical Correlates. J. Bone Miner. Res. 1998, 13, 1602–1612. [Google Scholar] [CrossRef] [PubMed]
- Bonjour, J.-P.; Theintz, G.; Law, F.; Slosman, D.; Rizzoli, R. Peak bone mass. Osteoporos. Int. 1994, 4 (Suppl. 1), S7–S13. [Google Scholar] [CrossRef]
- Rizzoli, R.; Bonjour, J.-P. Determinants of peak bone mass and mechanisms of bone loss. Osteoporos. Int. 1999, 9 (Suppl. 2), S17–S23. [Google Scholar] [CrossRef] [PubMed]
- Kenkre, J.S.; Bassett, J.H.D. The bone remodelling cycle. Ann. Clin. Biochem. 2018, 55, 308–327. [Google Scholar] [CrossRef]
- Kasperk, C.H.; Wakley, G.K.; Hierl, T.; Ziegler, R. Gonadal and adrenal androgens are potent regulators of human bone cell metabolism in vitro. J. Bone Miner. Res. 1997, 12, 464–471. [Google Scholar] [CrossRef]
- Lin, H.; Li, L.; Wang, Q.; Wang, Y.; Wang, J.; Long, X. A systematic review and meta-analysis of randomized placebo-controlled trials of DHEA supplementation of bone mineral density in healthy adults. Gynecol. Endocrinol. 2019, 35, 924–931. [Google Scholar] [CrossRef]
- Kirby, D.J.; Buchalter, D.B.; Anil, U.; Leucht, P. DHEA in bone: The role in osteoporosis and fracture healing. Arch. Osteoporos. 2020, 15, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Martin-Millan, M.; Almeida, M.; Ambrogini, E.; Han, L.; Zhao, H.; Weinstein, R.S.; Jilka, R.L.; O’Brien, C.A.; Manolagas, S.C. The estrogen receptor-α in osteoclasts mediates the protective effects of estrogens on cancellous but not cortical bone. Mol. Endocrinol. 2010, 24, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Onal, M.; Xiong, J.; Chen, X.; Thostenson, J.D.; Almeida, M.; Manolagas, S.C.; O’Brien, C.A. Receptor activator of nuclear factor κB ligand (RANKL) protein expression by B lymphocytes contributes to ovariectomy-induced bone loss. J. Biol. Chem. 2012, 287, 29851–29860. [Google Scholar] [CrossRef] [PubMed]
- Waters, K.M.; Rickard, D.J.; Riggs, B.L.; Khosla, S.; Katzenellenbogen, J.A.; Katzenellenbogen, B.S.; Moore, J.; Spelsberg, T.C. Estrogen regulation of human osteoblast function is determined by the stage of differentiation and the estrogen receptor isoform. J. Cell. Biochem. 2001, 83, 448–462. [Google Scholar] [CrossRef] [PubMed]
- Maret, A.; Clamens, S.; Delrieu, I.; Elhage, R.; Arnal, J.-F.; Bayard, F. Expression of the interleukin-6 gene is constitutive and not regulated by estrogen in rat vascular smooth muscle cells in culture. Endocrinology 1999, 140, 2876–2882. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Choi, H.J.; Ku, E.J.; Kim, K.M.; Kim, S.W.; Cho, N.H.; Shin, C.S. Trabecular bone score as an indicator for skeletal deterioration in diabetes. J. Clin. Endocrinol. Metab. 2015, 100, 475–482. [Google Scholar] [CrossRef]
- Khosla, S.; Monroe, D.G. Regulation of Bone Metabolism by Sex Steroids. Cold Spring Harb. Perspect. Med. 2018, 8, a031211. [Google Scholar] [CrossRef] [PubMed]
