Lipid Toxicity in the Cardiovascular-Kidney-Metabolic Syndrome (CKMS)
Abstract
:1. Introduction
2. Epicardial Adipose Tissue
3. Statins, Calcium Channel Blockers, and Early Atherosclerosis
4. Intra-Nephric Fat
5. Obesity-Related Cardiorenal Pathology in the Setting with Metabolic Liver Disease
6. Normal Contraction/Relaxation Cycle Is Disrupted in Congestive Heart Failure
7. Mechanisms of Metabolic Acidosis in CKMS with Diabetes Mellitus
8. Continuing Studies
9. CKMS Pathology Associated with Inflammation
10. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Iozzo, P. Myocardial, perivascular, and epicardial fat. Diabetes Care 2011, 34 (Suppl. 2), S371–S379. [Google Scholar] [CrossRef] [PubMed]
- Blaine, J.; Chonchol, M.; Levi, M. Renal control of calcium, phosphate, and magnesium homeostasis. Clin. J. Am. Soc. Nephrol. 2015, 10, 1257–1272. [Google Scholar] [CrossRef] [PubMed]
- Nishi, H.; Higashihara, T.; Inagi, R. Lipotoxicity in kidney, heart, and skeletal muscle dysfunction. Nutrients 2019, 11, 1664. [Google Scholar] [CrossRef] [PubMed]
- Rabkin, S.W. Epicardial fat properties, function, and relationship to obesity. Obes. Rev. 2007, 8, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.F.; Ku, H.C.; Lin, H. PGC-1α as a Pivotal Factor in Lipid and Metabolic Regulation. Int. J. Mol. Sci. 2018, 19, 3447. [Google Scholar] [CrossRef] [PubMed]
- Feldcamp, T.; Kribben, A.; Roeser, N.; Senter, R.A.; Weinberg, J.M. Accumulation of fatty acids causes the sustained energetic deficit in kidney proximal tubules after hypoxia-re-oxygenation. Am. J. Physiol. Ren. Physiol. 2006, 290, F465–F477. [Google Scholar] [CrossRef]
- Feldcamp, T.; Weinberg, J.; Horbelt, M.; von Kropff, C.; Witzke, O.; Nurnberger, J.; Kribben, A. Evidence for involvement of non-esterified fatty acid-induced protonorphoric uncoupling during mitochondrial dysfunction caused by hypoxia and re-oxygenation. Nephrol. Dial. Transplant. 2009, 24, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Ge, X.; Li, X.; He, J.; Wei, X.; Du, G.; Sun, J.; Xin, L.; Li, X.; Xun, Z.; et al. High fat diet promotes renal injury by inducing oxidative stress and mitochondrial dysfunction. Cell Death Dis. 2020, 1, 914–923. [Google Scholar] [CrossRef] [PubMed]
- Protasoni, M.; Zeviani, M. Mitochondrial Structure and Bioenergetics in Normal and Disease Conditions. Int. J. Mol. Sci. 2022, 22, 586. [Google Scholar]
- Yin, M.; O’Neill, L.A.J. The role of the electron transport chain in immunity. FASEB J. 2021, 35, e21974. [Google Scholar] [CrossRef]
- Garnier, A.; Fortin, D.; Delomenie, C.; Momken, I.; Veksler, V.; Ventura-Clapier, R. Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles. J. Physiol. 2003, 551, 491–501. [Google Scholar] [CrossRef]
- Tanaka, Y.; Konno, N.; Kako, K.G. Mitochondrial dysfunction observed in situ in cardiomyocytes of rats in experimental diabetes. Cardiovasc. Res. 1992, 26, 409–414. [Google Scholar] [CrossRef]
- Rial, E.; Rodríguez-Sánchez, L.; Gallardo-Vara, E.; Zaragoza, P.; Moyano, E.; González-Barroso, M.M. Lipotoxicity, fatty acid uncoupling and mitochondrial carrier function. Biochim. Biophys. Acta 2010, 1797, 800–806. [Google Scholar] [CrossRef]
- Lee, L.Y.; Oldham, W.M.; He, H.; Wang, R.; Mulhern, R.; Handy, D.E.; Loscalzo, J. Interferon-γ Impairs Human Coronary Artery Endothelial Glucose Metabolism by Tryptophan Catabolism and Activates Fatty Acid Oxidation. Circulation 2021, 144, 1612–1628. [Google Scholar] [CrossRef] [PubMed]
