Neurobiological Effects of Transcranial Direct Current Stimulation over the Inferior Frontal Gyrus: A Systematic Review on Cognitive Enhancement in Healthy and Neurological Adults
Abstract
:1. Introduction
1.1. The Role of the Inferior Frontal Gyrus (IFG) in Cognitive Performance: Behavioral Evidence from tDCS Studies
1.2. tDCS and Neurophysiological Measurements
2. Materials and Methods
2.1. Search Strategy and Selection Criteria
2.2. Data Extraction and Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- de Boer, N.S.; Schluter, R.S.; Daams, J.G.; van der Werf, Y.D.; Goudriaan, A.E.; van Holst, R.J. The effect of non-invasive brain stimulation on executive functioning in healthy controls: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2021, 125, 122–147. [Google Scholar] [CrossRef] [PubMed]
- Di Pino, G.; Pellegrino, G.; Assenza, G.; Capone, F.; Ferreri, F.; Formica, D.; Ranieri, F.; Tombini, M.; Ziemann, U.; Rothwell, J.C.; et al. Modulation of brain plasticity in stroke: A novel model for neurorehabilitation. Nat. Rev. Neurol. 2014, 10, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Fregni, F.; El-Hagrassy, M.M.; Pacheco-Barrios, K.; Carvalho, S.; Leite, J.; Simis, M.; Brunelin, J.; Nakamura-Palacios, E.M.; Marangolo, P.; Venkatasubramanian, G.; et al. Evidence-Based Guidelines and Secondary Meta-Analysis for the Use of Transcranial Direct Current Stimulation in Neurological and Psychiatric Disorders. Int. J. Neuropsychopharmacol. 2021, 21, 256–313. [Google Scholar] [CrossRef] [PubMed]
- Polanía, R.; Nitsche, M.A.; Ruff, C.C. Studying and modifying brain function with non-invasive brain stimulation. Nat. Neurosci. 2018, 21, 174–187. [Google Scholar] [CrossRef] [PubMed]
- Elsner, B.; Kugler, J.; Pohl, M.; Mehrholz, J. Transcranial direct current stimulation (tDCS) for improving aphasia in adults with aphasia after stroke. Cochrane Database Syst. Rev. 2019, 21, CD009760. [Google Scholar] [CrossRef]
- Lefaucheur, J.P.; Antal, A.; Ayache, S.S.; Benninger, D.H.; Brunelin, J.; Cogiamanian, F.; Cotelli, M.; De Ridder, D.; Ferrucci, R.; Langguth, B.; et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin. Neurophysiol. 2017, 128, 56–92. [Google Scholar] [CrossRef] [PubMed]
- Marangolo, P. The potential effects of transcranial direct current stimulation (tDCS) on language functioning: Combining neuromodulation and behavioral intervention in aphasia. Neurosci. Lett. 2020, 719, 133329. [Google Scholar] [CrossRef] [PubMed]
- Brunoni, A.R.; Nitsche, M.A.; Bolognini, N.; Bikson, M.; Wagner, T.; Merabet, L.; Edwards, D.J.; Valero-Cabré, A.; Rotenberg, A.; Pascual-Leone, A.; et al. Clinical research with transcranial direct current stimulation (tDCS): Challenges and future directions. Brain Stimul. 2012, 5, 175–195. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 2000, 527, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Marangolo, P.; Fiori, V.; Sabatini, U.; De Pasquale, G.; Razzano, C.; Caltagirone, C.; Caltagirone, C.; Gili, T. Bilateral Transcranial Direct Current Stimulation Language Treatment Enhances Functional Connectivity in the Left Hemisphere: Preliminary Data from Aphasia. J. Cogn. Neurosci. 2016, 28, 724–738. [Google Scholar] [CrossRef] [PubMed]
- Sandrini, M.; Xu, B.; Volochayev, R.; Awosika, O.; Wang, W.T.; Butman, J.A.; Cohen, L.G. Transcranial direct current stimulation facilitates response inhibition through dynamic modulation of the fronto-basal ganglia network. Brain Stimul. 2020, 26, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Bikson, M.; Grossman, P.; Thomas, C.; Zannou, A.L.; Jiang, J.; Adnan, T.; Mourdoukoutas, A.P.; Kronberg, G.; Truong, D.; Boggio, P.; et al. Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016. Brain Stimul. 2016, 9, 641–661. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Nitsche, M.S.; Klein, C.C.; Tergau, F.; Rothwell, J.C.; Paulus, W. Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin. Neurophysiol. 2003, 114, 600–604. [Google Scholar] [CrossRef] [PubMed]
