Exploring Stroke Risk through Mendelian Randomization: A Comprehensive Study Integrating Genetics and Metabolic Traits in the Korean Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Clinical Data Analysis
2.3. GWAS and Experimental Validation
2.4. Genetic Instrument Variables
2.5. Outcomes
2.6. MR and Sensitivity Analyses
3. Results
3.1. Clinical Characteristics of Cardiometabolic Disease among the Constitutional Types
3.2. Identification of Functional Non-Coding Variants from Constitutional Types
3.3. Causal Relationship between Constitutional Type and Stroke Obtained through the MR Analysis
4. Discussion
5. Limitation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, R.; Liu, H.; Pu, L.; Zhao, T.; Zhang, S.; Han, K.; Han, L. Global burden of ischemic stroke in young adults in 204 countries and territories. Neurology 2023, 100, e422–e434. [Google Scholar] [CrossRef]
- Moon, J.; Seo, Y.; Lee, H.H.; Lee, H.; Kaneko, F.; Shin, S.; Kim, E.; Yum, K.S.; Kim, Y.D.; Baek, J.H.; et al. Incidence and case fatality of stroke in Korea, 2011–2020. Epidemiol. Health 2024, 46, e2024003. [Google Scholar] [CrossRef]
- Eckel, R.H.; Kahn, R.; Robertson, R.M.; Rizza, R.A. Preventing cardiovascular disease and diabetes: A call to action from the American Diabetes Association and the American Heart Association. Circulation 2006, 113, 2943–2946. [Google Scholar] [CrossRef]
- Szeto, K.; Arnold, J.; Singh, B.; Gower, B.; Simpson, C.E.M.; Maher, C. Interventions using wearable activity trackers to improve patient physical activity and other outcomes in adults who are hospitalized: A systematic review and meta-analysis. JAMA Netw. Open 2023, 6, e2318478. [Google Scholar] [CrossRef]
- Oh, M.Y.; Ko, S.B.; Lee, S.H.; Kim, C.; Ryu, W.S.; Kim, C.H.; Yoon, B.W. Association between metabolic syndrome and functional outcome in patients with acute ischaemic stroke. Eur. J. Neurol. 2014, 21, 177–179. [Google Scholar] [CrossRef]
- Joseph, L.N.; Babikian, V.L.; Allen, N.C.; Winter, M.R. Risk factor modification in stroke prevention: The experience of a stroke clinic. Stroke 1999, 30, 16–20. [Google Scholar] [CrossRef]
- Tanaka, M. Improving obesity and blood pressure. Hypertens. Res. 2020, 43, 79–89. [Google Scholar] [CrossRef]
- Hankey, G.J. Population impact of potentially modifiable risk factors for stroke. Stroke 2020, 51, 719–728. [Google Scholar] [CrossRef]
- Boehme, A.K.; Esenwa, C.; Elkind, M.S. Stroke risk factors, genetics, and prevention. Circ. Res. 2017, 120, 472–495. [Google Scholar] [CrossRef]
- Sacco, R.L.; Benson, R.T.; Kargman, D.E.; Boden-Albala, B.; Tuck, C.; Lin, I.F.; Cheng, J.F.; Paik, M.C.; Shea, S.; Berglund, L. High-density lipoprotein cholesterol and ischemic stroke in the elderly: The Northern Manhattan Stroke Study. JAMA 2001, 285, 2729–2735. [Google Scholar] [CrossRef]
- Wannamethee, S.G.; Shaper, A.G.; Ebrahim, S. HDL-Cholesterol, total cholesterol, and the risk of stroke in middle-aged British men. Stroke 2000, 31, 1882–1888. [Google Scholar] [CrossRef]
- Sacco, R.L. Newer risk factors for stroke. Neurology 2001, 57, S31–S34. [Google Scholar] [CrossRef]
- Yim, M.H.; Jeon, Y.J.; Lee, B.J. Risk factors for stroke among anthropometric indices and lipid profiles in the Korean population: A large-scale cross-sectional study. Sci. Rep. 2023, 13, 2948. [Google Scholar] [CrossRef]
- Hu, G.; Tuomilehto, J.; Silventoinen, K.; Sarti, C.; Mannisto, S.; Jousilahti, P. Body mass index, waist circumference, and waist-hip ratio on the risk of total and type-specific stroke. Arch. Intern. Med. 2007, 167, 1420–1427. [Google Scholar] [CrossRef]
- Yatsuya, H.; Folsom, A.R.; Yamagishi, K.; North, K.E.; Brancati, F.L.; Stevens, J.; Atherosclerosis Risk in Communities Study Investigators. Race- and sex-specific associations of obesity measures with ischemic stroke incidence in the Atherosclerosis Risk in Communities (ARIC) study. Stroke 2010, 41, 417–425. [Google Scholar] [CrossRef]
- Walker, S.P.; Rimm, E.B.; Ascherio, A.; Kawachi, I.; Stampfer, M.J.; Willett, W.C. Body size and fat distribution as predictors of stroke among US men. Am. J. Epidemiol. 1996, 144, 1143–1150. [Google Scholar] [CrossRef]
