Hepatocyte-Specific PEX16 Abrogation in Mice Leads to Hepatocyte Proliferation, Alteration of Hepatic Lipid Metabolism, and Resistance to High-Fat Diet (HFD)-Induced Hepatic Steatosis and Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studies in Experimental Rodent Models
2.2. Studies in Patients with Chronic Liver Diseases
3. Results
3.1. The Resistance to HFD-Induced Body Weight Gain Is Observed in the Pex16Alb-Cre Mice but Not in the Pex16AdipoQ-Cre Mice
3.2. HFD Feeding Induces Obesity in the Pex16fl/fl Mice but Not in the Pex16Alb-Cre Mice
3.3. The Absence of Liver PEX16 Leads to Hepatocyte Proliferation
3.4. The Absence of Liver PEX16 Leads to the Alteration of Fatty Acid Metabolism in the Liver
3.5. The Absence of Liver PEX16 Leads to the Alteration of Cholesterol and Bile Acid Metabolism
3.6. Peroxisomes are Associated with Liver Steatosis in Patients with Typical Spectrum of MASLD
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhala, N.; Jouness, R.I.K.; Bugianesi, E. Epidemiology and Natural History of Patients with NAFLD. Curr. Pharm. Des. 2013, 19, 5169–5176. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.W.; Adams, L.A. Non-alcoholic fatty liver disease. Crit. Rev. Clin. Lab. Sci. 2011, 48, 97–113. [Google Scholar] [CrossRef] [PubMed]
- Reddy, J.K.; Hashimoto, T. Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: An adaptive metabolic system. Annu. Rev. Nutr. 2001, 21, 193–230. [Google Scholar] [CrossRef] [PubMed]
- Chance, B.; Sies, H.; Walker, C.L.; Pomatto, L.C.D.; Tripathi, D.N.; Davies, K.J.A.; Ninsontia, C.; Phiboonchaiyanan, P.P.; Kiratipaiboon, C.; Chanvorachote, P.; et al. Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 1979, 59, 527–605. [Google Scholar] [CrossRef] [PubMed]
- Reddy, J.K. Peroxisome proliferators and peroxisome proliferator-activated receptor alpha: Biotic and xenobiotic sensing. Am. J. Pathol. 2004, 164, 2305–2321. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, M.; Lefebvre, P.; Staels, B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J. Hepatol. 2015, 62, 720–733. [Google Scholar] [CrossRef]
- Veiga, F.M.S.; Graus-Nunes, F.; Rachid, T.L.; Barreto, A.B.; Mandarim-De-Lacerda, C.A.; Souza-Mello, V. Anti-obesogenic effects of WY14643 (PPAR-alpha agonist): Hepatic mitochondrial enhancement and suppressed lipogenic pathway in diet-induced obese mice. Biochimie 2017, 140, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.; You, M.; Matsumoto, M.; Crabb, D.W. Peroxisome proliferator-activated receptor alpha (PPARalpha) agonist treatment reverses PPARalpha dysfunction and abnormalities in hepatic lipid metabolism in ethanol-fed mice. J. Biol. Chem. 2003, 278, 27997–28004. [Google Scholar] [CrossRef]
- Montagner, A.; Polizzi, A.; Fouché, E.; Ducheix, S.; Lippi, Y.; Lasserre, F.; Barquissau, V.; Régnier, M.; Lukowicz, C.; Benhamed, F.; et al. Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD. Gut 2016, 65, 1202–1214. [Google Scholar] [CrossRef]
- Huang, J.; Jia, Y.; Fu, T.; Viswakarma, N.; Bai, L.; Rao, M.S.; Zhu, Y.; Borensztajn, J.; Reddy, J.K. Sustained activation of PPARα by endogenous ligands increases hepatic fatty acid oxidation and prevents obesity in ob/ob mice. FASEB J. 2012, 26, 628–638. [Google Scholar] [CrossRef]
- Gao, Q.; Jia, Y.; Yang, G.; Zhang, X.; Boddu, P.C.; Petersen, B.; Narsingam, S.; Zhu, Y.-J.; Thimmapaya, B.; Kanwar, Y.S.; et al. PPARα-Deficient ob/ob Obese Mice Become More Obese and Manifest Severe Hepatic Steatosis Due to Decreased Fatty Acid Oxidation. Am. J. Pathol. 2015, 185, 1396–1408. [Google Scholar] [CrossRef]