- Poreisz, C.; Boros, K.; Antal, A.; Paulus, W. Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients. Brain Res. Bull. 2007, 72, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Monte-Silva, K.; Kuo, M.F.; Hessenthaler, S.; Fresnoza, S.; Liebetanz, D.; Paulus, W.; Nitsche, M.A. Induction of Late LTP-Like Plasticity in the Human Motor Cortex by Repeated Non-Invasive Brain Stimulation. Brain Stimul. 2013, 6, 424–432. [Google Scholar] [CrossRef]
- Chen, H.; Epstein, J.; Stern, E. Neural plasticity after acquired brain injury: Evidence from functional neuroimaging. PM&R 2010, 2, S306–S312. [Google Scholar]
- Fridriksson, J.; Richardson, J.D.; Fillmore, P.; Cai, B. Left hemisphere plasticity and aphasia recovery. Neuroimage 2012, 2, 854–863. [Google Scholar] [CrossRef] [PubMed]
- Thompson-Schill, S.L.; D’Esposito, M.; Aguirre, G.K.; Farah, M.J. Role of left inferior prefrontal cortex in retrieval of semantic knowledge: A reevaluation. Proc. Natl. Acad. Sci. USA 1997, 94, 14792–14797. [Google Scholar] [CrossRef] [PubMed]
- Santos Ferreira, I.; Teixeira Costa, B.; Lima Ramos, C.; Lucena, P.; Thibaut, A.; Fregni, F. Searching for the optimal tDCS target for motor rehabilitation. J. NeuroEng. Rehabil. 2019, 16, 90–98. [Google Scholar] [CrossRef]
- Galletta, E.E.; Cancelli, A.; Cottone, C.; Simonelli, I.; Tecchio, F.; Bikson, M.; Marangolo, P. Use of Computational Modeling to Inform tDCS Electrode Montages for the Promotion of Language Recovery in Post-stroke Aphasia. Brain Stimul. 2015, 8, 1108–1115. [Google Scholar] [CrossRef] [PubMed]
- Horvath, J.C.; Forte, J.D.; Carter, O. Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: A systematic review. Neuropsychologia 2015, 66, 213–236. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, S.; Lepage, J.F.; Latulipe-Loiselle, A.; Fregni, F.; Pascual-Leone, A.; Théoret, H. The Uncertain Outcome of Prefrontal tDCS. Brain Stimul. 2014, 7, 773–783. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, T.O.; Hartwigsen, G. Inferring Causality from Noninvasive Brain Stimulation in Cognitive Neuroscience. J. Cogn. Neurosci. 2021, 33, 195–225. [Google Scholar] [CrossRef] [PubMed]
- Hagoort, P. On Broca, brain, and binding: A new framework. Trends Cogn. Sci. 2005, 9, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Pearce, J.M.S. Broca’s Aphasiacs. Eur. Neurol. 2009, 61, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Cabeza, R.; Nyberg, L. Imaging cognition II: An empirical review of 275 PET and fMRI studies. J. Cogn. Neurosci. 2000, 12, 1–47. [Google Scholar] [CrossRef] [PubMed]
- Clos, M.; Amunts, K.; Laird, A.R.; Fox, P.T.; Eickhoff, S.B. Tackling the multifunctional nature of Broca’s region meta-analytically: Co-activation-based parcellation of area 44. Neuroimage 2013, 83, 174–188. [Google Scholar] [CrossRef] [PubMed]
- Fadiga, L.; Craighero, L.; D’Ausilio, A. Broca’s area in language, action, and music. Ann. N. Y. Acad. Sci. 2009, 1169, 448–458. [Google Scholar] [CrossRef] [PubMed]
- Fedorenko, E.; Blank, I.A. Broca’s Area Is Not a Natural Kind. Trends Cogn. Sci. 2020, 24, 270–284. [Google Scholar] [CrossRef] [PubMed]
- Fitch, W.T.; Martins, M.D. Hierarchical processing in music, language, and action: Lashley revisited. Ann. N. Y. Acad. Sci. 2014, 1316, 87–104. [Google Scholar] [CrossRef] [PubMed]
- Liakakis, G.; Nickel, J.; Seitz, R.J. Diversity of the inferior frontal gyrus--a meta-analysis of neuroimaging studies. Behav. Brain Res. 2011, 225, 341–347. [Google Scholar] [CrossRef]
- NovicK, J.M.; Trueswell, J.C.; Thompson-Schill, S.L. Cognitive control and parsing: Reexamining the role of Broca’s area in sentence comprehension. Cogn. Affect. Behav. Neurosci. 2005, 5, 263–281. [Google Scholar] [CrossRef] [PubMed]
