Clinical Outcomes and Molecular Predictors of Pembrolizumab (Keytruda) as a PD-1 Immune Checkpoint Inhibitor in Advanced and Metastatic Cervical Cancer: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Information Sources
2.3. Search Strategy
2.4. Selection Process
2.5. Data Collection Process
2.6. Data Items
2.7. Risk of Bias and Quality Assessment
2.8. Synthesis Methods
3. Results
3.1. Study Selection and Study Characteristics
3.2. Results of Individual Studies
3.3. Results of Synthesis
4. Discussion
4.1. Summary of Evidence
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saqer, A.; Ghazal, S.; Barqawi, H.; Babi, J.; AlKhafaji, R.; Elmekresh, M.M. Knowledge and Awareness about Cervical Cancer Vaccine (HPV) among Parents in Sharjah. Asian Pac. J. Cancer Prev. 2017, 18, 1237–1241. [Google Scholar] [CrossRef] [PubMed]
- Ngoma, M.; Autier, P. Cancer prevention: Cervical cancer. Ecancermedicalscience 2019, 13, 952. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Arcà, E.; Sinha, A.; Hartl, K.; Houwing, N.; Kothari, S. Cervical cancer screening guidelines and screening practices in 11 countries: A systematic literature review. Prev. Med. Rep. 2022, 28, 101813. [Google Scholar] [CrossRef]
- Perkins, R.B.; Smith, D.L.; Jeronimo, J.; Campos, N.G.; Gage, J.C.; Hansen, N.; Rodriguez, A.C.; Cheung, L.C.; Egemen, D.; Befano, B.; et al. Use of risk-based cervical screening programs in resource-limited settings. Cancer Epidemiol. 2023, 84, 102369. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Ismail, A.; Pappas-Gogos, G.; Boussios, S. HPV and Cervical Cancer: A Review of Epidemiology and Screening Uptake in the UK. Pathogens 2023, 12, 298. [Google Scholar] [CrossRef] [PubMed]
- Mekuria, M.; Edosa, K.; Endashaw, M.; Bala, E.T.; Chaka, E.E.; Deriba, B.S.; Tesfa, B. Prevalence of Cervical Cancer and Associated Factors among Women Attended Cervical Cancer Screening Center at Gahandi Memorial Hospital, Ethiopia. Cancer Inform. 2021, 20, 11769351211068431. [Google Scholar] [CrossRef] [PubMed]
- Burmeister, C.A.; Khan, S.F.; Schäfer, G.; Mbatani, N.; Adams, T.; Moodley, J.; Prince, S. Cervical cancer therapies: Current challenges and future perspectives. Tumour Virus Res. 2022, 13, 200238. [Google Scholar] [CrossRef]
- Gennigens, C.; Jerusalem, G.; Lapaille, L.; De Cuypere, M.; Streel, S.; Kridelka, F.; Ray-Coquard, I. Recurrent or primary metastatic cervical cancer: Current and future treatments. ESMO Open 2022, 7, 100579. [Google Scholar] [CrossRef] [PubMed]
- Santoro, A.; Inzani, F.; Angelico, G.; Arciuolo, D.; Bragantini, E.; Travaglino, A.; Valente, M.; D’alessandris, N.; Scaglione, G.; Sfregola, S.; et al. Recent Advances in Cervical Cancer Management: A Review on Novel Prognostic Factors in Primary and Recurrent Tumors. Cancers 2023, 15, 1137. [Google Scholar] [CrossRef]
- Dicu-Andreescu, I.-G.; Marincaș, A.-M.; Ungureanu, V.-G.; Ionescu, S.-O.; Prunoiu, V.-M.; Brătucu, E.; Simion, L. Current Therapeutic Approaches in Cervical Cancer Based on the Stage of the Disease: Is There Room for Improvement? Medicina 2023, 59, 1229. [Google Scholar] [CrossRef]