- Saito, I.; Iso, H.; Kokubo, Y.; Inoue, M.; Tsugane, S. Body mass index, weight change and risk of stroke and stroke subtypes: The Japan Public Health Center-based prospective (JPHC) study. Int. J. Obes. 2011, 35, 283–291. [Google Scholar] [CrossRef]
- Hur, Y.M.; Lee, S.; Jin, H.J. Genetic and environmental overlaps among Sasang constitution types: A multivariate twin study. Twin Res. Hum Genet. 2018, 21, 518–526. [Google Scholar] [CrossRef]
- Park, J.-E.; Mun, S.; Lee, S. Metabolic syndrome prediction models using machine learning and Sasang constitution type. Evid. Based Complement. Alternat. Med. 2021, 2021, 8315047. [Google Scholar] [CrossRef]
- Baek, Y.; Lee, S.W.; Jeong, K.; Jang, E. Sasang constitution type combined with general obesity may act as a risk factor for prediabetes mellitus. Healthcare 2022, 10, 2286. [Google Scholar] [CrossRef]
- Choi, K.; Lee, J.; Yoo, J.; Lee, E.; Koh, B.; Lee, J. Sasang constitutional types can act as a risk factor for insulin resistance. Diabetes Res. Clin. Pract. 2011, 91, e57–e60. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.G.; Koh, B.; Lee, S. Sasang constitution as a risk factor for diabetes mellitus: A cross-sectional study. Evid. Based Complement. Alternat. Med. 2009, 6 (Suppl. S1), 99–103. [Google Scholar] [CrossRef] [PubMed]
- Jang, E.; Baek, Y.; Park, K.; Lee, S. Could the Sasang constitution itself be a risk factor of abdominal obesity? BMC Complement. Altern. Med. 2013, 13, 72. [Google Scholar] [CrossRef] [PubMed]
- Jang, E.; Baek, Y.; Park, K.; Lee, S. The Sasang constitution as an independent risk factor for metabolic syndrome: Propensity matching analysis. Evid. Based Complement. Alternat. Med. 2013, 2013, 492941. [Google Scholar] [CrossRef] [PubMed]
- Jang, E.; Baek, Y.; Kim, Y.; Park, K.; Lee, S. Sasang constitution may act as a risk factor for prehypertension. BMC Complement. Altern. Med. 2015, 15, 231. [Google Scholar] [CrossRef]
- Cho, N.H.; Kim, J.Y.; Kim, S.S.; Shin, C. The relationship of metabolic syndrome and constitutional medicine for the prediction of cardiovascular disease. Diabetes Metab. Syndr. 2013, 7, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Lee, W.J.; Kim, H.W.; Jang, E.S.; Ahn, Y.C.; Ku, B.C.; Kang, W.; Lee, S.W.; Son, C.G. A systematic review on Sasang constitutional type-associated susceptibility to disorders in Korea. J. Altern. Complement. Med. 2016, 22, 950–956. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Lee, S.K.; Kim, J.Y.; Cho, N.; Shin, C. Sasang constitutional types for the risk prediction of metabolic syndrome: A 14-year longitudinal prospective cohort study. BMC Complement. Altern. Med. 2017, 17, 438. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.Y.; Jin, H.J.; Kim, J.Y. Genome-wide association analysis of Sasang constitution in the Korean population. J. Altern. Complement. Med. 2012, 18, 262–269. [Google Scholar] [CrossRef]
- Raffeld, M.R.; Debette, S.; Woo, D. International Stroke Genetics Consortium update. Stroke 2016, 47, 1144–1145. [Google Scholar] [CrossRef]
- Malik, R.; Chauhan, G.; Traylor, M.; Sargurupremraj, M.; Okada, Y.; Mishra, A.; Rutten-Jacobs, L.; Giese, A.K.; van der Laan, S.W.; Gretarsdottir, S.; et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat. Genet. 2018, 50, 524–537. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Han, B.-G.; KoGES Group. Cohort Profile: The Korean Genome and Epidemiology Study (KoGES) Consortium. Int. J. Epidemiol. 2017, 46, e20. [Google Scholar] [CrossRef] [PubMed]
- Baek, Y.H.; Jang, E.S.; Park, K.H.; Yoo, J.H.; Jin, H.J.; Lee, S.W. Development and walidation of brief KS-15 (Korea Sasang Constitutional Diagnostic Questionnaire) based on body shape, temperament and symptoms. J. Sasang Constitut. Med. 2015, 27, 211–221. [Google Scholar] [CrossRef]
- Chan, Y.; Walmsley, R.P. Learning and understanding the Kruskal-Wallis one-way analysis-of-variance-by-ranks test for differences among three or more independent groups. Phys. Ther. 1997, 77, 1755–1761. [Google Scholar] [CrossRef] [PubMed]