- Tettamanti, M.; Weniger, D. Broca’s Area: A Supramodal Hierarchical Processor? Cortex 2006, 42, 491–494. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Uhrig, L.; Jarraya, B.; Dehaene, S. Representation of Numerical and Sequential Patterns in Macaque and Human Brains. Curr. Biol. 2015, 25, 1966–1974. [Google Scholar] [CrossRef] [PubMed]
- Hertenstein, E.; Waibel, E.; Frase, L.; Riemann, D.; Feige, B.; Nitsche, M.A.; Kaller, C.P.; Nissen, C. Modulation of creativity by transcranial direct current stimulation. Brain Stimul. 2019, 12, 1213–1221. [Google Scholar] [CrossRef] [PubMed]
- Leite, J.; Gonçalves, Ó.F.; Pereira, P.; Khadka, N.; Bikson, M.; Fregni, F.; Carvalho, S. The differential effects of unihemispheric and bihemispheric tDCS over the inferior frontal gyrus on proactive control. Neurosci. Res. 2018, 130, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, G.; Ji, B.; Zhang, Q.; Qiu, J. Neuroanatomical Correlates of Creativity: Evidence From Voxel-Based Morphometry. Front. Psychol. 2019, 4, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Luo, Y.; Wang, Z.; You, X. Modality effects in verbal working memory updating: Transcranial direct current stimulation over human inferior frontal gyrus and posterior parietal cortex. Brain Cogn. 2020, 145, 105630. [Google Scholar] [PubMed]
- Khalil, R.; Agnoli, S.; Mastria, S.; Kondinska, A.; Karim, A.A.; Godde, B. Individual differences and creative ideation: Neuromodulatory signatures of mindset and response inhibition. Front. Neurosci. 2023, 6, 1238165. [Google Scholar] [CrossRef] [PubMed]
- Klaus, J.; Hartwigsen, G. Dissociating semantic and phonological contributions of the left inferior frontal gyrus to language production. Hum. Brain Mapp. 2019, 40, 3279–3287. [Google Scholar] [CrossRef]
- Krause, C.D.; Fengler, A.; Pino, D.; Sehm, B.; Friederici, A.D.; Obrig, H. The role of left temporo-parietal and inferior frontal cortex in comprehending syntactically complex sentences: A brain stimulation study. Neuropsychologia 2023, 180, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Matar, S.J.; Sorinola, I.O.; Newton, C.; Pavlou, M. Transcranial Direct-Current Stimulation May Improve Discourse Production in Healthy Older Adults. Front. Neurol. 2020, 26, 935. [Google Scholar] [CrossRef] [PubMed]
- Gnedykh, D.; Tsvetova, D.; Mkrtychian, N.; Blagovechtchenski, E.; Kostromina, S.; Shtyrov, Y. Broca’s area involvement in abstract and concrete word acquisition: tDCS evidence. Neurobiol. Learn. Mem. 2022, 192, 107622. [Google Scholar] [CrossRef] [PubMed]
- Fenner, A.S.; Webster, K.T.; Ficek, B.N.; Frangakis, C.E.; Tsapkini, K. Written Verb Naming Improves After tDCS Over the Left IFG in Primary Progressive Aphasia. Front. Psychol. 2019, 10, 1396. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ficek, B.N.; Webster, K.T.; Herrmann, O.; Frangakis, C.E.; Desmond, J.E.; Onyike, C.U.; Caffo, B.; Hillis, A.E.; Tsapkini, K. Specificity in Generalization Effects of Transcranial Direct Current Stimulation Over the Left Inferior Frontal Gyrus in Primary Progressive Aphasia. Neuromodulation 2023, 26, 850–860. [Google Scholar] [CrossRef] [PubMed]
- Heimann, F.; Weiss, S.; Müller, H.M. Anodal transcranial direct current stimulation (atDCS) and functional transcranial Doppler sonography (fTCD) in healthy elderly and patients with MCI: Modulation of age-related changes in word fluency and language lateralization. Front. Aging 2024, 13, 1171133. [Google Scholar] [CrossRef] [PubMed]
- Farhat, L.C.; Carvalho, A.F.; Solmi, M.; Brunoni, A.R. Evidence-based umbrella review of cognitive effects of prefrontal tDCS. Soc. Cogn. Affect. Neurosci. 2022, 17, 3–60. [Google Scholar] [CrossRef] [PubMed]