- Tan, S.; Day, D.; Nicholls, S.J.; Segelov, E. Immune Checkpoint Inhibitor Therapy in Oncology: Current Uses and Future Directions: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol. 2022, 4, 579–597. [Google Scholar] [CrossRef] [PubMed]
- Preda, M.A.; Popa, G.; Karancsi, O.L.; Musat, O.; Popescu, S.I.; Munteanu, M.; Popa, Z. Effectiveness of subconjunctival beva-cizumab associated with a laser-based procedure in the treatmentof neovascular glaucoma. Farmacia 2018, 66, 621–626. [Google Scholar] [CrossRef]
- Prasad, V.; Kaestner, V. Nivolumab and pembrolizumab: Monoclonal antibodies against programmed cell death-1 (PD-1) that are interchangeable. Semin. Oncol. 2017, 44, 132–135. [Google Scholar] [CrossRef] [PubMed]
- Dang, T.O.; Ogunniyi, A.; Barbee, M.S.; Drilon, A. Pembrolizumab for the treatment of PD-L1 positive advanced or metastatic non-small cell lung cancer. Expert Rev. Anticancer Ther. 2016, 16, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Abaza, A.; Idris, F.S.; Shaikh, H.A.; Vahora, I.; Moparthi, K.P.; Al Rushaidi, M.T.; Muddam, M.R.; Obajeun, O.A.; Jaramillo, A.P.; Khan, S. Programmed Cell Death Protein 1 (PD-1) and Programmed Cell Death Ligand 1 (PD-L1) Immunotherapy: A Promising Breakthrough in Cancer Therapeutics. Cureus 2023, 15, e44582. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Song, G.; Xie, S.; Jiang, W.; Chen, X.; Chu, M.; Hu, X.; Wang, Z.-W. The roles of PD-1/PD-L1 in the prognosis and immunotherapy of prostate cancer. Mol. Ther. 2021, 29, 1958–1969. [Google Scholar] [CrossRef] [PubMed]
- Walsh, R.J.; Tan, D.S.P. The Role of Immunotherapy in the Treatment of Advanced Cervical Cancer: Current Status and Future Perspectives. J. Clin. Med. 2021, 10, 4523. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Wang, B.; Chen, Y.; Wan, N.; Xie, F.; Yang, N.; Lu, L.; Xiao, W.; Yuan, J.; Li, J.; et al. Effectiveness and safety of pembrolizumab for patients with advanced non-small cell lung cancer in real-world studies and randomized controlled trials: A systematic review and meta-analysis. Front. Oncol. 2023, 13, 1044327. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Koh, W.-J.; Abu-Rustum, N.R.; Bean, S.; Bradley, K.; Campos, S.M.; Cho, K.R.; Chon, H.S.; Chu, C.; Clark, R.; Cohn, D.; et al. Cervical Cancer, Version 3.2019, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2019, 17, 64–84. [Google Scholar] [CrossRef]
- Tsuchida, Y.; Therasse, P. Response evaluation criteria in solid tumors (RECIST): New guidelines. Med. Pediatr. Oncol. 2001, 37, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef] [PubMed]
- Frenel, J.-S.; Le Tourneau, C.; O’neil, B.; Ott, P.A.; Piha-Paul, S.A.; Gomez-Roca, C.; van Brummelen, E.M.; Rugo, H.S.; Thomas, S.; Saraf, S.; et al. Safety and Efficacy of Pembrolizumab in Advanced, Programmed Death Ligand 1-Positive Cervical Cancer: Results from the Phase Ib KEYNOTE-028 Trial. J. Clin. Oncol. 2017, 35, 4035–4041. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.; Ros, W.; Delord, J.-P.; Perets, R.; Italiano, A.; Shapira-Frommer, R.; Manzuk, L.; Piha-Paul, S.; Xu, L.; Zeigenfuss, S.; et al. Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Cervical Cancer: Results from the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2019, 37, 1470–1478. [Google Scholar] [CrossRef] [PubMed]
