Temporal Association Rule Mining: Race-Based Patterns of Treatment-Adverse Events in Breast Cancer Patients Using SEER–Medicare Dataset
Abstract
:1. Introduction
2. Methods
2.1. Study Data: SEER–Medicare Linked (S-M) Dataset
2.2. Inclusion Criteria
2.3. Data Cleaning and Standardization
2.4. Association Rule Mining
2.5. Discovery of TR-AE Patterns
3. Experimental Design
3.1. Identifying TR-Associated AEs
Algorithm 1. Treatment/Adverse Event Algorithm. |
Input: Acute_Period = 21 days |
Output: For Each Patient: (1) treatments administered on each visit that caused an adverse event on the day of the visit (AE_TR_List) or within 21 days prior to this visit (AE_Pre_TR_List); (2) adverse events experienced by each patient on a given visit caused by this visit’s treatments (AE_List) or treatments administered within the past 21 days (Pre_AE_List); (3) adverse event flag, for each entry of every visit, indicating the status of the adverse event caused by this entry treatment, AE_flag1, or caused by prior treatment, AE_flag2; and (4) treatments administered to each patient on each visit that caused no adverse event on the day of the visit (No_AE_TR_List), or within 21 days prior to this visit (No_AE_Pre_TR_List). |
Initialization: AE_list1 = [1, 7, 8, 11–13, 15], AE_list2 = [2–6, 9, 10, 14, 16–18] AE_TR_List = [], AE_Pre_TR_List = [],AE_List = [], Pre_AE_List = [], Pre_V_AE_List = [], No_AE_Pre_TR_List = [], Pre_TR_List = [] |
For Each Patient |
For Each Visit |
Compute the Visit Time-stamp |
Order Visits. based on Visit’s Time-stamp (in ascending order) |
Compute Elapsed Time Between Each Consecutive Visit |
For Each Entry within this Visit |
AE_flag1 ← 0, AE_flag2 ← 0 (initialize corresponding AE flags) |
Convert Every HCPCS Code to Corresponding Treatment Category (0–46), TR |
Convert Every ICD Code to Corresponding Adverse Event Category(0–18), AE |
For Each TR/AE combination |
Append this AE to the AE_List |
If AE = 0: Append this TR to the No_AE_TR_List |
If AE belongs to AE_list1&Elapsed time since this AE occurred > Acute_Period: |
AE_flag1 ← 1, Append This TR to the AE_TR_List |
If AE belongs to AE_list1 or AE_list2 & time since this AE occurred > Acute_Period: |
For Each Pre_TR > 0 in Pre_TR_list |
If time since this Pre_TR administered > Acute_Period: |
AE_flag2 ← 1 |
Append this TR to the AE_Pre_TR_list |
3.2. Validation
4. Results
4.1. TAR Mining Predicted TR/AE Associations
4.2. Validation of TR-Associated AEs
5. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AA patients | African American patients |
AE | adverse event |
BC | breast cancer |
CCFlag | Chronic Conditions Flag |
CLM_TYPE | claim type |
CMS | Centers for Medicare & Medicaid Services |
Confidence() | the probability that transactions appear in a dataset, given that appears in the dataset |
Dirsup | direct support |
ER | Estrogen Receptor |
FAC_TYPE | Facility type |
FP-Growth, | database in the form of a tree called a frequent pattern tree (FP tree) |
Her2 | Human Epidermal Growth Factor Receptor 2 |
Her2-DM1 | ado-trastuzumab emtansine |
HCPCS drug J codes | Healthcare Common Procedure Coding System standardized method for reporting non-oral medications |
HIV | Human Immunodeficiency Virus |
HMO | Health Maintenance Organization |
ICD-9 codes | International Classification of Diseases, Ninth Revision |
Inst. OP | Institutional Outpatient |
Lift() | the degree of correlation between X and Y (e.g., TR and AE) |
MEDPAR | Medicare Provider Analysis and Review |
Melt transformation | a tool for reshaping data, turning columns into rows, particularly useful when tidying up wide datasets for analysis. |
