The Effect of Denosumab on Rotator Cuff Repair in Women Aged 60 and over with Osteoporosis: A Prospective Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Surgical Approach and Denosumab Administration
2.3. Outcome Measurement and Data Collection
2.4. Statistical Analysis
3. Results
3.1. Patients
3.2. Re-Tear Rates and Clinical Outcomes
4. Discussion
5. Limitation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dang, A.; Davies, M. Rotator Cuff Disease: Treatment Options and Considerations. Sports Med. Arthrosc. Rev. 2018, 26, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Hein, J.; Reilly, J.M.; Chae, J.; Maerz, T.; Anderson, K. Retear rates after arthroscopic single-row, double-row, and suture bridge rotator cuff repair at a minimum of 1 year of imaging follow-up: A systematic review. Arthrosc. J. Arthrosc. Relat. Surg. 2015, 31, 2274–2281. [Google Scholar] [CrossRef] [PubMed]
- Duquin, T.R.; Buyea, C.; Bisson, L.J. Which method of rotator cuff repair leads to the highest rate of structural healing? A systematic review. Am. J. Sports Med. 2010, 38, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.W.; Oh, J.H.; Gong, H.S.; Kim, J.Y.; Kim, S.H. Factors affecting rotator cuff healing after arthroscopic repair: Osteoporosis as one of the independent risk factors. Am. J. Sports Med. 2011, 39, 2099–2107. [Google Scholar] [CrossRef] [PubMed]
- Mall, N.A.; Tanaka, M.J.; Choi, L.S.; Paletta, G.A., Jr. Factors affecting rotator cuff healing. J. Bone Jt. Surg. Am. 2014, 96, 778–788. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.P.; Huang, S.W.; Lee, C.H.; Chen, H.C.; Charoenpong, P.; Lin, H.W. Osteoporosis increases the risk of rotator cuff tears: A population-based cohort study. J. Bone Miner. Metab. 2022, 40, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Kirchhoff, C.; Braunstein, V.; Milz, S.; Sprecher, C.M.; Fischer, F.; Tami, A.; Ahrens, P.; Imhoff, A.B.; Hinterwimmer, S. Assessment of bone quality within the tuberosities of the osteoporotic humeral head: Relevance for anchor positioning in rotator cuff repair. Am. J. Sports Med. 2010, 38, 564–569. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.M.; Shim, I.K.; Shin, M.J.; Choi, J.H.; Lee, Y.N.; Jeon, I.H.; Kim, H.; Park, D.; Kholinne, E.; Koh, K.H. A Combination Treatment of Raloxifene and Vitamin D Enhances Bone-to-Tendon Healing of the Rotator Cuff in a Rat Model. Am. J. Sports Med. 2020, 48, 2161–2169. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Li, W.; Zhang, L.; Zhou, C.; Cong, R. The role of vitamin D on rotator cuff tear with osteoporosis. Front. Endocrinol. 2022, 13, 1017835. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ryu, K.J.; Kim, B.H.; Lee, Y.; Dan, J.; Kim, J.H. Low Serum Vitamin D Is Not Correlated With the Severity of a Rotator Cuff Tear or Retear After Arthroscopic Repair. Am. J. Sports Med. 2015, 43, 1743–1750. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Kanazawa, T.; Gotoh, M.; Tanesue, R.; Nakamura, H.; Ohzono, H.; Okawa, T.; Shiba, N. Effects of Estrogen-Deficient State on Rotator Cuff Healing. Am. J. Sports Med. 2019, 47, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Su, W.; Chen, J.; Ye, Z.; Wu, C.; Jiang, J.; Yan, X.; Cai, J.; Zhao, J. The Effect of Antiosteoporosis Therapy with Risedronate on Rotator Cuff Healing in an Osteoporotic Rat Model. Am. J. Sports Med. 2021, 49, 2074–2084. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Li, Y.; Zhang, X.; Han, K.; Ye, Z.; Wu, C.; Jiang, J.; Yan, X.; Su, W.; Zhao, J. The Biomechanical and Histological Processes of Rerouting Biceps to Treat Chronic Irreparable Rotator Cuff Tears in a Rabbit Model. Am. J. Sports Med. 2022, 50, 347–361. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Ye, Z.; Chen, C.; Zhang, X.; Han, K.; Wu, X.; Li, Z.; Jiang, J.; Yan, X.; Cai, J.; et al. Abaloparatide Improves Rotator Cuff Healing via Anabolic Effects on Bone Remodeling in a Chronic Rotator Cuff Tear Model of Rat with Osteoporosis: A Comparison with Denosumab. Am. J. Sports Med. 2022, 50, 1550–1563. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Yoon, J.Y.; Lee, Y.B. The Use of Intravenous Zoledronate May Reduce Retear Rate after Rotator Cuff Repair in Older Female Patients with Osteoporosis: A First In-Human Prospective Study. J. Clin. Med. 2022, 11, 836. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hanley, D.A.; Adachi, J.D.; Bell, A.; Brown, V. Denosumab: Mechanism of action and clinical outcomes. Int. J. Clin. Pract. 2012, 66, 1139–1146. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Camacho, P.M.; Petak, S.M.; Binkley, N.; Diab, D.L.; Eldeiry, L.S.; Farooki, A.; Harris, S.T.; Hurley, D.L.; Kelly, J.; Lewiecki, E.M. American Association of Clinical Endocrinologists/American College of Endocrinology Clinical Practice Guidelines for the Diagnosis and Treatment of Postmenopausal Osteoporosis-2020 Update. Endocr. Pract. 2020, 26 (Suppl. 1), 1–46. [Google Scholar] [CrossRef] [PubMed]
- Shoback, D.; Rosen, C.J.; Black, D.M.; Cheung, A.M.; Murad, M.H.; Eastell, R. Pharmacological management of osteoporosis in postmenopausal women: An endocrine society guideline update. J. Clin. Endocrinol. Metab. 2020, 105, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Sugaya, H.; Maeda, K.; Matsuki, K.; Moriishi, J. Repair integrity and functional outcome after arthroscopic double-row rotator cuff repair. A prospective outcome study. J. Bone Jt. Surg. Am. 2007, 89, 953–960. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.S.; Yi, J.W.; Lee, B.G.; Rhee, Y.G. Retear patterns after arthroscopic rotator cuff repair: Single-row versus suture bridge technique. Am. J. Sports Med. 2010, 38, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Goutallier, D.; Postel, J.M.; Bernageau, J.; Lavau, L.; Voisin, M.C. Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by CT scan. Clin. Orthop. Relat. Res. 1994, 304, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Goutallier, D.; Postel, J.M.; Gleyze, P.; Leguilloux, P.; Van Driessche, S. Influence of cuff muscle fatty degeneration on anatomic and functional outcomes after simple suture of full-thickness tears. J. Shoulder Elb. Surg. 2003, 12, 550–554. [Google Scholar] [CrossRef] [PubMed]
- Conboy, V.B.; Morris, R.W.; Kiss, J.; Carr, A.J. An evaluation of the Constant-Murley shoulder assessment. J. Bone Jt. Surg. Br. 1996, 78, 229–232. [Google Scholar] [CrossRef] [PubMed]
- King, G.J.; Richards, R.R.; Zuckerman, J.D.; Blasier, R.; Dillman, C.; Friedman, R.J.; Gartsman, G.M.; Iannotti, J.P.; Murnahan, J.P.; Mow, V.C.; et al. A standardized method for assessment of elbow function. Research Committee, American Shoulder and Elbow Surgeons. J. Shoulder Elb. Surg. 1999, 8, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Romeo, A.A.; Mazzocca, A.; Hang, D.W.; Shott, S.; Bach, B.R., Jr. Shoulder scoring scales for the evaluation of rotator cuff repair. Clin. Orthop. Relat. Res. 2004, 427, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Tashjian, R.Z.; Deloach, J.; Green, A.; Porucznik, C.A.; Powell, A.P. Minimal clinically important differences in ASES and simple shoulder test scores after nonoperative treatment of rotator cuff disease. J. Bone Jt. Surg. Am. 2010, 92, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Le, B.T.; Wu, X.L.; Lam, P.H.; Murrell, G.A. Factors predicting rotator cuff retears: An analysis of 1000 consecutive rotator cuff repairs. Am. J. Sports Med. 2014, 42, 1134–1142. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Jeong, J.Y.; Park, C.D.; Kang, S.G.; Yoo, J.C. Evaluation of the Risk Factors for a Rotator Cuff Retear After Repair Surgery. Am. J. Sports Med. 2017, 45, 1755–1761. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Luo, M.; Pan, J.; Liang, G.; Feng, W.; Zeng, L.; Yang, W.; Liu, J. Risk factors affecting rotator cuff retear after arthroscopic repair: A meta-analysis and systematic review. J. Shoulder Elb. Surg. 2021, 30, 2660–2670. [Google Scholar] [CrossRef] [PubMed]