- Youn, J.W.; Hur, S.-Y.; Woo, J.W.; Kim, Y.-M.; Lim, M.C.; Park, S.Y.; Seo, S.S.; No, J.H.; Kim, B.-G.; Lee, J.-K.; et al. Pembrolizumab plus GX-188E therapeutic DNA vaccine in patients with HPV-16-positive or HPV-18-positive advanced cervical cancer: Interim results of a single-arm, phase 2 trial. Lancet Oncol. 2020, 21, 1653–1660. [Google Scholar] [CrossRef] [PubMed]
- Colombo, N.; Dubot, C.; Lorusso, D.; Caceres, M.V.; Hasegawa, K.; Shapira-Frommer, R.; Tewari, K.S.; Salman, P.; Usta, E.H.; Yañez, E.; et al. Pembrolizumab for Persistent, Recurrent, or Metastatic Cervical Cancer. N. Engl. J. Med. 2021, 385, 1856–1867. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.M.; Filippova, O.T.; Hayes, S.A.; Abu-Rustum, N.R.; Aghajanian, C.; Broach, V.; Ellenson, L.H.; Selenica, P.; Jewell, E.L.; Kyi, C.; et al. Pattern of disease and response to pembrolizumab in recurrent cervical cancer. Gynecol. Oncol. Rep. 2021, 37, 100831. [Google Scholar] [CrossRef] [PubMed]
- Nishio, S.; Yonemori, K.; Usami, T.; Minobe, S.; Yunokawa, M.; Iwata, T.; Okamoto, A.; Aoki, Y.; Itamochi, H.; Takekuma, M.; et al. Pembrolizumab plus chemotherapy in Japanese patients with persistent, recurrent or metastatic cervical cancer: Results from KEYNOTE-826. Cancer Sci. 2022, 113, 3877–3887. [Google Scholar] [CrossRef]
- Tewari, K.S.; Colombo, N.; Monk, B.J.; Dubot, C.; Cáceres, M.V.; Hasegawa, K.; Shapira-Frommer, R.; Salman, P.; Yañez, E.; Gümüş, M.; et al. Pembrolizumab or Placebo Plus Chemotherapy with or without Bevacizumab for Persistent, Recurrent, or Metastatic Cervical Cancer: Subgroup Analyses from the KEYNOTE-826 Randomized Clinical Trial. JAMA Oncol. 2024, 10, 185–192. [Google Scholar] [CrossRef]
- Qi, L.; Li, N.; Lin, A.; Wang, X.; Cong, J. Efficacy and safety of pembrolizumab on cervical cancer: A systematic review and single-arm meta-analysis. Front. Oncol. 2022, 12, 910486. [Google Scholar] [CrossRef] [PubMed]
- Gen, Y.; Yoon, J.H.; Park, D.C.; Kim, S.I. Pembrolizumab monotherapy in heavily treated recurrent cervical cancer patients: Case series report. [Internet]. Eur. J. Gynaecol. Oncol. 2023, 44, 57–61. [Google Scholar] [CrossRef]
- Choi, M.C.; Kim, Y.-M.; Lee, J.-W.; Lee, Y.J.; Suh, D.H.; Lee, S.J.; Lee, T.S.; Lee, M.; Park, D.C.; Kim, M.K.; et al. Real-World Experience of Pembrolizumab Monotherapy in Patients with Recurrent or Persistent Cervical Cancer: A Korean Multi-Center Retrospective Study (KGOG1041). Cancers 2020, 12, 3188. [Google Scholar] [CrossRef] [PubMed]
- Tung, H.-J.; Wang, C.-C.; Liu, F.-Y.; Lai, C.-H. Complete remission of advanced and recurrent cervical cancer with pembrolizumab treatment- 3 case reports. Taiwan J. Obstet. Gynecol. 2021, 60, 938–941. [Google Scholar] [CrossRef] [PubMed]
- Lyu, M.; Shen, Y.; Beharee, N.; Lu, J.; Deng, F.; Wang, J. The Combined Use of Chemotherapy and Radiotherapy with PD-1 Inhibitor, Pembrolizumab, in Advanced Cervical Cancer: A Case Report. OncoTargets Ther. 2020, 13, 4465–4471. [Google Scholar] [CrossRef]