mTOR | mammalian target of rapamycin |
minSupp | minimum support value |
NCH | National Claims History |
NCI | National Cancer Institute |
OPSRVTYP | Outpatient service type |
OMOP | Observational Medical Outcomes Partnership |
Outpatient | Outpatient Claims |
Part D | Prescription Drug Event Claims |
PEDSF | Patient Entitlement and Diagnosis Summary File |
PFP | parallel version FPGrowth which distributes the work of growing FP-trees based on the suffixes of transactions, resulting in a scalable implementation. |
PLCSRVC | Place of Service |
PPO | Private Practice Office |
PR | Progesterone Receptor |
SEER | Surveillance, Epidemiology, and End Results |
S-M | SEER-Medicare |
Support() | rhe probability that transaction appears in a dataset |
TAR mining | temporal association rule mining |
TB | tuberculosis |
TR | treatment |
Trans | temporal transactions |
Ս | union of two sets |
Ո | intersection of two sets |
VEGF | Vascular Endothelial Growth Gactor |
W patients | White patients |
References
- Lovejoy, L.A.; Shriver, C.D.; Haricharan, S.; Ellsworth, R.E. Survival disparities in black compared to white women with hormone receptor positive-her2 negative BC. Int. J. Environ. Res. Public Health 2023, 20, 2903. [Google Scholar] [CrossRef] [PubMed]
- Jinna, N.; Jovanovic-Talisman, T.; LaBarge, M.; Natarajan, R.; Kittles, R.; Sistrunk, C.; Rida, P.; Seewaldt, V.L. Racial disparity in quadruple negative breast cancer: Aggressive biology and potential therapeutic targeting and prevention. Cancers 2022, 14, 4484. [Google Scholar] [CrossRef]
- Wieder, R.; Shafiq, B.; Adam, N. Greater Survival Improvement in African American vs. Caucasian Women with Hormone Negative Breast Cancer. J. Cancer 2020, 11, 2808–2820. [Google Scholar] [CrossRef]
- Wieder, R.; Shafiq, B.; Adam, N. African American race is an independent risk factor in survival form initially diagnosed localized breast cancer. J. Cancer 2016, 7, 1587–1598. [Google Scholar] [CrossRef]
- Silber, J.H.; Rosenbaum, P.R.; Clark, A.S.; Giantonio, B.J.; Ross, R.N.; Teng, Y.; Wang, M.; Niknam, B.A.; Ludwig, J.M.; Wang, W.; et al. Characteristics associated with differences in survival among black and white women with breast cancer. JAMA 2013, 310, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Polite, B.N.; Cirrincione, C.; Fleming, G.F.; Berry, D.A.; Seidman, A.; Muss, H.; Norton, L.; Shapiro, C.; Bakri, K.; Marcom, K.; et al. Racial differences in clinical outcomes from metastatic breast cancer: A pooled analysis of CALGB 9342 and 9840—Cancer and leukemia group B. J. Clin. Oncol. 2008, 26, 2659–2665. [Google Scholar] [CrossRef]
- Martini, R.; Newman, L.; Davis, M. Breast cancer disparities in outcomes; unmasking biological determinants associated with racial and genetic diversity. Clin. Exp. Metastasis 2022, 39, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Garlapati, C.; Aneja, R. Epigenetic determinants of racial disparity in breast cancer: Looking beyond genetic alterations. Cancers 2022, 14, 1903. [Google Scholar] [CrossRef]
- Jiagge, E.; Chitale, D.; Newman, L.A. Triple-negative breast cancer, stem cells, and African ancestry. Am. J. Pathol. 2018, 188, 271–279. [Google Scholar] [CrossRef]
- Zhang, H.; Barner, J.C.; Moczygemba, L.R.; Rascati, K.L.; Park, C.; Kodali, D. Comparing survival outcomes between neoadjuvant and adjuvant chemotherapy within breast cancer subtypes and stages among older women: A SEER-Medicare analysis. Breast Cancer 2023, 30, 489–496. [Google Scholar] [CrossRef]