- Syrenicz, J.; Krzyscin, M.; Sowinska-Przepiera, E. Relationships between hormonal parameters, body fat distribution and bone mineral density in women with psychogenic functional hypothalamic amenorrhea. Ginekol. Pol. 2021, 92, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Sowińska-Przepiera, E.; Andrysiak-Mamos, E.; Jarząbek-Bielecka, G.; Walkowiak, A.; Osowicz-Korolonek, L.; Syrenicz, M.; Kędzia, W.; Syrenicz, A. Functional hypothalamic amenorrhoea — diagnostic challenges, monitoring, and treatment. Endokrynol. Pol. 2015, 66, 252–260. [Google Scholar] [CrossRef]
- Buehring, B.; Thomas, J.; Wittkämper, T.; Baraliakos, X.; Braun, J. Evaluation of the trabecular bone score (TBS) in routine clinical care of patients with inflammatory rheumatic and non-inflammatory diseases: Correlation with conventional bone mineral density measurement and prevalence of vertebral fractures. Z. Rheumatol. 2020, 79, 1067–1074. [Google Scholar] [CrossRef]
- Rabier, B.; Héraud, A.; Grand-Lenoir, C.; Winzenrieth, R.; Hans, D. A multicentre, retrospective case-control study assessing the role of trabecular bone score (TBS) in menopausal Caucasian women with low areal bone mineral density (BMDa): Analysing the odds of vertebral fracture. Bone 2010, 46, 176–181. [Google Scholar] [CrossRef]
- Hans, D.; Goertzen, A.L.; Krieg, M.-A.; Leslie, W.D. Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: The Manitoba study. J. Bone Miner. Res. 2011, 26, 2762–2769. [Google Scholar] [CrossRef]
- Joy, E.A.; Campbell, D. Stress fractures in the female athlete. Optom. Vis. Sci. 2005, 4, 323–328. [Google Scholar] [CrossRef]
- Riggs, B.L. The mechanisms of estrogen regulation of bone resorption. J. Clin. Investig. 2000, 106, 1203–1204. [Google Scholar] [CrossRef] [PubMed]
- Valentino, R.; Savastano, S.; Tommaselli, A.P.; D’amore, G.; Dorato, M.; Lombardi, G. The influence of intense ballet training on trabecular bone mass, hormone status, and gonadotropin structure in young women. J. Clin. Endocrinol. Metab. 2001, 86, 4674–4678. [Google Scholar] [CrossRef] [PubMed]
- Bjørnerem, Å.; Emaus, N.; Berntsen, G.K.R.; Joakimsen, R.M.; Fønnebø, V.; Wilsgaard, T.; Øian, P.; Seeman, E.; Straume, B. Circulating sex steroids, sex hormone-binding globulin, and longitudinal changes in forearm bone mineral density in postmenopausal women and men: The Tromsø study. Calcif. Tissue Int. 2007, 81, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Ooms, M.E.; Lips, P.; Roos, J.C.; van der Vijgh, W.J.F.; Popp-Snijders, C.; Bezemer, P.D.; Bouter, L.M. Vitamin D status and sex hormone binding globulin: Determinants of bone turnover and bone mineral density in elderly women. J. Bone Miner. Res. 1995, 10, 1177–1184. [Google Scholar] [CrossRef]
- Rapuri, P.B.; Gallagher, J.C.; Haynatzki, G. Endogenous levels of serum estradiol and sex hormone binding globulin determine bone mineral density, bone remodeling, the rate of bone loss, and response to treatment with estrogen in elderly women. J. Clin. Endocrinol. Metab. 2004, 89, 4954–4962. [Google Scholar] [CrossRef]
- Greendale, G.A.; Huang, M.; Cauley, J.A.; Liao, D.; Harlow, S.; Finkelstein, J.S.; Hans, D.; Karlamangla, A.S. Trabecular Bone Score Declines During the Menopause Transition: The Study of Women’s Health Across the Nation (SWAN). J. Clin. Endocrinol. Metab. 2020, 105, e1872–e1882. [Google Scholar] [CrossRef]