- Ngoi, N.; Heong, V.; Lee, X.; Huang, Y.; Thian, Y.; Choo, B.; Lim, D.; Lim, Y.; Lim, S.; Ilancheran, A.; et al. Tumor molecular profiling of responders and non-responders following pembrolizumab monotherapy in chemotherapy resistant advanced cervical cancer. Gynecol. Oncol. Rep. 2018, 24, 1–5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zheng, Z.; Song, X.; Qiu, G.; Xu, S.; Cai, H. Cost-effectiveness analysis of pembrolizumab plus chemotherapy for patients with recurrent or metastatic cervical cancer in China. Curr. Med. Res. Opin. 2023, 39, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-T.; Wang, C.; He, X.-Y.; Yao, Q.-M.; Chen, J. Comparative cost-effectiveness of first-line pembrolizumab plus chemotherapy vs. chemotherapy alone in persistent, recurrent, or metastatic cervical cancer. Front. Immunol. 2024, 14, 1345942. [Google Scholar] [CrossRef] [PubMed]
- Barrington, D.A.; Riedinger, C.; Haight, P.J.; Tubbs, C.; Cohn, D.E. Pembrolizumab with or without bevacizumab for recurrent or metastatic cervical cancer: A cost-effectiveness analysis. Gynecol. Oncol. 2022, 165, 500–505. [Google Scholar] [CrossRef]
- Duska, L.R.; Scalici, J.M.; Temkin, S.M.; Schwarz, J.K.; Crane, E.K.; Moxley, K.M.; Hamilton, C.A.; Wethington, S.L.; Petroni, G.R.; Varhegyi, N.E.; et al. Results of an early safety analysis of a study of the combination of pembrolizumab and pelvic chemoradiation in locally advanced cervical cancer. Cancer 2020, 126, 4948–4956. [Google Scholar] [CrossRef]
- Lorusso, D.; Xiang, Y.; Hasegawa, K.; Scambia, G.; Leiva, M.; Ramos-Elias, P.; Acevedo, A.; Sukhin, V.; Cloven, N.; Gomes, A.J.P.d.S.; et al. Pembrolizumab or placebo with chemoradiotherapy followed by pembrolizumab or placebo for newly diagnosed, high-risk, locally advanced cervical cancer (ENGOT-cx11/GOG-3047/KEYNOTE-A18): A randomised, double-blind, phase 3 clinical trial. Lancet 2024, 403, 1341–1350. [Google Scholar] [CrossRef] [PubMed]
- Porras, G.O.R.; Nogueda, J.C.; Chacón, A.P. Chemotherapy and molecular therapy in cervical cancer. Rep. Pract. Oncol. Radiother. 2018, 23, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Falzone, L.; Salomone, S.; Libra, M. Evolution of Cancer Pharmacological Treatments at the Turn of the Third Millennium. Front. Pharmacol. 2018, 9, 1300. [Google Scholar] [CrossRef] [PubMed]
Number | First Author | Reference | Country | Study Year | Registration | Study Design | Study Quality |
---|---|---|---|---|---|---|---|
1 | Frenel et al. | [24] | International | 2017 | NCT02054806 | Randomized clinical trial (phase Ib) | High |
2 | Chung et al. | [25] | International | 2019 | NCT02628067 | Randomized clinical trial (phase II) | High |
3 | Youn et al. | [26] | International | 2020 | NCT03444376 | Randomized clinical trial (phase II) | High |
4 | Colombo et al. | [27] | International | 2021 | NCT03505710 | Randomized clinical trial (phase III) | High |
5 | Miller et al. | [28] | USA | 2021 | CA190174 | Retrospective cohort | High |