- Krahn, A.D.; Wilde, A.A.M.; Calkins, H.; LaGerche, A.; Cadrin-Tourigny, J.; Roberts, J.D.; Han, H.-C. Arrhythmogenic right ventricular cardiomyopathy. J. Am. Coll. Cardiol. Clin. Electrophysiol. 2022, 8, 533–556. [Google Scholar] [CrossRef] [PubMed]
- Ernault, A.C.; Meijborg, V.M.F.; Coronel, R. Modulation of cardiac arrhythmogenesis by epicardial adipose tissue. J. Am. Coll. Cardiol. 2021, 78, 1730–1745. [Google Scholar] [CrossRef]
- Akawi, N.; Checa, A.; Antonopolous, A.S.; Akoumianakis, I.; Daskalaki, E.; Kotanidis, C.; Kondo, H.; Lee, K.; Yesilyurt, D.; Badi, I.; et al. Fat-secreted ceramides regulate vascular redox state and influence outcomes in patients with cardiovascular disease. J. Am. Coll. Cardiol. 2021, 77, 2495–2516. [Google Scholar] [CrossRef]
- Javaheri, A.; Allegood, J.; Cowart, L.; Chirinos, J. Circulating ceramide 16:0 in heart failure with preserved ejection fraction. J. Am. Coll. Cardiol. 2020, 75, 2273–2275. [Google Scholar] [CrossRef] [PubMed]
- Lopes-Virella, M.F.; Baker, N.L.; Hunt, K.J.; Hammad, S.M.; Arthur, J.; Virella, G.; DCCT/EDIC Research Group. Glycosylated sphingolipids and progression to kidney dysfunction. J. Clin. Lipid 2019, 13, 481–491. [Google Scholar] [CrossRef]
- Miller, L.G.; Young, J.A.; Ray, S.K.; Wang, G.; Purohit, S.; Banik, N.L.; Dasgupta, S. Sphingosine toxicity in EAE and MS: Evidence for ceramide generation via serine-palmitoyl generation via serine palmitoyl transferase activation. Neurochem. Res. 2017, 42, 2755–2768. [Google Scholar] [CrossRef]
- Del Rio, D.; Stewart, A.J.; Pellegrini, N. A review of recent studies on malonyl dialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis. 2005, 15, 316–328. [Google Scholar] [CrossRef]
- Eiselt, J.; Racek, J.; Holecek, V.; Opatrany, K. Does plasmapheresis affect the production of free radicals and the antioxidant system? Cas. Lek. Cesk. 1996, 135, 558–562. [Google Scholar]
- Rotella, S.; Gesualdo, L.; Fiorentino, M. Heparin-Mediated Extracorporeal Low-Density Lipoprotein Precipitation Apheresis for Treating Peripheral Arterial Disease in Patients with Chronic Kidney Disease. J. Clin. Med. 2024, 13, 1121. [Google Scholar] [CrossRef] [PubMed]
- Raina, R.; Krishnappa, V. An update on LDL apheresis for nephrotic syndrome. Pediatr. Nephrol. 2019, 34, 1655–1669. [Google Scholar] [CrossRef] [PubMed]
- Sever, P.S.; Dahlöf, B.; Poulter, N.R.; Wedel, H.; Beevers, G.; Caulfield, M.; Collins, R.; Kjeldsen, S.E.; Kristinsson, A.; McInnes, G.T.; et al. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol, in the Anglo-Scandinavian Cardiac Outcomes Trial-Lipid Lowering Arm (ASCOT-LLA) a multicenter randomized control trial. Lancet 2003, 361, 1149–1158. [Google Scholar] [CrossRef]
- Clunn, G.F.; Sever, P.S.; Hughes, A.D. Calcium channel regulation in vascular smooth muscle cells: Synergistic effects of statins and calcium channel blockers. Int. J. Cardiol. 2010, 139, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Zanchetti, A.; Bond, M.G.; Hennig, M.; Tang, R.; Hollweck, R.; Mancia, G.; Eckes, L.; Micheli, D. Absolute and relative changes in carotid intima-media thickness and atherosclerotic plaques during long-term antihypertensive treatment: Further results of the European Lacidipine Study on Atherosclerosis (ELSA). J. Hypertens. 2004, 22, 1201–1212. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.G.; Staessen, J.A.; Li, Y.; Van Bortel, L.M.; Nawrot, T.; Fagard, R.; Messerli, F.H.; Safar, M. Carotid intima-media thickness and antihypertensive treatment: A meta-analysis of randomized controlled studies. Stroke 2006, 37, 1933–1940. [Google Scholar] [CrossRef] [PubMed]