- Samad, N.; Nguyen, H.H.; Hashimura, H.; Pasco, J.; Kotowicz, M.; Strauss, B.J.; Ebeling, P.R.; Milat, F.; Vincent, A.J. Abnormal Trabecular Bone Score, Lower Bone Mineral Density and Lean Mass in Young Women with Premature Ovarian Insufficiency Are Prevented by Oestrogen Replacement. Front. Endocrinol. 2022, 13, 860853. [Google Scholar] [CrossRef]
- Bassett, J.H.D.; Williams, G.R. Role of Thyroid Hormones in Skeletal Development and Bone Maintenance. Endocr. Rev. 2016, 37, 135–187. [Google Scholar] [CrossRef] [PubMed]
- Gorka, J.; Taylor-Gjevre, R.M.; Arnason, T. Metabolic and clinical consequences of hyperthyroidism on bone density. Int. J. Endocrinol. 2013, 2013, 638727. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-M.; Ryu, V.; Miyashita, S.; Korkmaz, F.; Lizneva, D.; Gera, S.; Latif, R.; Davies, T.F.; Iqbal, J.; Yuen, T.; et al. Thyrotropin, Hyperthyroidism, and Bone Mass. J. Clin. Endocrinol. Metab. 2021, 106, E4809–E4821. [Google Scholar] [CrossRef] [PubMed]
- Zygmunt, A.; Krawczyk-Rusiecka, K.; Skowrońska-Jóźwiak, E.; Wojciechowska-Durczyńska, K.; Głowacka, E.; Adamczewski, Z.; Lewiński, A. The Effect of Recombinant Human TSH on Sclerostin and Other Selected Bone Markers in Patients after Total Thyroidectomy for Differentiated Thyroid Cancer. J. Clin. Med. 2021, 10, 4905. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Matsumoto, T. Sclerostin: From bench to bedside. J. Bone Miner. Metab. 2021, 39, 332–340. [Google Scholar] [CrossRef]
- Czajkowska, M.; Plinta, R.; Owczarek, A.; Olszanecka-Glinianowicz, M.; Skrzypulec-Plinta, V. Circulating sclerostin levels in relation to nutritional status, sex hormones and selected bone turnover biochemical markers levels in peri- and postmenopausal women. Ginekol. Polska 2019, 90, 371–375. [Google Scholar] [CrossRef]
- Uda, Y.; Azab, E.; Sun, N.; Shi, C.; Pajevic, P.D. Osteocyte Mechanobiology. Curr. Osteoporos. Rep. 2017, 15, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Mihaljević, O.B.; Živančević-Simonović, S.; Lučić-Tomić, A.; Živković, I.; Minić, R.; Mijatović-Teodorović, L.; Jovanović, Z.; Anđelković, M.; Stanojević-Pirković, M. The association of circulating sclerostin level with markers of bone metabolism in patients with thyroid dysfunction. J. Med. Biochem. 2020, 39, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Drake, M.T.; Khosla, S. Hormonal and systemic regulation of sclerostin. Bone 2017, 96, 8–17. [Google Scholar] [CrossRef]
- Nagata, Y.; Imanishi, Y.; Tateishi, T.; Miyaoka, D.; Kurajoh, M.; Arnold, A.; Emoto, M. Parathyroid Hormone Regulates Circulating Levels of Sclerostin and FGF23 in a Primary Hyperparathyroidism Model. J. Endocr. Soc. 2022, 6, bvac027. [Google Scholar] [CrossRef]
- Vasiliadis, E.S.; Evangelopoulos, D.-S.; Kaspiris, A.; Benetos, I.S.; Vlachos, C.; Pneumaticos, S.G. The Role of Sclerostin in Bone Diseases. J. Clin. Med. 2022, 11, 806. [Google Scholar] [CrossRef] [PubMed]
- Moser, E.; Sikjaer, T.; Mosekilde, L.; Rejnmark, L. Bone Indices in Thyroidectomized Patients on Long-Term Substitution Therapy with Levothyroxine Assessed by DXA and HR-pQCT. J. Thyroid. Res. 2015, 2015, 796871. [Google Scholar] [CrossRef] [PubMed]