- Francque, S.; Verrijken, A.; Caron, S.; Prawitt, J.; Paumelle, R.; Derudas, B.; Lefebvre, P.; Taskinen, M.-R.; Van Hul, W.; Mertens, I.; et al. PPARα gene expression correlates with severity and histological treatment response in patients with non-alcoholic steatohepatitis. J. Hepatol. 2015, 63, 164–173. [Google Scholar] [CrossRef]
- Chen, X.; Ward, S.C.; Cederbaum, A.I.; Xiong, H.; Lu, Y. Alcoholic fatty liver is enhanced in CYP2A5 knockout mice: The role of the PPARα-FGF21 axis. Toxicology 2017, 379, 12–21. [Google Scholar] [CrossRef]
- Wang, K.; Chen, X.; Ward, S.C.; Liu, Y.; Ouedraogo, Y.; Xu, C.; Cederbaum, A.I.; Lu, Y. CYP2A6 is associated with obesity: Studies in human samples and a high fat diet mouse model. Int. J. Obes. 2019, 43, 475–486. [Google Scholar] [CrossRef]
- Chen, X.; Acquaah-Mensah, G.K.; Denning, K.L.; Peterson, J.M.; Wang, K.; Denvir, J.; Hong, F.; Cederbaum, A.I.; Lu, Y. High-fat diet induces fibrosis in mice lacking CYP2A5 and PPARα: A new model for steatohepatitis-associated fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 2020, 319, G626–G635. [Google Scholar] [CrossRef]
- Lee, S.S.-T.; Pineau, T.; Drago, J.; Lee, E.J.; Owens, J.W.; Kroetz, D.L.; Fernandez-Salguero, P.M.; Westphal, H.; Gonzalez, F.J. Targeted Disruption of the α Isoform of the Peroxisome Proliferator-Activated Receptor Gene in Mice Results in Abolishment of the Pleiotropic Effects of Peroxisome Proliferators. Mol. Cell. Biol. 1995, 15, 3012–3022. [Google Scholar] [CrossRef]
- Sugiura, A.; Mattie, S.; Prudent, J.; McBride, H.M. Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes. Nature 2017, 542, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Lodhi, I.J.; Semenkovich, C.F. Peroxisomes: A Nexus for Lipid Metabolism and Cellular Signaling. Cell Metab. 2014, 19, 380–392. [Google Scholar] [CrossRef]
- Kim, P.K.; Mullen, R.T. PEX16: A multifaceted regulator of peroxisome biogenesis. Front. Physiol. 2013, 4, 241. [Google Scholar] [CrossRef] [PubMed]
- Kim, P.K.; Mullen, R.T.; Schumann, U.; Lippincott-Schwartz, J. The origin and maintenance of mammalian peroxisomes involves a de novo PEX16-dependent pathway from the ER. J. Cell Biol. 2006, 173, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Honsho, M.; Tamura, S.; Shimozawa, N.; Suzuki, Y.; Kondo, N.; Fujiki, Y. Mutation in PEX16 is causal in the peroxisome-deficient Zellweger syndrome of complementation group D. Am. J. Hum. Genet. 1998, 63, 1622–1630. [Google Scholar] [CrossRef]
- Chen, X.; Denning, K.L.; Mazur, A.; Lawrence, L.M.; Wang, X.; Lu, Y. Under peroxisome proliferation acyl-CoA oxidase coordinates with catalase to enhance ethanol metabolism. Free Radic. Biol. Med. 2023, 208, 221–228. [Google Scholar] [CrossRef]
- Wanders, R.; Denis, S.; Wouters, F.; Wirtz, K.; Seedorf, U. Sterol Carrier Protein X (SCPx) Is a Peroxisomal Branched-Chain β-Ketothiolase Specifically Reacting with 3-Oxo-pristanoyl-CoA: A New, Unique Role for SCPx in Branched-Chain Fatty Acid Metabolism in Peroxisomes. Biochem. Biophys. Res. Commun. 1997, 236, 565–569. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Denning, K.L.; Lu, Y. PPARα agonist WY-14,643 induces adipose atrophy and fails to blunt chronic ethanol-induced hepatic fat accumulation in mice lacking adipose FGFR1. Biochem. Pharmacol. 2021, 192, 114678. [Google Scholar] [CrossRef]