- Xie, I.; Yoon, I.; An, S.W.; Kuro-o, M.; Huang, C.-I. Soluble Klotho protects against uremic cardiomyopathy independently of fibroblast growth factor 23 and phosphate. J. Am. Soc. Nephrol. 2015, 26, 1150–1160. [Google Scholar] [CrossRef]
- Yang, K.; Wang, C.; Nie, L.; Zhao, X.; Gu, J.; Guan, X.; Wang, S.; Xiao, T.; Xu, X.; He, T.; et al. Klotho protects against indoxyl sulfate-induced myocardial hypertrophy. J. Am. Soc. Nephrol. 2016, 26, 2434–2446. [Google Scholar] [CrossRef]
- Rasheed, H.; Zheng, J.; Rees, J.; Sanderson, E.; Thomas, L.; Richardson, T.G.; Fang, S.; Bekkevold, O.J.; Stovner, E.B.; Gabrielsen, M.E.; et al. The causal effects of serum lipids and apolipoproteins on kidney function: Multivariable and bidirectional Mendelian-randomization analyses. Int. J. Epidemiol. 2021, 50, 1569–1579. [Google Scholar] [CrossRef]
- Bobulescu, I.A. Renal lipid metabolism and lipotoxicity. Curr Opin Nephrol Hypertens 2010, 19, 393–402. [Google Scholar] [CrossRef]
- Chehab, O.; Abdollahi, A.; Whelton, S.P.; Wu, C.O.; Ambale-Venkatesh, B.; Post, W.S.; Bluemke, D.A.; Tsai, M.Y.; Lima, J.A.C. Association of lipoprotein (a) levels with myocardial fibrosis in the Multi-ethnic study of atherosclerosis. J. Am. Coll. Cardiol. 2023, 82, 2280–2291. [Google Scholar] [CrossRef]
- Thomas, P.E.; Vedel-Krogh, S.; Neilson, S.F.; Nordestgaard, B.G.; Kamstrup, P.R. Lipoprotein (a) and risks of peripheral artery disease, abdominal aortic aneurysm, and major adverse limb events. J. Am. Coll. Cardiol. 2023, 82, 2265–2276. [Google Scholar] [CrossRef]
- Kumar, V.; Singhal, P.C. APOL1 and kidney cell function. Am. J. Physiol. Ren. Physiol. 2019, 317, F463–F477. [Google Scholar] [CrossRef]
- Björnson, E.; Adiels, M.; Taskinen, M.R.; Burgess, S.; Chapman, M.J.; Packard, C.J.; Borén, J. Lipoprotein(a) Is Markedly More Atherogenic Than LDL: An Apolipoprotein B-Based Genetic Analysis. J. Am. Coll. Cardiol. 2024, 83, 385–395. [Google Scholar] [CrossRef]
- Ge, M.; Molina, J.; Kim, J.J.; Mallela, S.K.; Ahmad, A.; Varona Santos, J.; Al-Ali, H.; Mitrofanova, A.; Sharma, K.; Fontanesi, F.; et al. Empagliflozin reduces podocyte lipotoxicity in experimental Alport syndrome. Elife 2023, 12, e83353. [Google Scholar] [CrossRef]
- D’Elia, J.A.; Bayliss, G.P.; Weinrauch, L.A. The Diabetic Cardiorenal Nexus. Int. J. Mol. Sci. 2022, 23, 7351. [Google Scholar] [CrossRef]
- Escasany, E.; Izquierdo-Lahuerta, A.; Medina-Gomez, G. Underlying mechanisms for renal lipo-toxicity in obesity. Nephron 2019, 143, 28–32. [Google Scholar] [CrossRef]
- Cha, D.R.; Zhang, X.; Zhang, Y.; Wu, J.; Su, D.; Han, J.Y.; Fang, X.; Yu, B.; Breyer, M.D.; Guan, Y. Peroxisome proliferator activated receptor alpha/gamma dual agonist tesaglitazar attenuates diabetic nephropathy in db/db mice. Diabetes 2007, 56, 2036–2045. [Google Scholar] [CrossRef]
- Mori, H.; Inoki, K.; Masutani, K.; Wakabayashi, Y.; Komai, K.; Nakagawa, R.; Guan, K.L.; Yoshimura, A. The mTOR pathway is highly activated in diabetic nephropathy and rapamycin has a strong therapeutic potential. Biochem. Biophys. Res. Commun. 2009, 384, 471–475. [Google Scholar] [CrossRef]