- Wieder, R. Fibroblasts as turned agents in cancer progression. Cancers 2023, 15, 2014. [Google Scholar] [CrossRef]
- Prakash, O.; Hossain, F.; Danos, D.; Lassak, A.; Scribner, R.; Miele, L. Racial disparities in triple negative breast cancer: A review of the role of biologic and non-biologic factors. Front. Public Health 2020, 8, 576964. [Google Scholar] [CrossRef]
- Daly, B.; Olopade, O.I. A perfect storm: How tumor biology, genomics, and health care delivery patterns collide to create a racial survival disparity in breast cancer and proposed interventions for change. CA Cancer J. Clin. 2015, 65, 221–238. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.C.; Wheeler, S.B.; Reeder-Hayes, K. Racial/ethnic and socioeconomic disparities in endocrine therapy adherence in breast cancer: A systematic review. Am. J. Public Health 2015, 105 (Suppl. S3), e4–e15. [Google Scholar] [CrossRef]
- Russo, A.; Autelitano, M.; Bisanti, L. Re: Frequency and cost of chemotherapy-related serious adverse effects in a population sample of women with breast cancer. J. Natl. Cancer Inst. 2006, 98, 1826–1827. [Google Scholar] [CrossRef] [PubMed]
- Simon, N.B.; Danso, M.A.; Alberico, T.A.; Basch, E.; Bennett, A.V. The prevalence and pattern of chemotherapy-induced peripheral neuropathy among women with breast cancer receiving care in a large community oncology practice. Qual. Life Res. 2017, 26, 2763–2772. [Google Scholar] [CrossRef]
- Han, H.S.; Reis, I.M.; Zhao, W.; Kuroi, K.; Toi, M.; Suzuki, E.; Syme, R.; Chow, L.; Yip, A.Y.; Gluck, S. Racial differences in acute toxicities of neoadjuvant or adjuvant chemotherapy in patients with early-stage breast cancer. Eur. J. Cancer 2011, 47, 2537–2545. [Google Scholar] [CrossRef] [PubMed]
- Aldrich, J.; Ekpo, P.; Rupji, M.; Switchenko, J.M.; Torres, M.A.; Kalinsky, K.; Bhave, M.A. Racial disparities in clinical outcomes on investigator-initiated breast cancer clinical trials at an urban medical center. Clin. Breast Cancer 2023, 23, 38–44. [Google Scholar] [CrossRef]
- Polite, B.N.; Sing, A.; Sargent, D.J.; Grothey, A.; Berlin, J.; Kozloff, M.; Feng, S. Exploring racial differences in outcome and treatment for metastatic colorectal cancer: Results from a large prospective observational cohort study (brite). Cancer 2012, 118, 1083–1090. [Google Scholar] [CrossRef]
- Bayraktar, S.; Zhou, J.Z.; Bassett, R.; Gutierrez Barrera, A.M.; Layman, R.M.; Valero, V.; Arun, B. Clinical outcome and toxicity from taxanes in breast cancer patients with brca1 and brca2 pathogenic germline mutations. Breast J. 2020, 26, 1572–1582. [Google Scholar] [CrossRef]
- Ford, M.E.; Magwood, G.; Brown, E.T.; Cannady, K.; Gregoski, M.; Knight, K.D.; Peterson, L.L.; Kramer, R.; Evans-Knowell, A.; Turner, D.P. Disparities in obesity, physical activity rates, and breast cancer survival. Adv. Cancer Res. 2017, 133, 23–50. [Google Scholar] [CrossRef]
- Hertz, D.L.; Roy, S.; Motsinger-Reif, A.A.; Drobish, A.; Clark, L.S.; McLeod, H.L.; Carey, L.A.; Dees, E.C. Cyp2c8*3 increases risk of neuropathy in breast cancer patients treated with paclitaxel. Ann. Oncol. 2013, 24, 1472–1478. [Google Scholar] [CrossRef]
- Sucheston-Campbell, L.E.; Clay-Gilmour, A.I.; Barlow, W.E.; Budd, G.T.; Stram, D.O.; Haiman, C.A.; Sheng, X.; Yan, L.; Zirpoli, G.; Yao, S.; et al. Genome-wide meta-analyses identifies novel taxane-induced peripheral neuropathy-associated loci. Pharmacogenetics Genom. 2018, 28, 49–55. [Google Scholar] [CrossRef]