- Grabacka, M.; Pierzchalska, M.; Dean, M.; Reiss, K. Regulation of Ketone Body Metabolism and the Role of PPARα. Int. J. Mol. Sci. 2016, 17, 2093. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schreiber, R.; Xie, H.; Schweiger, M. Of mice and men: The physiological role of adipose triglyceride lipase (ATGL). Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019, 1864, 880–899. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hussain, M.M.; Shi, J.; Dreizen, P. Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J. Lipid Res. 2003, 44, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Xu, J.; Wu, Y.; Liang, B.; Yan, M.; Sun, C.; Wang, D.; Hu, X.; Liu, L.; Hu, W.; et al. The potential role and mechanism of circRNA/miRNA axis in cholesterol synthesis. Int. J. Biol. Sci. 2023, 19, 2879–2896. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weinhofer, I.; Kunze, M.; Stangl, H.; Porter, F.D.; Berger, J. Peroxisomal cholesterol biosynthesis and Smith-Lemli-Opitz syndrome. Biochem. Biophys. Res. Commun. 2006, 345, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Ferdinandusse, S.; Houten, S.M. Peroxisomes and bile acid biosynthesis. Biochim. Biophys. Acta 2006, 1763, 1427–1440. [Google Scholar] [CrossRef] [PubMed]
- Sinal, C.J.; Tohkin, M.; Miyata, M.; Ward, J.M.; Lambert, G.; Gonzalez, F.J. Targeted Disruption of the Nuclear Receptor FXR/BAR Impairs Bile Acid and Lipid Homeostasis. Cell 2000, 102, 731–744. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Denning, K.L.; Lu, Y. PPARα agonist WY-14,643 induces the PLA2/COX-2/ACOX1 pathway to enhance peroxisomal lipid metabolism and ameliorate alcoholic fatty liver in mice. Biochem. Biophys. Res. Commun. 2022, 613, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Ricciotti, E.; FitzGerald, G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 986–1000. [Google Scholar] [CrossRef]
- Park, H.; He, A.; Tan, M.; Johnson, J.M.; Dean, J.M.; Pietka, T.A.; Chen, Y.; Zhang, X.; Hsu, F.-F.; Razani, B.; et al. Peroxisome-derived lipids regulate adipose thermogenesis by mediating cold-induced mitochondrial fission. J. Clin. Investig. 2019, 129, 694–711. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ding, L.; Sun, W.; Balaz, M.; He, A.; Klug, M.; Wieland, S.; Caiazzo, R.; Raverdy, V.; Pattou, F.; Lefebvre, P.; et al. Peroxisomal β-oxidation acts as a sensor for intracellular fatty acids and regulates lipolysis. Nat. Metab. 2021, 3, 1648–1661. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Diczfalusy, U.; Alexson, S. Identification of metabolites from peroxisomal beta-oxidation of prostaglandins. J. Lipid Res. 1990, 31, 307–314. [Google Scholar] [CrossRef]
- Zomer, A.W.; van der Burg, B.; Jansen, G.A.; Wanders, R.J.; Poll-The, B.T.; van der Saag, P.T. Pristanic acid and phytanic acid: Naturally occurring ligands for the nuclear receptor peroxisome proliferator-activated receptor α. J. Lipid Res. 2000, 41, 1801–1807. [Google Scholar] [CrossRef] [PubMed]
- Mannaerts, G.P.; Van Veldhoven, P.P.; Casteels, M. Peroxisomal lipid degradation via beta- and alpha-oxidation in mammals. Cell Biochem. Biophys. 2000, 32, 73–87. [Google Scholar] [CrossRef]
- Verhoeven, N.M.; Wanders, R.J.A.; Poll-The, B.T.; Saudubray, J.; Jakobs, C. The metabolism of phytanic acid and pristanic acid in man: A review. J. Inherit. Metab. Dis. 1998, 21, 697–728. [Google Scholar] [CrossRef]
- Charles, K.N.; Shackelford, J.E.; Faust, P.L.; Fliesler, S.J.; Stangl, H.; Kovacs, W.J. Functional Peroxisomes Are Essential for Efficient Cholesterol Sensing and Synthesis. Front. Cell Dev. Biol. 2020, 8, 560266. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fan, M.; Wang, X.; Xu, G.; Yan, Q.; Huang, W. Bile acid signaling and liver regeneration. Biochim. Biophys. Acta 2015, 1849, 196–200. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Clemens, M.M.; McGill, M.R.; Apte, U. Mechanisms and biomarkers of liver regeneration after drug-induced liver injury. Adv. Pharmacol. 2019, 85, 241–262. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Name | Cat# | Company |