6 | Nishio et al. | [29] | International | 2022 | NCT03635567 | Randomized clinical trial (phase III) | High |
Number | First Author | Reference | Sample Size | Follow-Up Time/Mean Survival | Age (Years) | Comparison Group | Performance Status |
---|---|---|---|---|---|---|---|
1 | Frenel et al. | [24] | 24 (pembrolizumab) | Median: 11.0 months (range: 1.3 to 32.2 months) | Median: 42 (range: 26 to 62) | Not applicable (single-arm trial) | ECOG 0: 25%, ECOG 1: 75% |
2 | Chung et al. | [25] | 98 (pembrolizumab) | Median: 10.2 months (range: 0.6 to 22.7 months) | Median: 46 (range: 24 to 75) | Not applicable (single-arm study) | ECOG 0: 34.7%, ECOG 1: 65.3% |
3 | Youn et al. | [26] | 36 (pembrolizumab) | Median: 6.2 months (IQR: 3.5–8.1) | Median: 51 | Not applicable (single-arm study) | ECOG 0: 53%, ECOG 1: 47% |
4 | Colombo et al. | [27] | 617 (pembrolizumab: 308; placebo: 309) | Median: 22.0 months (range: 15.1 to 29.4) | Median: 50 (range: 22 to 82) | Pembrolizumab + chemotherapy vs. placebo + chemotherapy | ECOG 0: 57.8%, ECOG 1: 41.6% |
5 | Miller et al. | [28] | 14 (pembrolizumab) | Median OS: 11.2 months; median follow-up: 14.4 months | Median: 59 (range: 22–77) | Not applicable (single-arm trial) | NR |
6 | Nishio et al. | [29] | 57 (pembrolizumab: 35; placebo: 22) | 23.2 months (range: 16.4–27.8 months) | Median: 54 (range: 26–82) | Pembrolizumab + chemotherapy vs. placebo + chemotherapy | ECOG 0: 83% in pembrolizumab group, 73% in placebo group; ECOG 1: 17% in pembrolizumab group, 27% in placebo group |
Number | First Author | Reference | Stage | Histology | Metastases | HPV/PD-L Status | Prior Treatment |
---|---|---|---|---|---|---|---|
1 | Frenel et al. | [24] | MX: 1 (4%); M0: 6 (25%); M1: 15 (63%); Unknown: 2 (8%) | Squamous cell carcinoma: 96%; adenocarcinoma: 4% | Lymph nodes: 67%; lung: 38%; pelvis: 38%; liver: 25% | PD-L1-positive: 100% | Prior radiotherapy: 92%; prior platinum: 96%; prior bevacizumab: 42% |
2 | Chung et al. | [25] | IVB predominant (93.9%) | Squamous cell carcinoma: 93.9%; adenocarcinoma: 5.1%; adenosquamous: 1.0% | NR | PD-L1-positive: 83.7% | Prior chemotherapy: 100%; bevacizumab: 41.8%; radiotherapy: 86.7% |
3 | Youn et al. | [26] | Advanced stage: 100% (specific staging NR) | Adenocarcinoma: 22%; squamous cell carcinoma: 78% | NR | HPV-16: 72%; HPV-18: 25%; co-infected: 3%; PD-L1-positive: 72%; PD-L1-negative: 28% | Previous radiotherapy: 75%; previous lines of therapy: 1 line (44%); 2 lines (28%); ≥3 lines (19%) |
4 | Colombo et al. | [27] | III: 1.6%; IIIA: 1.3%; IIIB: 14.9%; IVA: 2.3%; IVB: 30.5% | Adenocarcinoma: 18.2%; adenosquamous carcinoma: 4.9%; squamous cell carcinoma: 76.3% | Metastatic: 18.8%; persistent or recurrent with distant metastases: 64.6%; persistent or recurrent without distant metastases: 16.6% | PD-L1 combined positive score (CPS) status: <1: 11.4%; 1 to <10: 37.3%; ≥10: 51.3% | Chemoradiotherapy and surgery: 15.9%; radiotherapy and surgery: 7.1%; chemoradiotherapy only: 40.6%; radiotherapy only: 10.1%; surgery only: 7.5%; none: 18.8% |