- Majdi, A.; van Boekholdt, L.; Sadigh-Eteghad, S.; Mc Laughlin, M. A systematic review and meta-analysis of transcranial direct-current stimulation effects on cognitive function in patients with Alzheimer’s disease. Mol. Psychiatry 2022, 27, 2000–2009. [Google Scholar] [CrossRef] [PubMed]
- Siegert, A.; Diedrich, L.; Antal, A. New methods, old brains—A systematic review on the effects of tDCS on the cognition of elderly people. Front. Hum. Neurosci. 2021, 27, 730134. [Google Scholar] [CrossRef] [PubMed]
- Westwood, S.J.; Romani, C. Transcranial direct current stimulation (tDCS) modulation of picture naming and word reading: A meta-analysis of single session tDCS applied to healthy participants. Neuropsychologia 2017, 104, 234–249. [Google Scholar] [CrossRef] [PubMed]
- Logothetis, N.K. What we can do and what we cannot do with fMRI. Nature 2008, 12, 869–878. [Google Scholar] [CrossRef] [PubMed]
- Bressler, S.L.; Menon, V. Large-scale brain networks in cognition: Emerging methods and principles. Trends Cogn. Sci. 2010, 14, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Deco, G.; Jirsa, V.K.; McIntosh, A.R. Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci. 2011, 12, 43–56. [Google Scholar] [CrossRef]
- Bandettini, P.A. What’s new in neuroimaging methods? Ann. N. Y. Acad. Sci. 2009, 1156, 260–293. [Google Scholar] [CrossRef]
- Chan, M.M.Y.; Yau, S.S.Y.; Han, Y.M.Y. The neurobiology of prefrontal transcranial direct current stimulation (tDCS) in promoting brain plasticity: A systematic review and meta-analyses of human and rodent studies. Neurosci. Biobehav. Rev. 2021, 125, 392–416. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Moher, D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Meinzer, M.; Lindenberg, R.; Phan, M.T.; Ulm, L.; Volk, C.; Flöel, A. Transcranial direct current stimulation in mild cognitive impairment: Behavioral effects and neural mechanisms. Alzheimers Dement. 2015, 11, 1032–1040. [Google Scholar] [CrossRef] [PubMed]
- Di Rosa, E.; Brigadoi, S.; Cutini, S.; Tarantino, V.; Dell’Acqua, R.; Mapelli, D.; Mapelli, D.; Braver, T.S.; Vallesi, A. Reward motivation and neurostimulation interact to improve working memory performance in healthy older adults: A simultaneous tDCS-fNIRS study. NeuroImage 2019, 202, 116062. [Google Scholar] [CrossRef]
- Ehlis, A.C.; Haeussinger, F.B.; Gastel, A.; Fallgatter, A.J.; Plewnia, C. Task-dependent and polarity-specific effects of prefrontal transcranial direct current stimulation on cortical activation during word fluency. NeuroImage 2016, 140, 134–140. [Google Scholar] [CrossRef]
- Fiori, V.; Kunz, L.; Kuhnke, P.; Marangolo, P.; Hartwigsen, G. Transcranial direct current stimulation (tDCS) facilitates verb learning by altering effective connectivity in the healthy brain. NeuroImage 2018, 181, 550–559. [Google Scholar] [CrossRef]
- Holland, R.; Leff, A.P.; Josephs, O.; Galea, J.M.; Desikan, M.; Price, C.J.; Crinion, J. Speech facilitation by left inferior frontal cortex stimulation. Curr. Biol. 2011, 23, 1403–1407. [Google Scholar] [CrossRef] [PubMed]
- Meinzer, M.; Antonenko, D.; Lindenberg, R.; Hetzer, S.; Ulm, L.; Avirame, K.; Flaisch, T.; Flöel, A. Electrical Brain Stimulation Improves Cognitive Performance by Modulating Functional Connectivity and Task-Specific Activation. J. Neurosci. 2012, 32, 1859–1866. [Google Scholar] [CrossRef] [PubMed]
- Meinzer, M.; Lindenberg, R.; Antonenko, D.; Flaisch, T.; Floel, A. Anodal Transcranial Direct Current Stimulation Temporarily Reverses Age-Associated Cognitive Decline and Functional Brain Activity Changes. J. Neurosci. 2013, 33, 12470–12478. [Google Scholar] [CrossRef] [PubMed]
- Nissim, N.R.; O’Shea, A.; Indahlastari, A.; Telles, R.; Richards, L.; Porges, E.; Cohen, R.; Woods, A.J. Effects of in-Scanner Bilateral Frontal tDCS on Functional Connectivity of the Working Memory Network in Older Adults. Front. Aging Neurosci. 2019, 11, 51. [Google Scholar] [CrossRef] [PubMed]