- Saif, M.W.; Lee, A.M.; Offer, S.M.; McConnell, K.; Relias, V.; Diasio, R.B. A DPYD variant (Y186C) specific to individuals of african descent in a patient with life-threatening 5-fu toxic effects: Potential for an individualized medicine approach. Mayo Clin. Proc. 2014, 89, 131–136. [Google Scholar] [CrossRef]
- Dimou, A.; Syrigos, K.N.; Saif, M.W. Disparities in colorectal cancer in African-Americans vs. whites: Before and after diagnosis. World J. Gastroenterol. 2009, 15, 3734–3743. [Google Scholar] [CrossRef]
- Reynolds, C.H.; Patel, J.D.; Garon, E.B.; Olsen, M.R.; Bonomi, P.; Govindan, R.; Pennella, E.J.; Liu, J.; Guba, S.C.; Li, S.; et al. Exploratory subset analysis of African Americans from the pointbreak study: Pemetrexed-carboplatin-bevacizumab followed by maintenance pemetrexed-bevacizumab versus paclitaxel-carboplatin-bevacizumab followed by maintenance bevacizumab in patients with stage IIIb/IV nonsquamous non-small-cell lung cancer. Clin. Lung Cancer 2015, 16, 200–208. [Google Scholar]
- Imai, K.; Keele, L.; Tingley, D. A general approach to causal mediation analysis. Psychol. Methods 2010, 15, 309–334. [Google Scholar] [CrossRef]
- Gottlieb, E.R.; Ziegler, J.; Morley, K.; Rush, B.; Celi, L.A. Assessment of racial and ethnic differences in oxygen supplementation among patients in the intensive care unit. JAMA Intern. Med. 2022, 182, 849–858. [Google Scholar] [CrossRef]
- Najafabadi, M.K.; Mahrin, M.N.; Chuprat, S.; Sarkan, H.M. Improving the accuracy of collaborative filtering recommendations using clustering and association rules mining on implicit data. Comput. Hum. Behav. 2017, 67, 113–128. [Google Scholar] [CrossRef]
- Enewold, L.; Parsons, H.; Zhao, L.; Bott, D.; Rivera, D.R.; Barrett, M.J.; Virnig, B.A.; Warren, J.L. Updated overview of the SEER-Medicare data: Enhanced content and applications. JNCI Monogr. 2020, 2020, 3–13. [Google Scholar]
- Perez, M.; Murphy, C.C.; Pruitt, S.L.; Rashdan, S.; Rahimi, A.; Gerber, D.E. Potential Impact of Revised NCI Eligibility Criteria Guidance: Prior Malignancy Exclusion in Breast Cancer Clinical Trials. J. Natl. Compr. Canc. Netw. 2022, 20, 792–799. [Google Scholar] [CrossRef] [PubMed]
- Nam, H.; Lee, K.; Lee, D. Identification of temporal association rules from time-series microarray data sets. BMC Bioinform. 2009, 10 (Suppl. S3), S6. [Google Scholar] [CrossRef] [PubMed]
- Veroneze, R.; Cruz Tfaile Corbi, S.; Roque da Silva, B.; Rocha, C.d.S.; Maurer-Morelli, C.V.; Perez Orrico, S.R.; Cirelli, J.A.; Von Zuben, F.J.; Mantuaneli Scarel-Caminaga, R. Using association rule mining to jointly detect clinical features and differentially expressed genes related to chronic inflammatory diseases. PLoS ONE 2020, 15, e0240269. [Google Scholar] [CrossRef] [PubMed]
- Buxton, E.; Vohra, S.; Guo, Y.; Fogleman, A.; Patel, R. Pediatric population health analysis of southern and Central Illinois region: A cross sectional retrospective study using association rule mining and multiple logistic regression. Comput. Methods Programs Biomed. 2019, 178, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Ahmed, M.; Ghasemzadeh, A. Using trajectory-level SHRP2 naturalistic driving data for investigating driver lane-keeping ability in fog: An association rules mining approach. Accid. Anal. Prev. 2019, 129, 250–262. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Li, C.; Tang, Y.; Li, L.; Li, L. A knowledge-driven method of adaptively optimizing process parameters for energy efficientturning. Energy 2019, 166, 142–156. [Google Scholar] [CrossRef]