5 | Miller et al. | [28] | III: 36%; IV: 29% | Squamous cell carcinoma: 79%; endocervical adenocarcinoma: 7%; mixed adenocarcinoma (clear cell + endometrioid): 7%; mesonephric: 7% | Lung only: 21%; lymph node only: 14%; multi-site: 36%; other specific sites: 29% | PD-L1 CPS > 1%: 93% (13/14 patients tested) | Majority had prior radiotherapy: 93%; various lines of chemotherapy ranging from 1 to 4 prior lines |
6 | Nishio et al. | [29] | IVB: 31% in pembrolizumab group, 64% in placebo group; persistent or recurrent with distant metastases: 69% in pembrolizumab group, 41% in placebo group; persistent or recurrent without distant metastases: 20% in pembrolizumab group, 14% in placebo group | Adenocarcinoma: 17%; adenosquamous carcinoma: 6%; squamous cell carcinoma: 77% | Yes (initial metastatic diagnosis: 11% in pembrolizumab group, 46% in placebo group) | PD-L1 CPS < 1: 14% in pembrolizumab group, 5% in placebo group; PD-L1 CPS 1 to <10: 43% in pembrolizumab group, 50% in placebo group; PD-L1 CPS ≥10: 43% in pembrolizumab group, 46% in placebo group | Various previous therapies: chemoradiotherapy only: 49% in pembrolizumab group, 41% in placebo group; radiotherapy only: 6% in pembrolizumab group, 5% in placebo group; surgery only: 11% in pembrolizumab group, 0% in placebo group; None: 11% in pembrolizumab group, 45% in placebo group |
Number | First Author | Reference | Treatment/Dose | Follow-Up | Survival | Conclusions |
---|---|---|---|---|---|---|
1 | Frenel et al. | [24] | Pembrolizumab: 10 mg/kg every 2 weeks for up to 24 months | Median: 11.0 months (range: 1.3 to 32.2 months) | ORR: 17% (4 patients achieved PR); median PFS: 2 months; median OS: 11 months | Pembrolizumab demonstrated antitumor activity and was well tolerated in patients with PD-L1-positive advanced cervical cancer, consistent with safety profiles seen in other tumor types. |
2 | Chung et al. | [25] | Pembrolizumab: 200 mg every 3 weeks for up to 2 years | Median: 10.2 months (range: 0.6 to 22.7 months) | ORR: 12.2% in total, 14.6% in PD-L1-positive; median PFS: 2.1 months; median OS: 9.4 months | Pembrolizumab demonstrated durable antitumor activity and manageable safety in previously treated advanced cervical cancer, leading to FDA accelerated approval for PD-L1-positive cases. |
3 | Youn et al. | [26] | GX-188E 2 mg IM + pembrolizumab: 200 mg IV every 3 weeks | Median: 6.2 months (range: 3.5–8.1) | 24-week ORR: 42%; median OS: 10.2 months; 6-month PFS: 35% | The combination of GX-188E and pembrolizumab showed promising antitumor activity and manageable safety in advanced cervical cancer, offering a new potential treatment option for this patient population. |
4 | Colombo et al. | [27] | Pembrolizumab: 200 mg every 3 weeks for up to 35 cycles + chemotherapy ± bevacizumab | Median follow-up: 22.0 months | PFS: median: 10.4 months in the intention-to-treat population, HR 0.65; OS: 24-month estimate, 53.0% in pembrolizumab group vs. 41.7% in placebo group | Pembrolizumab plus chemotherapy significantly improved PFS and OS compared to placebo plus chemotherapy in patients with PD-L1 CPS ≥ 1, demonstrating an effective and manageable safety profile. |