- Iacobellis, G.; Ribaudo, M.C.; Zappaterreno, A.; Iannucci, C.V.; Leonetti, F. Relationship of thyroid function with body mass index, leptin, insulin sensitivity and adiponectin in euthyroid obese women. Clin. Endocrinol. 2005, 62, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Biondi, B. Thyroid and obesity: An intriguing relationship. J. Clin. Endocrinol. Metab. 2010, 95, 3614–3617. [Google Scholar] [CrossRef]
- Soriguer, F.; Valdes, S.; Morcillo, S.; Esteva, I.; Almaraz, M.C.; de Adana, M.S.R.; Tapia, M.J.; Dominguez, M.; Gutierrez-Repiso, C.; Rubio-Martin, E.; et al. Thyroid hormone levels predict the change in body weight: A prospective study. Eur. J. Clin. Investig. 2011, 41, 1202–1209. [Google Scholar] [CrossRef] [PubMed]
- Aeberli, I.; Jung, A.; Murer, S.B.; Wildhaber, J.; Wildhaber-Brooks, J.; Knöpfli, B.H.; Zimmermann, M.B. During rapid weight loss in obese children, reductions in TSH predict improvements in insulin sensitivity independent of changes in body weight or fat. J. Clin. Endocrinol. Metab. 2010, 95, 5412–5418. [Google Scholar] [CrossRef] [PubMed]
- Ságová, I.; Mokáň, M.; Tonhajzerová, I.; Rončáková, M.; Vaňuga, P. Age, body composition parameters and glycaemic control contribute to trabecular bone score deterioration in acromegaly more than disease activity. Front. Endocrinol. 2023, 14, 1197725. [Google Scholar] [CrossRef] [PubMed]
- Kužma, M.; Kužmová, Z.; Zelinková, Z.; Killinger, Z.; Vaňuga, P.; Lazurová, I.; Tomková, S.; Payer, J. Impact of the growth hormone replacement on bone status in growth hormone deficient adults. Growth Horm. IGF Res. 2014, 24, 22–28. [Google Scholar] [CrossRef]
- Tay, Y.-K.D.; Cusano, N.E.; Rubin, M.R.; Williams, J.; Omeragic, B.; Bilezikian, J.P. Trabecular Bone Score in Obese and Nonobese Subjects with Primary Hyperparathyroidism before and after Parathyroidectomy. J. Clin. Endocrinol. Metab. 2018, 103, 1512–1521. [Google Scholar] [CrossRef]
- Cipriani, C.; Abraham, A.; Silva, B.C.; Cusano, N.E.; Rubin, M.R.; McMahon, D.J.; Zhang, C.; Hans, D.; Silverberg, S.J.; Bilezikian, J.P. Skeletal changes after restoration of the euparathyroid state in patients with hypoparathyroidism and primary hyperparathyroidism. Endocrine 2017, 55, 591–598. [Google Scholar] [CrossRef]
- Muñoz-Torres, M.; Córdova, R.M.; García-Martín, A.; Avilés-Pérez, M.D.; Serrano, R.N.; Andújar-Vera, F.; García-Fontana, B. Usefulness of Trabecular Bone Score (TBS) to Identify Bone Fragility in Patients with Primary Hyperparathyroidism. J. Clin. Densitom. 2019, 22, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Hong, A.R.; Lee, J.H.; Kim, J.H.; Kim, S.W.; Shin, C.S. Effect of Endogenous Parathyroid Hormone on Bone Geometry and Skeletal Microarchitecture. Calcif. Tissue Int. 2019, 104, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Eller-Vainicher, C.; Filopanti, M.; Palmieri, S.; Ulivieri, F.M.; Morelli, V.; Zhukouskaya, V.V.; Cairoli, E.; Pino, R.; Naccarato, A.; Verga, U.; et al. Bone quality, as measured by trabecular bone score, in patients with primary hyperparathyroidism. Eur. J. Endocrinol. 2013, 169, 155–162. [Google Scholar] [CrossRef]