- Agrawal, R.; Srikant, R. Fast algorithms for mining association rules in large databases. In Proceedings of the 20th International Conference on Very Large Data Bases, Santiago de Chile, Chile, 12–15 September 1994; pp. 487–499. [Google Scholar]
- Lallich, S.; Teytaud, O.; Prudhomme, E. Association rule interestingness: Measure and statistical validation. In Quality Measures in Data Mining; Springer: Berlin/Heidelberg, Germany, 2007; pp. 251–275. [Google Scholar]
- Han, J.; Pei, J.; Yin, Y.; Mao, R. Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Min. Knowl. Discov. 2004, 8, 53–87. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Zhang, D.; Zhang, M.; Chang, E.Y. Pfp: Parallel fp-growth for query recommendation. In Proceedings of the 2008 ACM conference on Recommender Systems, Lausanne, Switzerland, 23–25 October 2008; pp. 107–114. [Google Scholar]
- Ji, Y.; Ying, H.; Tran, J.; Dews, P.; Lau, S.; Massanari, R. A functional temporal association mining approach for screening potential drug-drug interactions from electronic patient databases. Inform. Health Soc. Care. 2016, 41, 387–404. [Google Scholar] [CrossRef]
- Orphanou, K.; Dagliati, A.; Sacchi, L.; Stassopoulou, A.; Keravnou, E.; Bellazzi, R. Incorporating repeating temporal association rules in Naïve Bayes classifiers for coronary heart disease diagnosis. J. Biomed. Inform. 2018, 81, 74–82. [Google Scholar] [CrossRef]
- Nguyen, D.; Luo, W.; Phung, D.; Venkatesh, S. LTARM: A novel temporal association rule mining method to understand toxicities in a routine cancer treatment. Knowl.-Based Syst. 2018, 161, 313–328. [Google Scholar] [CrossRef]
- Tandan, M.; Acharya, Y.; Pokharel, S.; Timilsina, M. Discovering symptom patterns of COVID-19 patients using association rule mining. Comput. Biol. Med. 2021, 131, 104249. [Google Scholar] [CrossRef] [PubMed]
- Ray, A. Machine learning in postgenomic biology and personalized medicine. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2022, 12, e1451. [Google Scholar] [CrossRef] [PubMed]
- Ageno, A.; Català, N.; Pons, M. Acquisition of temporal patterns from electronic health records: An application to multimorbid patients. BMC Med. Inform. Decis. Mak. 2023, 23, 189. [Google Scholar] [CrossRef] [PubMed]
- Molina, C.; Prados-Suarez, B. Extracting Temporal Relationships in EHR: Application to COVID-19 Patients. Stud. Health Technol. Inform. 2023, 302, 546–550. [Google Scholar] [PubMed]
- Segura-Delgado, A.; Gacto, M.J.; Alcalá, R.; Alcalá-Fdez, J. Temporal association rule mining: An overview considering the time variable as an integral or implied component. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2020, 10, e1367. [Google Scholar] [CrossRef]
- Li, Y.; Ning, P.; Wang, S.; Jajodia, S. Discovering calendar-based temporal association rules. Data Knowl. Eng. 2003, 44, 193–218. [Google Scholar] [CrossRef]
- Ghorbani, M.; Abessi, M. A new methodology for mining frequent itemsets on temporal data. IEEE Trans. Eng. Manag. 2017, 64, 566–573. [Google Scholar] [CrossRef]
- Sacchi, L.; Larizza, C.; Combi, C.; Bellazzi, R. Data mining with temporal abstractions: Learning rules from time series. Data Min. Knowl. Discov. 2007, 15, 217–247. [Google Scholar] [CrossRef]
- Moskovitch, R.; Shahar, Y. Fast time intervals mining using the transitivity of temporal relations. Knowl. Inf. Syst. 2015, 42, 21–48. [Google Scholar] [CrossRef]
- Concaro, S.; Sacchi, L.; Cerra, C.; Fratino, P.; Bellazzi, R. Mining health care administrative data with temporal association rules on hybrid events. Methods Inf. Med. 2011, 50, 166–179. [Google Scholar]