- Das, N.; Spence, J.S.; Aslan, S.; Vanneste, S.; Mudar, R.; Rackley, A.; Quiceno, M.; Chapman, S.B. Cognitive Training and Transcranial Direct Current Stimulation in Mild Cognitive Impairment: A Randomized Pilot Trial. Front. Neurosci. 2019, 13, 307. [Google Scholar] [CrossRef] [PubMed]
- Ficek, B.N.; Wang, Z.; Zhao, Y.; Webster, K.T.; Desmond, J.E.; Hillis, A.E.; Frangakis, C.; Faria, A.V.; Caffo, B.; Tsapkini, K. The effect of tDCS on functional connectivity in primary progressive aphasia. Neuroimage Clin. 2018, 19, 703–715. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Ficek, B.; Wang, Z.; Rapp, B.; Tsapkini, K. Selective Functional Network Changes Following tDCS-Augmented Language Treatment in Primary Progressive Aphasia. Front. Aging Neurosci. 2021, 13, 681043. [Google Scholar] [CrossRef] [PubMed]
- Campanella, S.; Schroder, E.; Monnart, A.; Vanderhasselt, M.A.; Duprat, R.; Rabijns, M.; Kornreich, C.; Verbanck, P.; Baeken, C. Transcranial Direct Current Stimulation Over the Right Frontal Inferior Cortex Decreases Neural Activity Needed to Achieve Inhibition: A Double-Blind ERP Study in a Male Population. Clin. EEG Neurosci. 2017, 48, 176–188. [Google Scholar] [CrossRef] [PubMed]
- Cunillera, T.; Brignani, D.; Cucurell, D.; Fuentemilla, L.; Miniussi, C. The right inferior frontal cortex in response inhibition: A tDCS–ERP co-registration study. NeuroImage 2016, 140, 66–75. [Google Scholar] [CrossRef]
- Mendes, A.J.; Galdo-Álvarez, S.; Lema, A.; Carvalho, S.; Leite, J. Transcranial Direct Current Stimulation Decreases P3 Amplitude and Inherent Delta Activity during a Waiting Impulsivity Paradigm: Crossover Study. Brain Sci. 2024, 14, 168. [Google Scholar] [CrossRef] [PubMed]
- Thunberg, C.; Messel, M.S.; Raud, L.; Huster, R.J. tDCS over the inferior frontal gyri and visual cortices did not improve response inhibition. Sci. Rep. 2020, 10, 7749. [Google Scholar] [CrossRef] [PubMed]
- Cipollari, S.; Veniero, D.; Razzano, C.; Caltagirone, C.; Koch, G.; Marangolo, P. Combining TMS-EEG with transcranial direct current stimulation language treatment in aphasia. Expert Rev. Neurother. 2015, 15, 833–845. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, T.O.; Karabanov, A.; Hartwigsen, G.; Thielscher, A.; Siebner, H.R. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: Current approaches and future perspectives. NeuroImage 2016, 140, 4–19. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Kim, H.; Kim, S.; Hwang, Y. A brief review of non-invasive brain imaging technologies and the near-infrared optical bioimaging. Appl. Microsc. 2021, 51, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Riddle, J.; Scimeca, J.M.; Pagnotta, M.F.; Inglis, B.; Sheltraw, D.; Muse-Fisher, C.; D’Esposito, M. A guide for concurrent TMS-fMRI to investigate functional brain networks. Front. Hum. Neurosci. 2022, 16, 1050605. [Google Scholar] [CrossRef] [PubMed]
- Miniussi, C.; Brignani, D.; Pellicciari, M.C. Combining Transcranial Electrical Stimulation With Electroencephalography: A Multimodal Approach. Clin. EEG Neurosci. 2012, 16, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Uddin, L.Q.; Clare Kelly, A.M.; Biswal, B.B.; Xavier Castellanos, F.; Milham, M.P. Functional connectivity of default mode network components: Correlation, anticorrelation, and causality. Hum. Brain Mapp. 2009, 30, 625–637. [Google Scholar] [CrossRef] [PubMed]
- Vergallito, A.; Feroldi, S.; Pisoni, A.; Romero Lauro, L.J. Inter-individual Variability in tDCS Effects: A Narrative Review on the Contribution of Stable, Variable, and Contextial Factors. Brain Sci. 2022, 12, 522. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, D.W.; Chang, W.H.; Kim, Y.H.; Kim, K.; Im, C.H. Inconsistent oucomes of transcranial direct current stimulation may originate form anatomical differences among individuals: Electric field simulation using individual MRI data. Neurosci. Lett. 2014, 564, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Jamil, A.; Nitsche, M.A. What Effect Does tDCS Have on the Brain? Basic Physiology of tDCS. Curr. Behav. Neurosci. Rep. 2017, 4, 331–340. [Google Scholar] [CrossRef]