- Belaya, Z.E.; Hans, D.; Rozhinskaya, L.Y.; Dragunova, N.V.; Sasonova, N.I.; Solodovnikov, A.G.; Tsoriev, T.T.; Dzeranova, L.K.; Melnichenko, G.A.; Dedov, I.I. The risk factors for fractures and trabecular bone-score value in patients with endogenous Cushing’s syndrome. Arch. Osteoporos. 2015, 10, 44. [Google Scholar] [CrossRef] [PubMed]
- Batista, S.L.; de Araújo, I.M.; Carvalho, A.L.; Alencar, M.A.V.S.D.; Nahas, A.K.; Elias, J.; Nogueira-Barbosa, M.H.; Salmon, C.E.G.; Elias, P.C.L.; Moreira, A.C.; et al. Beyond the metabolic syndrome: Visceral and marrow adipose tissues impair bone quantity and quality in Cushing’s disease. PLoS ONE 2019, 14, e0223432. [Google Scholar] [CrossRef]
- Eller-Vainicher, C.; Morelli, V.; Ulivieri, F.M.; Palmieri, S.; Zhukouskaya, V.V.; Cairoli, E.; Pino, R.; Naccarato, A.; Scillitani, A.; Beck-Peccoz, P.; et al. Bone quality, as measured by trabecular bone score in patients with adrenal incidentalomas with and without subclinical hypercortisolism. J. Bone Miner. Res. 2012, 27, 2223–2230. [Google Scholar] [CrossRef]
- Rodriguez, E.G.; Lamy, O.; Stoll, D.; Metzger, M.; Preisig, M.; Kuehner, C.; Vollenweider, P.; Marques-Vidal, P.; Waeber, G.; Aubry-Rozier, B.; et al. High Evening Cortisol Level Is Associated with Low TBS and Increased Prevalent Vertebral Fractures: OsteoLaus Study. J. Clin. Endocrinol. Metab. 2017, 102, 2628–2636. [Google Scholar] [CrossRef]
- Tahani, N.; Nieddu, L.; Prossomariti, G.; Spaziani, M.; Granato, S.; Carlomagno, F.; Anzuini, A.; Lenzi, A.; Radicioni, A.F.; Romagnoli, E. Long-term effect of testosterone replacement therapy on bone in hypogonadal men with Klinefelter Syndrome. Endocrine 2018, 61, 327–335. [Google Scholar] [CrossRef]
Variable | n | Mean | SD | Median | Q1 | Q3 | Min. | Maks. |
---|---|---|---|---|---|---|---|---|
Age (years) | 205 | 27.08 | 4.33 | 27.00 | 24.00 | 30.00 | 19.00 | 37.00 |
BMI (kg/m2) | 205 | 25.60 | 5.82 | 23.80 | 20.90 | 30.00 | 16.22 | 45.50 |
Variable n = 205 | Mean | SD | Median | Q1 | Q3 | Min. | Maks. |
---|---|---|---|---|---|---|---|
BMD L1–L4 (g/cm2) | 1.23 | 0.13 | 1.24 | 1.15 | 1.32 | 0.83 | 1.58 |
BMD L1–L4 (%) | 102.51 | 9.95 | 103.00 | 96.00 | 109.00 | 71.00 | 125.00 |
BMD z L1–L4 score | 0.23 | 0.98 | 0.30 | −0.40 | 1.00 | −2.80 | 2.50 |
TBS L1–L4 | 1.38 | 0.09 | 1.38 | 1.32 | 1.43 | 1.18 | 1.70 |
Variable n = 205 | Mean | SD | Median | Q1 | Q3 | Min. | Maks. |
---|---|---|---|---|---|---|---|
Androstenedione | 3.94 | 1.91 | 3.60 | 2.85 | 4.78 | 1.00 | 17.10 |
DHEA | 260.07 | 125.48 | 254.00 | 178.00 | 325.00 | 10.68 | 781.10 |
Testosterone | 0.50 | 0.22 | 0.48 | 0.36 | 0.62 | 0.06 | 1.24 |
SHBG | 56.11 | 45.98 | 45.50 | 28.34 | 70.70 | 6.80 | 399.60 |
FAI | 5.29 | 5.18 | 3.94 | 2.07 | 6.46 | 0.00 | 39.89 |
17-OHP | 1.17 | 0.65 | 1.10 | 0.76 | 1.47 | 0.31 | 7.51 |
LH | 9.02 | 7.66 | 6.93 | 4.74 | 11.15 | 0.10 | 73.82 |
FSH | 6.13 | 5.75 | 5.57 | 4.59 | 6.71 | 0.12 | 78.31 |
Estradiol | 69.42 | 81.71 | 45.34 | 32.61 | 70.49 | 5.00 | 329.40 |
PRL 0′ | 20.11 | 24.06 | 16.65 | 11.20 | 22.40 | 1.46 | 336.70 |
PRL 60′ | 166.18 | 73.81 | 157.80 | 121.70 | 189.80 | 6.60 | 551.00 |
TSH | 2.40 | 3.50 | 1.81 | 1.31 | 2.83 | 0.02 | 48.03 |
fT3 | 3.05 | 0.35 | 2.95 | 2.80 | 3.34 | 2.40 | 3.97 |