- D’Elia, J.A.; Weinrauch, L.A. Hyperglycemia and Hyperlipidemia with Kidney or Liver Transplantation: A Review. Biology 2023, 12, 1185. [Google Scholar] [CrossRef]
- Dilsizian, V.; Bateman, T.M.; Bergmann, S.R.; Des Prez, R. Metabolic imaging with beta-methyl-p-[(128)I-iodophenyl-Pentadecanoic acid identifies ischemic memory after demand ischemia. Circulation 2005, 112, 2169–2174. [Google Scholar] [CrossRef]
- García-Carrasco, A.; Izquierdo-Lahuerta, A.; Medina-Gómez, G. The Kidney-Heart Connection in Obesity. Nephron 2021, 145, 604–608. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2022, 79, e263–e421, Erratum in: J. Am. Coll. Cardiol. 2023, 81, 1551. [Google Scholar]
- Nixon, J.V.; Mitchell, J.H.; McPhaul, J.J.; Henrich, W.L. Effect of hemodialysis on left ventricular function. Dissociation of changes in filling volume and in contractile state. J. Clin. Investig. 1983, 71, 377–384. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2024, 26, 5–17. [Google Scholar]
- Quagliariello, V.; De Laurentiis, M.; Rea, D.; Barbieri, A.; Monti, M.G.; Carbone, A.; Paccone, A.; Altucci, L.; Conte, M.; Canale, M.L.; et al. The SGLT-2 inhibitor empagliflozin improves myocardial strain, reduces cardiac fibrosis and pro-inflammatory cytokines in non-diabetic mice treated with doxorubicin. Cardiovasc. Diabetol. 2021, 20, 150. [Google Scholar] [CrossRef]
- Davies, M.J.; Aroda, V.R.; Collins, B.S.; Gabbay, R.A.; Green, J.; Maruthur, N.M.; Rosas, S.E.; Del Prato, S.; Mathieu, C.; Mingrone, G.; et al. Management of hyperglycaemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 2022, 65, 1925–1966. [Google Scholar] [CrossRef]
- D’Elia, J.A.; Roshan, B.; Maski, M.; Gleason, R.E.; Weinrauch, L.A. Manifestation of renal disease in obesity-related dysfunction of the kidney. Int. J. Nephrol. Renov. Dis. 2010, 4, 1–5. [Google Scholar]
- Zhang, H.-J.; Wang, Y.-Y.; Chen, C.; Lu, Y.-L.; Wang, N.-J. Cardiovascular and renal burdens of metabolic associated fatty liver disease from serial US national surveys, 1999–2016. Chin. Med. J. 2021, 134, 1593–1601. [Google Scholar] [CrossRef]
- Musso, G.; Gambino, R.; Tabibian, J.H.; Ekstedt, M.; Kechagias, S.; Hamaguchi, M.; Hultcrantz, R.; Hagström, H.; Yoon, S.K.; Charatcharoenwitthaya, P.; et al. Association of non-alcoholic fatty liver disease with chronic kidney disease: A systematic review and meta-analysis. PLoS Med. 2014, 11, e1001680. [Google Scholar] [CrossRef]
- Schulze, P.C.; Drosatos, K.; Goldberg, I.J. Lipid use and misuse by the heart. Circ. Res. 2016, 118, 1736–1751. [Google Scholar] [CrossRef]
- Tuunanen, H.; Ukkonen, H.; Knuuti, J. Myocardial fatty acid metabolism and cardiac performance in heart failure. Curr. Cardiol. Rep. 2008, 10, 142–148. [Google Scholar] [CrossRef]
- Packer, M. Critical Reanalysis of the Mechanisms Underlying the Cardiorenal Benefits of SGLT2 Inhibitors and Reaffirmation of the Nutrient Deprivation Signaling/Autophagy Hypothesis. Circulation 2022, 146, 1383–1405. [Google Scholar] [CrossRef]
- Kramer, H.; Luke, A.; Bidani, A.; Cao, G.; Cooper, R.; McGee, D. Obesity and prevalent and incident CKD: The Hypertension Detection and Follow-up Program. Am. J. Kidney Dis. 2005, 46, 587–594. [Google Scholar] [CrossRef]
- Shaffer, J.E. Lipotoxicity: When cells overeat. Curr. Opin. Lipidol. 2003, 14, 281–289. [Google Scholar] [CrossRef]