---|---|---|
CYP4A11 antibody | 11688-1-AP | Proteintech, Rosemont, IL, USA |
Catalase antibody | 21260-1-AP | Proteintech, Rosemont, IL, USA |
ACOX1 antibody | 10957-1-AP | Proteintech, Rosemont, IL, USA |
PEX16 antibody | 14816-1-AP | Proteintech, Rosemont, IL, USA |
ATGL antibody | 55190-1-AP | Proteintech, Rosemont, IL, USA |
β-Tubulin antibody | 66240-1-Ig | Proteintech, Rosemont, IL, USA |
CD36 antibody | 18836-1-AP | Proteintech, Rosemont, IL, USA |
FXR antibody | 25055-1-AP | Proteintech, Rosemont, IL, USA |
SCPx antibody | 14397-1-AP | Proteintech, Rosemont, IL, USA |
L-FABP antibody | 13626-1-AP | Proteintech, Rosemont, IL, USA |
FASN antibody | 10624-2-AP | Proteintech, Rosemont, IL, USA |
Thiolase antibody | HPA006764-25 μL | Sigma-Alderich, St. Louis, MO, USA |
HMGCR antibody | SAB4200529-200 μL | Sigma-Alderich, St. Louis, MO, USA |
PCNA antibody | Sc-25280 | Santa Cruz Biotechnology, Dallas, TX, USA |
Ki67 antibody | sc-23900 | Santa Cruz Biotechnology, Dallas, TX, USA |
CYP7A1 antibody | Sc-518007 | Santa Cruz Biotechnology, Dallas, TX, USA |
MTTP antibody | Sc-135994 | Santa Cruz Biotechnology, Dallas, TX, USA |
ACOX2 antibody | Sc-514320 | Santa Cruz Biotechnology, Dallas, TX, USA |
HMGCS1 antibody | 422015 | Cell Signaling, Beverly, MA, USA |
HMGCS2 antibody | 209405 | Cell Signaling, Beverly, MA, USA |
PMP70 antibody (ab3421) | ab3421 | Abcam, Waltham, MA, USA |
Bile acid assay | E-BC-K181-M | Elabscience, Houston, TX, USA |
Cholesterol assay kit | TR13421 | Thermo Fisher, Waltham, MA, USA |
Triglyceride assay kit | TR22421 | Thermo Fisher, Waltham, MA, USA |
EnzyChrom Free fatty acid assay kit | EFFA-100 | BioAssay Systems, Hayward, CA, USA |
β-Hydroxybutyrate (Ketone Body) Colorimetric Assay Kit | 700190 | Cayman Chemical Company, Ann Harbor, MI, USA |
High-fat diet | F3282 | Bio-Serv, Flemington, NJ, USA |
Control diet | F4031 | Bio-Serv, Flemington, NJ, USA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Wang, L.; Denning, K.L.; Mazur, A.; Xu, Y.; Wang, K.; Lawrence, L.M.; Wang, X.; Lu, Y. Hepatocyte-Specific PEX16 Abrogation in Mice Leads to Hepatocyte Proliferation, Alteration of Hepatic Lipid Metabolism, and Resistance to High-Fat Diet (HFD)-Induced Hepatic Steatosis and Obesity. Biomedicines 2024, 12, 988. https://doi.org/10.3390/biomedicines12050988
Chen X, Wang L, Denning KL, Mazur A, Xu Y, Wang K, Lawrence LM, Wang X, Lu Y. Hepatocyte-Specific PEX16 Abrogation in Mice Leads to Hepatocyte Proliferation, Alteration of Hepatic Lipid Metabolism, and Resistance to High-Fat Diet (HFD)-Induced Hepatic Steatosis and Obesity. Biomedicines. 2024; 12(5):988. https://doi.org/10.3390/biomedicines12050988
Chicago/Turabian StyleChen, Xue, Long Wang, Krista L. Denning, Anna Mazur, Yujuan Xu, Kesheng Wang, Logan M. Lawrence, Xiaodong Wang, and Yongke Lu. 2024. "Hepatocyte-Specific PEX16 Abrogation in Mice Leads to Hepatocyte Proliferation, Alteration of Hepatic Lipid Metabolism, and Resistance to High-Fat Diet (HFD)-Induced Hepatic Steatosis and Obesity" Biomedicines 12, no. 5: 988. https://doi.org/10.3390/biomedicines12050988
APA StyleChen, X., Wang, L., Denning, K. L., Mazur, A., Xu, Y., Wang, K., Lawrence, L. M., Wang, X., & Lu, Y. (2024). Hepatocyte-Specific PEX16 Abrogation in Mice Leads to Hepatocyte Proliferation, Alteration of Hepatic Lipid Metabolism, and Resistance to High-Fat Diet (HFD)-Induced Hepatic Steatosis and Obesity. Biomedicines, 12(5), 988. https://doi.org/10.3390/biomedicines12050988