- Alves, R.; Rodriguez-Baena, D.; Aguilar-Ruiz, J. Gene association analysis: A survey of frequent pattern mining from gene expression data. Brief. Bioinform. 2010, 11, 210–224. [Google Scholar] [CrossRef]
- Kuter, D.J. Treatment of chemotherapy-induced thrombocytopenia in patients with non-hematologic malignancies. Haematologica 2022, 107, 1243–1263. [Google Scholar] [CrossRef] [PubMed]
- Ingrand, I.; Defossez, G.; Lafay-Chebassier, C.; Chavant, F.; Ferru, A.; Ingrand, P.; Pérault-Pochat, M.C. Serious adverse effects occurring after chemotherapy: A general cancer registry-based incidence survey. Br. J. Clin. Pharmacol. 2020, 86, 711–722. [Google Scholar] [CrossRef]
- Du, X.L.; Osborne, C.; Goodwin, J.S. Population-based assessment of hospitalizations for toxicity from chemotherapy in older women with breast cancer. J. Clin. Oncol. 2002, 20, 4636–4642. [Google Scholar] [CrossRef]
- Hassett, M.J.; O’Malley, A.J.; Pakes, J.R.; Newhouse, J.P.; Earle, C.C. Frequency and cost of chemotherapy-related serious adverse effects in a population sample of women with breast cancer. J. Natl. Cancer Inst. 2006, 98, 1108–1117. [Google Scholar] [CrossRef] [PubMed]
- Rashid, N.; Koh, H.A.; Baca, H.C.; Li, Z.; Malecha, S.; Abidoye, O.; Masaquel, A. Clinical Impact of Chemotherapy-Related Adverse Events in Patients with Metastatic Breast Cancer in an Integrated Health Care System. J. Manag. Care Spec. Pharm. 2015, 21, 863–871. [Google Scholar] [CrossRef] [PubMed]
- Kawasumi, K.; Kujirai, A.; Matsui, R.; Kawano, Y.; Yamaguchi, M.; Aoyama, T. Survey of serious adverse events and safety evaluation of oral anti-cancer drug treatment in Japan: A retrospective study. Mol. Clin. Oncol. 2021, 14, 12. [Google Scholar] [CrossRef]
- Zhang, L.; King, J.; Wu, X.C.; Hsieh, M.C.; Chen, V.W.; Yu, Q.; Fontham, E.; Loch, M.; Pollack, L.A.; Ferguson, T. Racial/ethnic differences in the utilization of chemotherapy among stage i–iii breast cancer patients, stratified by subtype: Findings from ten national program of cancer registries states. Cancer Epidemiol. 2019, 58, 1–7. [Google Scholar] [CrossRef]
- Rosenzweig, M.Q.; Mazanec, S.R. Racial differences in breast cancer therapeutic toxicity: Implications for practice. Cancer Epidemiol. Biomark. Prev. 2023, 32, 157–158. [Google Scholar] [CrossRef]
- Nyrop, K.A.; Damone, E.M.; Deal, A.M.; Wheeler, S.B.; Charlot, M.; Reeve, B.B.; Basch, E.; Shachar, S.S.; Carey, L.A.; Reeder-Hayes, K.E.; et al. Patient-reported treatment toxicity and adverse events in black and white women receiving chemotherapy for early breast cancer. Breast Cancer Res. Treat. 2022, 191, 409–422. [Google Scholar] [CrossRef]
Private Practice Office (PPO) | ||
---|---|---|
PLCSRVC | 11 = Office | |
Institutional Outpatient (Inst. OP) | ||
CLM-TYPE | Claim type | 40 = Outpatient claim, 41 = Outpatient ‘Full-Encounter’ claim (available in the National Medicare Utilization Database (NMUD)), 42 = Outpatient ‘Abbreviated—Encounter’, or 71 = record identification code (RIC) O local carrier non-durable medical equipment (DMEPOS) Claim |
OPSRVTYP | Outpatient service type | 3 = elective |
FAC_TYP | Facility type | 1 = hospital or 2 = skilled nursing facility |
PLCSRVC | Place of Service | 13 = assisted living facility, 22 = outpatient hospital, 26 = military treatment facility, 31 = skilled nursing facility, 32 = nursing facility, 50 = federally qualified health center, 71 = state or local public health clinic, or 72 = rural health clinic. |
W | AA | ||||||
---|---|---|---|---|---|---|---|
Patients (% in Stage Group) | Age ± SD | Comorbidity Index ± SD | Patients (% in Stage Group) | AA/(W + AA) (%) | Age ± SD | Comorbidity Index ± SD | |