- Robinson, P.; Wilson, J.; Dalal, S.; Parker, R.; Norburn, P.; Roy, B. Rotator cuff repair in patients over 70 years of age: Early outcomes and risk factors associated with re-tear. Bone Jt. J. 2013, 95, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.M.; Jeon, I.-H.; Yang, H.-S.; Shin, M.J.; Park, J.H.; Kholinne, E.; Kim, H.; Park, D.; Koh, K.H. Poor prognostic factors in patients with rotator cuff retear. Orthop. J. Sports Med. 2021, 9, 2325967121992154. [Google Scholar] [CrossRef] [PubMed]
- Tingart, M.J.; Apreleva, M.; Zurakowski, D.; Warner, J.J. Pullout strength of suture anchors used in rotator cuff repair. JBJS 2003, 85, 2190–2198. [Google Scholar] [CrossRef]
- Lee, S.; Hwang, J.T.; Lee, S.S.; Lee, J.H.; Kim, T.Y. Greater Tuberosity Bone Mineral Density and Rotator Cuff Tear Size Are Independent Factors Associated with Cutting-Through in Arthroscopic Suture-Bridge Rotator Cuff Repair. Arthroscopy 2021, 37, 2077–2086. [Google Scholar] [CrossRef] [PubMed]
- Udagawa, N.; Takahashi, N.; Akatsu, T.; Tanaka, H.; Sasaki, T.; Nishihara, T.; Koga, T.; Martin, T.J.; Suda, T. Origin of osteoclasts: Mature monocytes and macrophages are capable of differentiating into osteoclasts under a suitable microenvironment prepared by bone marrow-derived stromal cells. Proc. Natl. Acad. Sci. USA 1990, 87, 7260–7264. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.-Y.; Yoshida, H.; Sarosi, I.; Tan, H.-L.; Timms, E.; Capparelli, C.; Morony, S.; Oliveira-dos-Santos, A.J.; Van, G.; Itie, A. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999, 397, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Suda, T.; Takahashi, N.; Udagawa, N.; Jimi, E.; Gillespie, M.T.; Martin, T.J. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 1999, 20, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Bekker, P.J.; Holloway, D.L.; Rasmussen, A.S.; Murphy, R.; Martin, S.W.; Leese, P.T.; Holmes, G.B.; Dunstan, C.R.; DePaoli, A.M. A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J. Bone Miner. Res. 2005, 20, 2274–2282. [Google Scholar] [CrossRef]
- Cummings, S.R.; San Martin, J.; McClung, M.R.; Siris, E.S.; Eastell, R.; Reid, I.R.; Delmas, P.; Zoog, H.B.; Austin, M.; Wang, A.; et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N. Engl. J. Med. 2009, 361, 756–765. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.H.; Kim, D.H.; Jeong, H.J.; Park, J.H.; Rhee, S.M. Effect of Recombinant Human Parathyroid Hormone on Rotator Cuff Healing After Arthroscopic Repair. Arthroscopy 2019, 35, 1064–1071. [Google Scholar] [CrossRef] [PubMed]
- Cancienne, J.M.; Brockmeier, S.F.; Kew, M.E.; Deasey, M.J.; Werner, B.C. The association of osteoporosis and bisphosphonate use with revision shoulder surgery after rotator cuff repair. Arthrosc. J. Arthrosc. Relat. Surg. 2019, 35, 2314–2320. [Google Scholar] [CrossRef]