5 | Miller et al. | [28] | Pembrolizumab: 200 mg every 3 weeks | Median follow-up: 14.4 months | ORR: 21% (3/14); DCB: 36%; median PFS not specified; median OS: 11.2 months | Pembrolizumab demonstrated activity in heavily pretreated patients with advanced cervical cancer, especially beneficial in patients with limited metastatic sites (lung/lymph node only) and high TMB. |
6 | Nishio et al. | [29] | Pembrolizumab: 200 mg Q3W for up to 35 cycles + chemotherapy (paclitaxel 175 mg/m2 + cisplatin 50 mg/m2 or carboplatin AUC 5) with or without bevacizumab 15 mg/kg | Median follow-up: 23.2 months | PFS (PD-L1 CPS ≥ 1): HR 0.36 (95% CI, 0.16–0.77), median not reached; OS (PD-L1 CPS ≥ 1): HR 0.38 (95% CI, 0.14–1.01), median not reached | Pembrolizumab plus chemotherapy significantly prolonged PFS and OS versus placebo plus chemotherapy in patients with PD-L1 CPS ≥ 1, demonstrating an effective and manageable safety profile. |
Number | First Author | Reference | Sample Size | Median OS (Months) | Median PFS (Months) | ORR (%) | Weight |
---|---|---|---|---|---|---|---|
1 | Frenel et al. | [24] | 24 | 11 | 2 | 17 | 0.028 |
2 | Chung et al. | [25] | 98 | 9.4 | 2.1 | 12.2 | 0.116 |
3 | Youn et al. | [26] | 36 | 10.2 | 4.83 | 42 | 0.043 |
4 | Colombo et al. | [27] | 617 | 10.45 | 10.4 | 23.05 | 0.729 |
5 | Miller et al. | [28] | 14 | 11.2 | 4.83 | 21 | 0.017 |
6 | Nishio et al. | [29] | 57 | 10.45 | 4.83 | 23.05 | 0.067 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balan, L.; Cimpean, A.M.; Nandarge, P.S.; Sorop, B.; Balan, C.; Balica, M.A.; Bratosin, F.; Brasoveanu, S.; Boruga, M.; Pirtea, L. Clinical Outcomes and Molecular Predictors of Pembrolizumab (Keytruda) as a PD-1 Immune Checkpoint Inhibitor in Advanced and Metastatic Cervical Cancer: A Systematic Review and Meta-Analysis. Biomedicines 2024, 12, 1109. https://doi.org/10.3390/biomedicines12051109
Balan L, Cimpean AM, Nandarge PS, Sorop B, Balan C, Balica MA, Bratosin F, Brasoveanu S, Boruga M, Pirtea L. Clinical Outcomes and Molecular Predictors of Pembrolizumab (Keytruda) as a PD-1 Immune Checkpoint Inhibitor in Advanced and Metastatic Cervical Cancer: A Systematic Review and Meta-Analysis. Biomedicines. 2024; 12(5):1109. https://doi.org/10.3390/biomedicines12051109
Chicago/Turabian StyleBalan, Lavinia, Anca Maria Cimpean, Prashant Sunil Nandarge, Bogdan Sorop, Catalin Balan, Madalina Alexandra Balica, Felix Bratosin, Simona Brasoveanu, Madalina Boruga, and Laurentiu Pirtea. 2024. "Clinical Outcomes and Molecular Predictors of Pembrolizumab (Keytruda) as a PD-1 Immune Checkpoint Inhibitor in Advanced and Metastatic Cervical Cancer: A Systematic Review and Meta-Analysis" Biomedicines 12, no. 5: 1109. https://doi.org/10.3390/biomedicines12051109
APA StyleBalan, L., Cimpean, A. M., Nandarge, P. S., Sorop, B., Balan, C., Balica, M. A., Bratosin, F., Brasoveanu, S., Boruga, M., & Pirtea, L. (2024). Clinical Outcomes and Molecular Predictors of Pembrolizumab (Keytruda) as a PD-1 Immune Checkpoint Inhibitor in Advanced and Metastatic Cervical Cancer: A Systematic Review and Meta-Analysis. Biomedicines, 12(5), 1109. https://doi.org/10.3390/biomedicines12051109