- Wahl, P.; Ducasa, G.M.; Fornoni, A. Systemic and renal lipids in kidney disease development and progression. Am. J. Physiol. Ren. Physiol. 2016, 310, F433–F445. [Google Scholar] [CrossRef]
- Glass, C.K.; Witztum, J.L. Atherosclerosis: The road ahead. Cell 2001, 104, 503–516. [Google Scholar] [CrossRef]
- Nakamura, J.; Yamamoto, T.; Takabatake, Y.; Namba-Hamano, T.; Minami, S.; Takahashi, A.; Matsuda, J.; Sakai, S.; Yonishi, H.; Maeda, S.; et al. TFEB-mediated lysosomal exocytosis alleviates high-fat diet-induced lipotoxicity in the kidney. JCI Insight 2023, 8, e162498. [Google Scholar] [CrossRef]
- Sarmento, M.J.; Llorente, A.; Petan, T.; Khnykin, D.; Popa, J.; Perkovic, M.N.; Konjevod, M.; Jaganjac, M. The expanding organelle lipidomes: Current knowledge and challenges. Cell. Mol. Life Sci. 2023, 80, 237. [Google Scholar] [CrossRef]
- Yamamoto, T.; Takabatake, Y.; Takahashi, A.; Kimura, T.; Namba, T.; Matsuda, J.; Minami, S.; Kaimori, J.Y.; Matsui, I.; Matsusaka, T.; et al. High-Fat Diet-Induced Lysosomal Dysfunction and Impaired Autophagic Flux Contribute to Lipotoxicity in the Kidney. J. Am. Soc. Nephrol. 2017, 28, 1534–1551. [Google Scholar] [CrossRef]
- D’Elia, J.A.; Bayliss, G.; Roshan, B.; Maski, M.; Gleason, R.E.; Weinrauch, L.A. Diabetic microvascular complications: Possible targets for improved macrovascular outcomes. Int. J. Nephrol. Renov. Dis. 2011, 4, 1–15. [Google Scholar]
- Zhong, J.; Guo, D.; Chen, C.B.; Wang, W.; Schuster, M.; Loibner, H.; Penninger, J.M.; Scholey, J.W.; Kassiri, Z.; Oudit, G.Y. Prevention of angiotensin II-mediated renal oxidative stress, inflammation, and fibrosis by angiotensin-converting enzyme 2. Hypertension 2011, 57, 314–2251. [Google Scholar] [CrossRef]
- Malavazos, A.E.; Cereda, E.; Ermetici, F.; Caccialanza, R.; Briganti, S.; Rondanelli, M.; Morricone, L. The “Lipid accumulation product” is associated with 2-hour post-load glucose outcomes in overweight/obese subjects with nondiabetic fasting glucose. Int. J. Endocrinol. 2015, 2015, 836941. [Google Scholar] [CrossRef]
- Kahn, H.S. The lipid accumulation product performs better than BMI for identifying diabetes: A population-based comparison. Diabetes Care 2006, 29, 15–153. [Google Scholar] [CrossRef]
- Zhao, S.; Ren, Z.; Yu, S.; Chi, C.; Tang, J.; Maimaitiaili, R.; Teliewubai, J.; Li, J.; Xu, Y.; Zhang, Y. The association between lipid accumulation product and target organ damage in elderly population: The Northern Shanghai Study. Clin. Interv. Aging 2021, 16, 1769–1776. [Google Scholar] [CrossRef]
- Wild, S.; Pierpoint, T.; McKeigue, P.; Jacobs, H. Cardiovascular Disease in women with polycystic ovary syndrome at long-term follow-up: A retrospective cohort study. Clin. Endocrinol. 2000, 52, 595–600. [Google Scholar] [CrossRef]
- Wiltgren, D.; Benedetto, I.G.; Mastella, I.S.; Spritzer, P.M. Lipid accumulation product index: A reliable marker of cardiovascular risk in polycystic ovarian ovary syndrome. Hum. Reprod. 2009, 24, 1726–1731. [Google Scholar] [CrossRef]
- Meulders, B.; Marei, W.F.A.; Xhonneux, I.; Bols, P.E.J.; Leroy, J.L.M.R. Effect of lipotoxicity on mitochondrial function and epigenetic programming during bovine in vitro embryo production. Sci. Rep. 2023, 13, 21664. [Google Scholar] [CrossRef] [PubMed]
- Regina, B. Glycolysis. ThoughtCo, 27 August 2020. Available online: https://www.thoughtco.com/steps-of-glycolysis-373394 (accessed on 28 February 2024).