- Opitz, A.; Paulus, W.; Will, S.; Antunes, A.; Thielscher, A. Determinants of the electric field during transcranial direct current stimulation. Neuroimage 2015, 109, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Bikson, M.; Rahman, A.; Datta, A. Computational models of transcranial direct current stimulation. Clin. EEG Neurosci. 2012, 43, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Dunst, B.; Benedek, M.; Jauk, E.; Bergner, S.; Koschutnig, K.; Sommer, M.; Ischebeck, A.; Spinath, B.; Arendasy, M.; Bühner, M.; et al. Neural efficiency as a function of task demands. Intelligence 2014, 42, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, A.C.; Fink, A. Intelligence and neural efficiency. Neurosci. Biobehav. Rev. 2009, 33, 1004–1023. [Google Scholar] [CrossRef] [PubMed]
- Grill-Spector, K.; Henson, R.; Martin, A. Repetition and the brain: Neural models of stimulus-specific effects. Trends Cogn. Sci. 2006, 10, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Antal, A.; Polania, R.; Schmidt-Samoa, C.; Dechent, P.; Paulus, W. Transcranial direct current stimulation over the primary motor cortex during fMRI. Neuroimage 2011, 15, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Ward, N.S.; Bestmann, S.; Hartwigsen, G.; Weiss, M.M.; Christensen, L.O.D.; Frackowiak, R.S.J.; Rothwell, J.C.; Siebner, H.R. Low-Frequency Transcranial Magnetic Stimulation over Left Dorsal Premotor Cortex Improves the Dynamic Control of Visuospatially Cued Actions. J. Neurosci. 2010, 30, 9216–9223. [Google Scholar] [CrossRef] [PubMed]
- Hartwigsen, G.; Bzdok, D.; Klein, M.; Wawrzyniak, M.; Stockert, A.; Wrede, K.; Classen, J.; Saur, D. Rapid short-term reorganization in the language network. eLife 2024, 6, e25964. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.E.; Budd, T.W.; Fulham, W.R.; Lancaster, S.; Woods, W.; Rossell, S.L.; Michie, P.T. Sustained brain activation supporting stop-signal task performance. Eur. J. Neurosci. 2014, 39, 1363–1369. [Google Scholar] [CrossRef] [PubMed]
- Swann, N.C.; Tandon, N.; Pieters, T.A.; Aron, A.R. Intracranial Electroencephalography Reveals Different Temporal Profiles for Dorsal- and Ventro-lateral Prefrontal Cortex in Preparing to Stop Action. Cereb. Cortex 2013, 23, 2479–2488. [Google Scholar] [CrossRef]
- Swick, D.; Ashley, V.; Turken, A.U. Left inferior frontal gyrus is critical for response inhibition. BMC Neurosci. 2008, 9, 102. [Google Scholar] [CrossRef] [PubMed]
- Van Belle, J.; Vink, M.; Durston, S.; Zandbelt, B.B. Common and unique neural networks for proactive and reactive response inhibition revealed by independent component analysis of functional MRI data. NeuroImage 2014, 103, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Garavan, H.; Ross, T.J.; Stein, E.A. Right hemispheric dominance of inhibitory control: An event-related functional MRI study. Proc. Natl. Acad. Sci. USA 1999, 96, 8301–8306. [Google Scholar] [CrossRef] [PubMed]
- Leung, H.C.; Cai, W. Common and differential ventrolateral prefrontal activity during inhibition of hand and eye movements. J. Neurosci. 2007, 27, 9893–9900. [Google Scholar] [CrossRef] [PubMed]