- Chen, X.; Giambini, H.; Ben-Abraham, E.; An, K.N.; Nassr, A.; Zhao, C. Effect of Bone Mineral Density on Rotator Cuff Tear: An Osteoporotic Rabbit Model. PLoS ONE 2015, 10, e0139384. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rhee, S.-M.; Park, J.H.; Jeong, H.J.; Kim, Y.K.; Lee, K.; Oh, J.H. Serum vitamin D level correlations with tissue vitamin D level and muscle performance before and after rotator cuff repair. Am. J. Sports Med. 2023, 51, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.S.; Rhee, Y.G. The factors affecting the clinical outcome and integrity of arthroscopically repaired rotator cuff tears of the shoulder. Clin. Orthop. Surg. 2009, 1, 96. [Google Scholar] [CrossRef] [PubMed]
- Diebold, G.; Lam, P.; Walton, J.; Murrell, G.A. Relationship between age and rotator cuff retear: A study of 1,600 consecutive rotator cuff repairs. JBJS 2017, 99, 1198–1205. [Google Scholar] [CrossRef] [PubMed]
Group 1 | Group 2 | p-Value | |
---|---|---|---|
No. of patients | 34 | 68 | |
Age, mean ± SD, years | 68.35 ± 7.27 | 65.37 ± 8.35 | 0.07 |
Sex, male/female, n | 0/34 | 0/68 | |
Onset, mean ± SD, mo. | 9.57 ± 21.27 | 11.62 ± 15.67 | 0.582 |
Bone mineral density (T-score), mean ± SD | −2.83 ± 0.75 | −0.97 ± 1.20 | <0.001 |
Preoperative fatty degeneration, mean ± SD | |||
Supraspinatus | 1.94 ± 1.34 | 1.59 ± 1.39 | 0.226 |
Infraspinatus | 0.88 ± 0.80 | 0.69 ± 0.99 | 0.334 |
Subscapularis | 1.01 ± 1.25 | 0.88 ± 1.08 | 0.271 |
Global Fatty Degeneration Index | 1.27 ± 1.01 | 1.05 ± 0.96 | 0.193 |
Tear size, mean ± SD, mm | 28.13 ± 9.69 | 26.30 ± 10.95 | 0.426 |
Smoking history, yes/no, n | 34/0 | 67/1 | 0.667 |
Trauma history, yes/no, n | 14/20 | 23/45 | 0.467 |
Regular exercise, yes/no, n | 27/7 | 58/10 | 0.452 |
Group 1 | Group 2 | p-Value | |
---|---|---|---|
Clinical outcomes | |||
SST | |||
Preoperative | 4.29 ± 2.57 | 5 ± 2.74 | 0.191 |
Postoperative at 6 months | 6.67 ± 2.71 | 7.26 ± 2.27 | 0.298 |
p-Value | 0.003 | <0.001 | |
UCLA | |||
Preoperative | 16.75 ± 7.57 | 16.3 ± 5.84 | 0.947 |
Postoperative at 6 months | 24.17 ± 6.34 | 24.74 ± 7.28 | 0.724 |
p-Value | <0.001 | <0.001 | |
ASES | |||
Preoperative | 51.23 ± 17.02 | 52.75 ± 17.44 | 0.488 |
Postoperative at 6 months | 73.22 ± 18.33 | 73.31 ± 15.05 | 0.948 |
p-Value | <0.001 | <0.001 | |
CSS | |||
Preoperative | 40.17 ± 12.11 | 41.68 ± 16.10 | 0.33 |
Postoperative at 6 months | 60.35 ± 17.13 | 63.25 ± 15.20 | 0.473 |
p-Value | <0.001 | <0.001 | |
ROM | |||
Forward flexion | |||
Preoperative | 132.31 ± 54.74 | 140.41 ± 53.97 | 0.232 |
Postoperative at 6 months | 176.54 ± 5.61 | 174.69 ± 16.47 | 0.601 |
p-Value | <0.001 | <0.001 | |
Internal rotation | |||
Preoperative | 4.32 ± 4.75 | 3.83 ± 4.43 | 0.437 |
Postoperative at 6 months | 9.32 ± 5.99 | 7.76 ± 6.16 | 0.28 |
p-Value | 0.003 | <0.001 | |
Radiologic outcomes | |||
Retear, % (n/N, 95%CI) | 6/34, 16.7% | 8/68 11.7% | 0.469 |
Retear pattern, n, types I/II | 2/4 | 4/4 | 0.571 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.-T.; Lee, S.; Lee, H.-W.; Kim, S.-H.; Lee, Y.-B. The Effect of Denosumab on Rotator Cuff Repair in Women Aged 60 and over with Osteoporosis: A Prospective Observational Study. Biomedicines 2024, 12, 1069. https://doi.org/10.3390/biomedicines12051069
Kim K-T, Lee S, Lee H-W, Kim S-H, Lee Y-B. The Effect of Denosumab on Rotator Cuff Repair in Women Aged 60 and over with Osteoporosis: A Prospective Observational Study. Biomedicines. 2024; 12(5):1069. https://doi.org/10.3390/biomedicines12051069
Chicago/Turabian StyleKim, Ki-Tae, Sanghyeon Lee, Ho-Won Lee, Shi-Hyun Kim, and Yong-Beom Lee. 2024. "The Effect of Denosumab on Rotator Cuff Repair in Women Aged 60 and over with Osteoporosis: A Prospective Observational Study" Biomedicines 12, no. 5: 1069. https://doi.org/10.3390/biomedicines12051069
APA StyleKim, K.-T., Lee, S., Lee, H.-W., Kim, S.-H., & Lee, Y.-B. (2024). The Effect of Denosumab on Rotator Cuff Repair in Women Aged 60 and over with Osteoporosis: A Prospective Observational Study. Biomedicines, 12(5), 1069. https://doi.org/10.3390/biomedicines12051069