- Sakamoto, T.; Takano, Y.; Nakayama, H.; Kamado, K.; Nagata, S.; Kusuoka, H.; Nishimura, T.; Hori, M. Mechanism of impaired left ventricular wall motion in the diabetic heart without coronary disease. Diabetes Care 1988, 21, 2123–2128. [Google Scholar] [CrossRef] [PubMed]
- D’Elia, J.A.; Weinrauch, L.A. Calcium ion channels: Roles in infection and sepsis. Mechanisms of calcium channel benefits in immunocompromised patients at risk for infection. Int. J. Mol. Sci. 2018, 19, 2465. [Google Scholar] [CrossRef]
- Carl, G.F.; Hoffman, W.H.; Passmore, G.G.; Truemper, E.J.; Lightsey, A.L.; Cornwell, P.E.; Jonah, M.H. Diabetic ketoacidosis promotes a prothrombotic state. Endocr. Res. 2003, 29, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Crimi, E.; Taccone, F.S.; Infante, T.; Scolletta, S.; Crudele, V.; Napoli, C. Effects of intracellular acidosis on endothelial function: An overview. J. Crit. Care 2012, 27, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Sinnecker, T.; Andelova, M.; Mayr, M.; Ruegg, S.; Sinnreich, M.; Hench, J.; Frank, S.; Schaller, A.; Stippich, C.; Wuerfel, J.; et al. Diagnosis of adult-onset MELAS syndrome in a 63 year old patient with suspected recurrent stroke: A case report. BMC Neurol. 2019, 19, 91. [Google Scholar] [CrossRef]
- Rossing, P.; Inzucchi, S.E.; Vart, P.; Jongs, N.; Docherty, K.F.; Jhund, P.S.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; et al. Dapagliflozin and new-onset type 2 diabetes in patients with chronic kidney disease or heart failure: Pooled analysis of the DAPA-CKD and DAPA-HF trials. Lancet Diabetes Endocrinol. 2022, 10, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Shaman, A.M.; Bain, S.C.; Bakris, G.L.; Buse, J.B.; Idorn, T.; Mahaffey, K.W.; Mann, J.F.E.; Nauck, M.A.; Rasmussen, S.; Rossing, P.; et al. Effect of the Glucagon-Like Peptide-1 Receptor Agonists Semaglutide and Liraglutide on Kidney Outcomes in Patients with Type 2 Diabetes: Pooled Analysis of SUSTAIN 6 and LEADER. Circulation 2022, 145, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Wang, T.H.; Tsai, M.L.; Wu, V.C.; Tseng, C.J.; Lin, M.S.; Li, Y.R.; Chang, C.H.; Chou, T.S.; Tsai, T.H.; et al. The cardiovascular and renal effects of glucagon-like peptide 1 receptor agonists in patients with advanced diabetic kidney disease. Cardiovasc. Diabetol. 2023, 22, 60. [Google Scholar] [CrossRef] [PubMed]
- de Boer, I.H.; Khunti, K.; Sadusky, T.; Tuttle, K.R.; Neumiller, J.J.; Rhee, C.M.; Rosas, S.E.; Rossing, P.; Bakris, G. Diabetes Management in Chronic Kidney Disease: A Consensus Report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO). Diabetes Care 2022, 45, 3075–3090. [Google Scholar] [CrossRef] [PubMed]
- Nahmias, A.; Stahel, P.; Tian, L.; Xiao, C.; Lewis, G.F. GLP-1 (Glucagon-Like Peptide-1) Is Physiologically Relevant for Chylomicron Secretion Beyond Its Known Pharmacological Role. Arter. Thromb. Vasc. Biol. 2021, 41, 1893–1900. [Google Scholar] [CrossRef]
- Marx, N.; Husain, M.; Lehrke, M.; Verma, S.; Sattar, N. GLP-1 Receptor Agonists for the Reduction of Atherosclerotic Cardiovascular Risk in Patients With Type 2 Diabetes. Circulation 2022, 146, 1882–1894. [Google Scholar] [CrossRef]