- Rubia, K.; Russell, T.; Overmeyer, S.; Brammer, M.J.; Bullmore, E.T.; Sharma, T.; Simmons, A.; Williams, S.C.R.; Giampietro, V.; Andrew, C.M.; et al. Mapping Motor Inhibition: Conjunctive Brain Activations across Different Versions of Go/No-Go and Stop Tasks. NeuroImage 2001, 13, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Wager, T.D.; Sylvester, C.Y.C.; Lacey, S.C.; Nee, D.E.; Franklin, M.; Jonides, J. Common and unique components of response inhibition revealed by fMRI. NeuroImage 2005, 27, 323–340. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, J.; Sugiura, M.; Sato, K.; Sato, Y.; Maeda, Y.; Matsue, Y.; Sato, Y.; Matsue, K.; Fukuda, H. The Human Prefrontal and Parietal Association Cortices Are Involved in NO-GO Performances: An Event-Related fMRI Study. NeuroImage 2002, 17, 1207–1216. [Google Scholar] [CrossRef] [PubMed]
- Wessel, J.R.; Aron, A.R. It’s not too late: The onset of the frontocentral P 3 indexes successful response inhibition in the stop-signal paradigm. Psychophysiology 2015, 52, 472–480. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.L.; Jamadar, S.; Provost, A.L.; Michie, P.T. Motor and non-motor inhibition in the Go/NoGo task: An ERP and fMRI study. Int. J. Psychophysiol. 2013, 87, 244–253. [Google Scholar] [CrossRef]
- Li, L.M.; Violante, I.R.; Leech, R.; Ross, E.; Hampshire, A.; Opitz, A.; Rothwell, J.C.; Carmichael, D.W.; Sharp, D.J. Brain state and polarity dependent modulation of brain networks by transcranial direct current stimulation. Hum. Brain Mapp. 2019, 40, 904–915. [Google Scholar] [CrossRef] [PubMed]
Authors | Healthy Participants | tDCS Protocol | Cognitive Training | Behavioral and Neuroimaging Outcomes |
---|---|---|---|---|
Di Rosa et al. 2019 [58] | N = 21 Mean Age (years) = 69.7 ± 5.05 Healthy People | Anode = LIFG Cathode= contralateral shoulder No. of sessions = 1 Duration = 26 min Current density 1.5 mA | Visuo-spatial WM task |
|
Ehlis et al., 2016 [59] | N = 46 Mean Age (years)= 32.1 ± 10.5 (N = 23 anode LIFG) Mean Age (years)= 24.3 ± 2.4 (N = 23 cathode LIFG) Healthy People | Anode or Cathode = LIFG Reference electrode = contralateral shoulder No. of sessions = 1 Duration = 26 min Current density 1.5 mA | Verbal fluency task (VFT) |
|
Fiori et al., 2019 [60] | N = 28 Mean Age (years) = 26.96 Healthy People | Anode = LIFG Cathode = contralateral fronto-polar region No. of sessions = 1 Duration = 24 min Current density 1 mA | Verb learning task |
|
Holland et al., 2011 [61] | N = 10 Mean Age (years) = 69 Healthy People | Anode = LlFG Cathode = right frontopolar cortex No. of sessions = 1 Duration = 20 min Current density 2 mA | Picture naming task |
|
Li et al., 2019 [37] | N = 26 Mean Age/SD (years) = 38 ± 15.5 Healthy People | Anode/Cathode = RIFG Cathode/Anode = right shoulder No. of sessions = 3 Duration = 18 min Current density 1.8 mA | Choice reaction task (CRT) |
|
Meinzer et al., 2012 [62] | N = 20 Mean Age/SD (years) = 26.7 ± 3.8 Healthy People | Anode = LIFG Cathode = contralateral supraorbital region No. of sessions = 1 Duration = 18 min Current density 1 mA | Semantic word generation task |
|
Meinzer et al., 2013 [63] | N = 20 Mean Age/SD (years) = 68.0 ± 5.7 Healthy People | Anode = LIFG Cathode = contralateral supraorbital region No. of sessions = 1 Duration = 20 min Current density 1 mA | Semantic word generation task |
|
Nissim et al., 2019 [64] | N = 16 Mean Age/SD (years) = 71.75. ± 7.29 Healthy People | Anode = LIFG Cathode = RIFG No. of sessions = 1 Duration = 12 min Current density 2 mA | Working memory task |
|
Sandrini et al., 2020 [11] | N = 26, SD = ±4; (active group) N = 27, SD = ±6 (sham group) Healthy People | Anode = RIFG Cathode = contralateral supraorbital region No. of sessions = 1 Duration = 20 min Current density 1.5 mA | Stop signal response time (SSRT) |
|
Das et al., 2019 [65] | N = 22 Mean Age/SD (years) = 62.91 ± 7.79 Mild Cognitive Impairment (MCI) | Anode = LIFG Cathode= contralateral shoulder No. of sessions = 8 Duration = 20 min Current density 2 mA | SMART training |
|