fT4 | 1.44 | 1.80 | 1.23 | 1.12 | 1.33 | 0.85 | 20.57 |
Cortisol | 16.63 | 6.26 | 15.75 | 12.40 | 20.19 | 7.30 | 50.40 |
ACTH | 34.41 | 47.84 | 26.49 | 19.42 | 38.00 | 1.00 | 481.00 |
Variable n = 205 | R | p |
---|---|---|
BMD L1–L4 (g/cm2) | 0.334 | <0.001 |
BMD L1–L4 (%) | 0.270 | <0.001 |
z-score | 0.263 | <0.001 |
Variable n = 205 | R | p |
---|---|---|
Androstenedione | −0.038 | 0.585 |
DHEA | 0.046 | 0.503 |
Testosterone | 0.072 | 0.295 |
SHBG | −0.212 | 0.002 |
FAI | 0.192 | 0.006 |
17-hydroxyprogesterone | 0.047 | 0.492 |
LH | −0.048 | 0.487 |
FSH | −0.093 | 0.175 |
Estradiol | 0.180 | 0.008 |
PRL 0′ | 0.076 | 0.267 |
PRL 60′ | 0.054 | 0.429 |
TSH | −0.065 | 0.359 |
fT3 | −0.014 | 0.884 |
fT4 | 0.092 | 0.205 |
Cortisol | 0.099 | 0.263 |
ACTH | 0.049 | 0.592 |
Variable n = 205 | R | p |
---|---|---|
Androstenedione | −0.066 | 0.341 |
DHEA | −0.046 | 0.509 |
Testosterone | −0.032 | 0.648 |
SHBG | −0.072 | 0.298 |
FAI | 0.044 | 0.534 |
17-hydroxyprogesterone | −0.020 | 0.770 |
LH | −0.029 | 0.672 |
FSH | 0.016 | 0.823 |
Estradiol | −0.099 | 0.154 |
PRL 0′ | −0.043 | 0.541 |
PRL 60′ | −0.059 | 0.398 |
TSH | 0.157 | 0.027 |
fT3 | −0.147 | 0.114 |
fT4 | 0.054 | 0.458 |
Cortisol | 0.084 | 0.351 |
ACTH | 0.012 | 0.893 |
Variable | n = 205 Beta | Standard Error of Beta | p |
---|---|---|---|
TBS L1–L4 | 0.290 | 0.076 | <0.001 |
Age (years) | 0.132 | 0.071 | 0.066 |
SHBG | −0.032 | 0.080 | 0.693 |
FAI | −0.044 | 0.084 | 0.605 |
Estradiol | 0.092 | 0.070 | 0.190 |
TSH | −0.103 | 0.071 | 0.148 |
BMI (kg/m2) | 0.212 | 0.140 | 0.130 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sowińska-Przepiera, E.; Krzyścin, M.; Syrenicz, I.; Ćwiertnia, A.; Orlińska, A.; Ćwiek, D.; Branecka-Woźniak, D.; Cymbaluk-Płoska, A.; Bumbulienė, Ž.; Syrenicz, A. Evaluation of Trabecular Bone Microarchitecture and Bone Mineral Density in Young Women, Including Selected Hormonal Parameters. Biomedicines 2024, 12, 758. https://doi.org/10.3390/biomedicines12040758
Sowińska-Przepiera E, Krzyścin M, Syrenicz I, Ćwiertnia A, Orlińska A, Ćwiek D, Branecka-Woźniak D, Cymbaluk-Płoska A, Bumbulienė Ž, Syrenicz A. Evaluation of Trabecular Bone Microarchitecture and Bone Mineral Density in Young Women, Including Selected Hormonal Parameters. Biomedicines. 2024; 12(4):758. https://doi.org/10.3390/biomedicines12040758
Chicago/Turabian StyleSowińska-Przepiera, Elżbieta, Mariola Krzyścin, Igor Syrenicz, Adrianna Ćwiertnia, Adrianna Orlińska, Dorota Ćwiek, Dorota Branecka-Woźniak, Aneta Cymbaluk-Płoska, Žana Bumbulienė, and Anhelli Syrenicz. 2024. "Evaluation of Trabecular Bone Microarchitecture and Bone Mineral Density in Young Women, Including Selected Hormonal Parameters" Biomedicines 12, no. 4: 758. https://doi.org/10.3390/biomedicines12040758
APA StyleSowińska-Przepiera, E., Krzyścin, M., Syrenicz, I., Ćwiertnia, A., Orlińska, A., Ćwiek, D., Branecka-Woźniak, D., Cymbaluk-Płoska, A., Bumbulienė, Ž., & Syrenicz, A. (2024). Evaluation of Trabecular Bone Microarchitecture and Bone Mineral Density in Young Women, Including Selected Hormonal Parameters. Biomedicines, 12(4), 758. https://doi.org/10.3390/biomedicines12040758