- Virani, S.S.; Newby, L.K.; Arnold, S.V.; Bittner, V.; Brewer, L.C.; Demeter, S.H.; Dixon, D.L.; Fearon, W.F.; Hess, B.; Johnson, H.M.; et al. 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA Guideline for the Management of Patients With Chronic Coronary Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation 2023, 148, e9–e119, Erratum in: Circulation 2023, 148, e186. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, A.; Kirchner, B.; Meidert, A.S.; Brandes, F.; Lindemann, A.; Doose, G.; Doege, A.; Weidenhagen, R.; Reithmair, M.; Schelling, G.; et al. Detection of Atherosclerosis by Small RNA-Sequencing Analysis of Extracellular Vesicle Enriched Serum Samples. Front. Cell Dev. Biol. 2021, 9, 729061. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.M.; Michell, D.L.; Cavnar, A.B.; Zhu, W.; Makhijani, N.; Contreras, D.M.; Raby, C.A.; Semler, E.M.; De Julius, C.; Castleberry, M.; et al. LDL delivery of microbial small RNAs drives atherosclerosis through macrophage TLR8. Nat. Cell Biol. 2022, 24, 1701–1713. [Google Scholar] [CrossRef] [PubMed]
- Ference, B.A.; Ginsberg, H.N.; Graham, I.; Ray, K.K.; Packard, C.J.; Bruckert, E.; Hegele, R.A.; Krauss, R.M.; Raal, F.J.; Schunkert, H.; et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2017, 38, 2459–2472. [Google Scholar] [CrossRef]
- McClintick, D.J.; O’Donoghue, M.L.; De Ferrari, G.M.; Ferreira, J.; Ran, X.; Im, K.; López, J.A.G.; Elliott-Davey, M.; Wang, B.; Monsalvo, M.L.; et al. Long-Term Efficacy of Evolocumab in Patients with or without Multivessel Coronary Disease. J. Am. Coll. Cardiol. 2024, 83, 652–664. [Google Scholar] [CrossRef] [PubMed]
- Wright, R.S.; Koenig, W.; Landmesser, U.; Leiter, L.A.; Raal, F.J.; Schwartz, G.G.; Lesoger, A.; Maheux, P.; Stratz, C.; Zang, X.; et al. Safety and tolerability of inclisiran for treatment of hypercholesterolemia in 7 clinical trials. J. Am. Coll. Cardiol. 2023, 82, 2251–2261. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Liao, X.; Zhang, H.; Peng, J.; Huang, Z.; Yi, B. Increased serum PCSK9 levels are associated with renal function impairment in patients with type 2 diabetes mellitus. Ren. Fail. 2023, 45, 2215880. [Google Scholar] [CrossRef]
- Feng, Z.; Liao, X.; Peng, J.; Quan, J.; Zhang, H.; Huang, Z.; Yi, B. PCSK9 causes inflammation and cGAS/STING pathway activation in diabetic nephropathy. FASEB J. 2023, 37, e23127. [Google Scholar] [CrossRef]
- Pircher, A.; Treps, L.; Bodrug, N.; Carmeliet, P. Endothelial cell metabolism: A novel player in atherosclerosis? Basic principles and therapeutic opportunities. Atherosclerosis 2016, 253, 247–257. [Google Scholar] [CrossRef]
- Krishnaraj, A.; Bakbak, E.; Teoh, H.; Pan, Y.; Firoz, I.N.; Pandey, A.K.; Terenzi, D.C.; Verma, R.; Bari, B.; Bakbak, A.I.; et al. Vascular Regenerative Cell Deficiencies in South Asian Adults. J. Am. Coll. Cardiol. 2024, 83, 755–769. [Google Scholar] [CrossRef]
- Natarajan, P.; Patel, A.P. Differences in Circulating Progenitor Cells and Risk of Atherosclerotic Cardiovascular Disease in South Asian Individuals. J. Am. Coll. Cardiol. 2024, 83, 770–771. [Google Scholar] [CrossRef] [PubMed]
- Kannel, W.B.; Dawber, T.R.; Kagan, A.; Revotskie, N.; Stokes, J., 3rd. Factors of risk in the development of coronary heart disease- six-year follow-up experience. The Framingham Study. Ann. Intern. Med. 1961, 55, 33–50. [Google Scholar] [CrossRef] [PubMed]
- Libby, P.; Ridker, P.M.; Maseri, A. Inflammation and atherosclerosis. Circulation 2002, 105, 1135–1143. [Google Scholar] [CrossRef] [PubMed]