Meinzer et al., 2015 [57] | N = 18 Mean Age/SD (years) = 67.44 ± 7.27 MCI | Anode = LIFG Cathode = contralateral supraorbital region No. of sessions = 1 Duration = 20 min Current density 1 mA | Semantic word retrieval task |
|
Ficek et al., 2018 [66] | N = 24 Mean Age/SD (years) = 67.2 ± 6.5 Primary Progressive Aphasia (PPA) | Anode = LIFG Cathode = right cheek No. of sessions = 15 Duration = 20 min Current density 2 mA | Written language training |
|
Tao et al., 2021 [67] | N = 32 Mean Age/SD (years) = 67 ± 6.73 PPA | Anode = LIFG Cathode = right cheek No. of sessions = 15 Duration = 20 min Current density 2 mA | Written language training |
|
Marangolo et al., 2016 [10] | N = 9 Age (years) = 47–70 Nonfluent aphasic patients | Anode = LIFG Cathode = RIFG No. of sessions = 15 Duration = 20 min Current density 2 mA | Repetition task |
|
Authors | Healthy Participants | tDCS Protocol | Intervention Task | Behavioral and EEG Outcomes |
---|---|---|---|---|
Campanella et al., 2016 [68] | N = 31 (15 active group/16 sham group) Mean Age/SD (years) = 21.9 ± 3.1 Healthy People | Anode = RIFG Cathode = the neck No. of sessions = 1 Duration = 20 min Current density 1 mA | Go/No-go task |
|
Cunillera et al., 2016 [69] | N = 13 Mean Age/SD (years) = 25.2 ± 3.3 Healthy People | Anode = RIFG Cathode = LIFG No. of sessions = 1 Duration = 20 min Current density 1.5 mA | Go/No-go task Stop signal reaction time (SSRT) |
|
Hertenstein et al., 2019 [35] | N = 90 Mean Age/SD (years) = 23.8 ± 2.3 Healthy People | Anode = LIFG/RIFG Cathode = RIFG/LIFG No. of sessions = 1 Duration = 22 min Current density 1 mA | Alternate uses task (AUT), Compound remote associate task (CRA), Wisconsin card sorting task (WCST) |
|
Mendes et al., 2024 [70] | N = 40 Mean Age/SD (years) = 23.2 ± 3.52 Healthy People | Anode = RIFG Cathode = left mastoid No. of sessions = 2 (1 active and 1 sham tDCS) Duration = 20 min Current density 2 mA | Waiting impulsivity task (CPRT) Stop signal reaction time (SSRT) |
|
Thunberg et al., 2020 [71] | N = 18 Mean Age (years) = 24 Healthy People | Anode = right IFG Cathode = visual cortices No. of sessions = 3 Duration = 20 min Current density 2 mA | Stop signal task (SST) Stop signal reaction time (SSRT) |
|
Cipollari et al., 2015 [72] | N = 6 Mean Age (years) = 59.16 post-stroke nonfluent aphasic patients | Anode= RIFG Cathode = contralateral fronto-polar cortex No. of sessions = 15 Duration = 20 min Current density 2 mA | Melodic intonation therapy (MIT) |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Fuccio, R.; Lardone, A.; De Luca, M.; Ali, L.; Limone, P.; Marangolo, P. Neurobiological Effects of Transcranial Direct Current Stimulation over the Inferior Frontal Gyrus: A Systematic Review on Cognitive Enhancement in Healthy and Neurological Adults. Biomedicines 2024, 12, 1146. https://doi.org/10.3390/biomedicines12061146
Di Fuccio R, Lardone A, De Luca M, Ali L, Limone P, Marangolo P. Neurobiological Effects of Transcranial Direct Current Stimulation over the Inferior Frontal Gyrus: A Systematic Review on Cognitive Enhancement in Healthy and Neurological Adults. Biomedicines. 2024; 12(6):1146. https://doi.org/10.3390/biomedicines12061146
Chicago/Turabian StyleDi Fuccio, Raffaele, Anna Lardone, Mariagiovanna De Luca, Leila Ali, Pierpaolo Limone, and Paola Marangolo. 2024. "Neurobiological Effects of Transcranial Direct Current Stimulation over the Inferior Frontal Gyrus: A Systematic Review on Cognitive Enhancement in Healthy and Neurological Adults" Biomedicines 12, no. 6: 1146. https://doi.org/10.3390/biomedicines12061146
APA StyleDi Fuccio, R., Lardone, A., De Luca, M., Ali, L., Limone, P., & Marangolo, P. (2024). Neurobiological Effects of Transcranial Direct Current Stimulation over the Inferior Frontal Gyrus: A Systematic Review on Cognitive Enhancement in Healthy and Neurological Adults. Biomedicines, 12(6), 1146. https://doi.org/10.3390/biomedicines12061146