Stage I–III | |||||||
Inst OP. | 196,768 (94.70%) | 75.4 ± 7.2 | 2.9 ± 3.1 | 15,857 (91.45%) | 7.46% | 74.9 ± 7.2 | 3.3 ± 3.3 |
PP Ofc | 202,090 (94.72%) | 75.3 ± 7.2 | 2.6 ± 2.8 | 15,930 (91.76%) | 7.31% | 74.9 ± 7.2 | 2.9 ± 3.0 |
Stage IV | |||||||
Inst OP. | 11,021 (5.30%) | 76.3 ± 7.5 | 1.8 ± 2.8 | 1483 (8.55%) | 11.86% | 75.2 ± 7.4 | 1.8 ± 2.8 |
PP Ofc | 11,261 (5.28%) | 76.4 ± 7.5 | 1.6 ± 2.5 | 1431 (8.24%) | 11.27% | 75.4 ± 7.4 | 1.7 ± 2.6 |
Actual TR-Associated AEs | TAR Mining | Actual TR-Associated AEs | TAR Mining |
---|---|---|---|
TR Most frequent AEs | AE category | TR Most frequent AEs | AE category |
Taxanes (n = 13,519) | Taxanes | Taxanes (n = 1766) | Taxanes |
Nausea/vomiting | Anemia | Nausea/vomiting | Anemia |
Weakness/malaise | Pulmonary embolism | Neutropenia/Leukop. | Electrolyte abnormalities |
Neutropenia/Leukop. | Neutropenia/leukopenia | Weakness/malaise | Neutropenia/leukopenia |
Respiratory sympt. | Diarrhea | Anemias | Constipation |
Electrolyte abn. | Electrolyte abnormalities | Electrolyte abn. | Respiratory symptoms |
Anemias | Thrombophilia | Respiratory sympt. | Infection/fever |
Diarrhea | Mucositis | Diarrhea | Weakness/malaise |
Infection/fever | Weakness/malaise | Infection/fever | Nausea/vomiting |
Constipation | Weight loss/malnutrition | Constipation | Diarrhea |
Thrombophilia | Nausea/vomiting | Thrombophilia | Thrombophilia |
Pulm. Embolus | Infection/fever | Weight loss/ malnut. | Mucositis |
Total tallied | Constipation | Total tallied | Weight loss/malnutrition |
Respiratory symptoms | |||
Rash | |||
Her2 Ab (n = 10,000) | Her2 Ab | Her2 Ab (n = 1195) | Her2 Ab |
Weakness/malaise | Anemia | Weakness/malaise | Neutropenia/leukopenia |
Nausea/vomiting | Neutropenia/leukopenia | Nausea/vomiting | Pulmonary embolism |
Neutropenia/Leukop. | Electrolyte abn. | Neutropenia/Leukop | Weakness/malaise |
Respiratory sympt. | Nausea/vomiting | Respiratory sympt. | Nausea/vomiting |
Anemias | Diarrhea | Anemias | Electrolyte abnormalities |
Diarrhea | Respiratory symptoms | Infection/fever | Thrombophilia |
Infection/fever | Weakness/malaise | Thrombophilia | Infection/fever |
Electrolyte abn. | Constipation | Diarrhea | Respiratory symptoms |
Thrombophilia | Thrombophilia | Electrolyte abn. | Diarrhea |
Constipation | Rash | Pulm. Embolus | Rash |
Pulm. Embolus | Weight loss/malnut. | Constipation | |
Weight loss/ malnut. | Infection/fever | Weight loss/ malnut. | |
Skin rashes | Pulmonary embolism | ||
Total tallied | Mucositis | Total tallied |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adam, N.; Wieder, R. Temporal Association Rule Mining: Race-Based Patterns of Treatment-Adverse Events in Breast Cancer Patients Using SEER–Medicare Dataset. Biomedicines 2024, 12, 1213. https://doi.org/10.3390/biomedicines12061213
Adam N, Wieder R. Temporal Association Rule Mining: Race-Based Patterns of Treatment-Adverse Events in Breast Cancer Patients Using SEER–Medicare Dataset. Biomedicines. 2024; 12(6):1213. https://doi.org/10.3390/biomedicines12061213
Chicago/Turabian StyleAdam, Nabil, and Robert Wieder. 2024. "Temporal Association Rule Mining: Race-Based Patterns of Treatment-Adverse Events in Breast Cancer Patients Using SEER–Medicare Dataset" Biomedicines 12, no. 6: 1213. https://doi.org/10.3390/biomedicines12061213
APA StyleAdam, N., & Wieder, R. (2024). Temporal Association Rule Mining: Race-Based Patterns of Treatment-Adverse Events in Breast Cancer Patients Using SEER–Medicare Dataset. Biomedicines, 12(6), 1213. https://doi.org/10.3390/biomedicines12061213