- Rosner, M.H.; Ronco, C.; Okusa, M.D. The Role of Inflammation in the Cardio-Renal Syndrome: A Focus on Cytokines and Inflammatory Mediators. Sem. Nephrol. 2012, 32, 70–78. [Google Scholar] [CrossRef]
- Colombo, P.C.; Ganda, A.; Lin, J.; Onat, D.; Harxhi, A.; Iyasere, J.E.; Uriel, N.; Cotter, G. Inflammatory activation: Cardiac, renal, and cardio-renal interactions in patients with the cardiorenal syndrome. Heart Fail. Rev. 2012, 17, 177–190. [Google Scholar] [CrossRef]
- Tietge, U.J. Hyperlipidemia and cardiovascular disease: Inflammation, dyslipidemia, and atherosclerosis. Curr. Opin. Lipidol. 2014, 25, 94–95. [Google Scholar] [CrossRef] [PubMed]
- Akchurin, O.M.; Kaskel, F. Update on inflammation in chronic kidney disease. Blood Purif. 2015, 39, 84–92. [Google Scholar] [CrossRef]
- Murphy, S.P.; Kakkar, R.; McCarthy, C.P.; Januzzi, J.L., Jr. Inflammation in Heart Failure: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 1324–1340. [Google Scholar] [CrossRef]
- Aktas, G.; Atak Tel, B.M.; Tel, R.; Balci, B. Treatment of type 2 diabetes patients with heart conditions. Expert. Rev. Endocrinol. Metab. 2023, 18, 255–265. [Google Scholar] [CrossRef]
- Ridker, P.M.; Bhatt, D.L.; Pradhan, A.D.; Glynn, R.J.; MacFadyen, J.G.; Nissen, S.E. PROMINENT, REDUCE-IT, and STRENGTH Investigators. Inflammation and cholesterol as predictors of cardiovascular events among patients receiving statin therapy: A collaborative analysis of three randomised trials. Lancet 2023, 401, 1293–1301. [Google Scholar] [CrossRef]
- Speer, T.; Dimmeler, S.; Schunk, S.J.; Fliser, D.; Ridker, P.M. Targeting innate immunity-driven inflammation in CKD and cardiovascular disease. Nat. Rev. Nephrol. 2022, 18, 762–778. [Google Scholar] [CrossRef] [PubMed]
| |
| |
| |
| |
| |
| |
| |
|
Enzyme | Substrate | Conversion To |
---|---|---|
Hexokinase | glucose | glucose 6 phosphate |
Phosphoglucose isomerase (mutase) | glucose 6 phosphate | Fructose 6 phosphate |
Phosphofructokinase | Fructose 6 phosphate | fructose 1,6 bisphosphate |
Aldolase | fructose 1,6 bisphosphate | Glyceraldehyde 3 phosphate + dihydroacetone phosphate |
Triose phosphate isomerase | dihydroacetone phosphate | glyceraldehyde 3 phosphate |
Glyceraldehyde 3 phosphate dehydrogenase | glyceraldehyde 3 phosphate | 1,3 bisphosphoglycerate |
Phosphoglycerate kinase | 1,3 bisphosphoglycerate | 3 phosphoglycerate + ATP |
Phosphoglycerate mutase | 3 phosphoglycerate | 2 phosphoglycerate |
Enolase | 2 phosphoglycerate | phosphoenolpyruvate + H2O |
Pyruvate kinase | phosphoenolpyruvate | pyruvate + ATP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Elia, J.A.; Weinrauch, L.A. Lipid Toxicity in the Cardiovascular-Kidney-Metabolic Syndrome (CKMS). Biomedicines 2024, 12, 978. https://doi.org/10.3390/biomedicines12050978
D’Elia JA, Weinrauch LA. Lipid Toxicity in the Cardiovascular-Kidney-Metabolic Syndrome (CKMS). Biomedicines. 2024; 12(5):978. https://doi.org/10.3390/biomedicines12050978
Chicago/Turabian StyleD’Elia, John A., and Larry A. Weinrauch. 2024. "Lipid Toxicity in the Cardiovascular-Kidney-Metabolic Syndrome (CKMS)" Biomedicines 12, no. 5: 978. https://doi.org/10.3390/biomedicines12050978
APA StyleD’Elia, J. A., & Weinrauch, L. A. (2024). Lipid Toxicity in the Cardiovascular-Kidney-Metabolic Syndrome (CKMS). Biomedicines, 12(5), 978. https://doi.org/10.3390/biomedicines12050978