- Churilov, L.; Arnup, S.; Johns, H.; Leung, T.; Roberts, S.; Campbell, B.C.V.; Davis, S.M.; Donnan, G.A. An improved method for simple, assumption-free ordinal analysis of the modified Rankin Scale using generalized odds ratios. Int. J. Stroke 2014, 9, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- Kassi, E.; Pervanidou, P.; Kaltsas, G.; Chrousos, G. Metabolic syndrome: Definitions and controversies. BMC Med. 2011, 9, 48. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Lee, T.; Sung, M.K.; Lee, S.; Yang, W.; Oh, J.; Kim, J.Y.; Hwang, S.; Ban, H.J.; Choi, J.K. Convolutional neural network model to predict causal risk factors that share complex regulatory features. Nucleic Acids Res. 2019, 47, e146. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.J.; Baek, Y.; Kim, H.S.; Ryu, J.; Lee, S. Constitutional multicenter bank linked to Sasang constitutional phenotypic data. BMC Complement. Altern. Med. 2015, 15, 46. [Google Scholar] [CrossRef]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Oscanoa, J.; Sivapalan, L.; Gadaleta, E.; Dayem Ullah, A.Z.; Lemoine, N.R.; Chelala, C. SNPnexus: A web server for functional annotation of human genome sequence variation (2020 update). Nucleic Acids Res. 2020, 48, W185–W192. [Google Scholar] [CrossRef] [PubMed]
- Gulko, B.; Hubisz, M.J.; Gronau, I.; Siepel, A. A method for calculating probabilities of fitness consequences for point mutations across the human genome. Nat. Genet. 2015, 47, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, G.R.; Dunham, I.; Zeggini, E.; Flicek, P. Functional annotation of noncoding sequence variants. Nat. Methods 2014, 11, 294–296. [Google Scholar] [CrossRef] [PubMed]
- Schubach, M.; Maass, T.; Nazaretyan, L.; Roner, S.; Kircher, M. CADD v1.7: Using protein language models, regulatory CNNs and other nucleotide-level scores to improve genome-wide variant predictions. Nucleic Acids Res. 2024, 52, D1143–D1154. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Troyanskaya, O.G. Predicting effects of noncoding variants with deep learning-based sequence model. Nat. Methods 2015, 12, 931–934. [Google Scholar] [CrossRef]
- Kanai, M.; Akiyama, M.; Takahashi, A.; Matoba, N.; Momozawa, Y.; Ikeda, M.; Iwata, N.; Ikegawa, S.; Hirata, M.; Matsuda, K.; et al. Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nat. Genet. 2018, 50, 390–400. [Google Scholar] [CrossRef]
- Brion, M.J.A.; Shakhbazov, K.; Visscher, P.M. Calculating statistical power in Mendelian randomization studies. Int. J. Epidemiol. 2013, 42, 1497–1501. [Google Scholar] [CrossRef]
- Hemani, G.; Zheng, J.; Elsworth, B.; Wade, K.H.; Haberland, V.; Baird, D.; Laurin, C.; Burgess, S.; Bowden, J.; Langdon, R.; et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife 2018, 7, e34408. [Google Scholar] [CrossRef]
- Burgess, S.; Thompson, S.G. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 2017, 32, 377–389. [Google Scholar] [CrossRef]
- Bowden, J.; Davey Smith, G.; Haycock, P.C.; Burgess, S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 2016, 40, 304–314. [Google Scholar] [CrossRef]
- Becker, K.G.; Barnes, K.C.; Bright, T.J.; Wang, S.A. The genetic association database. Nat. Genet. 2004, 36, 431–432. [Google Scholar] [CrossRef] [PubMed]
- Turana, Y.; Tengkawan, J.; Chia, Y.C.; Nathaniel, M.; Wang, J.G.; Sukonthasarn, A.; Chen, C.H.; Minh, H.V.; Buranakitjaroen, P.; Shin, J.; et al. Hypertension and stroke in Asia: A comprehensive review from HOPE Asia. J. Clin. Hypertens. 2021, 23, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.J.; Werring, D.J. Stroke: Causes and clinical features. Medicine 2020, 48, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Mosenzon, O.; Cheng, A.Y.; Rabinstein, A.A.; Sacco, S. Diabetes and stroke: What are the connections? J. Stroke 2023, 25, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Howard, G.; Banach, M.; Kissela, B.; Cushman, M.; Muntner, P.; Judd, S.E.; Howard, V.J. Age-related differences in the role of risk factors for ischemic stroke. Neurology 2023, 100, E1444–E1453. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Eom, S.; Kim, M.; Song, T.J. Medical management of dyslipidemia for secondary stroke prevention: Narrative review. Medicina 2023, 59, 776. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart disease and stroke statistics-2019 Update A report from the American Heart Association. Circulation 2019, 139, E56–E528. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Ma, W.; Liu, H.; Li, C.; Zhang, Y.; Liu, J.; Liang, Y.; Zhang, S.; Wu, Z.; Zang, C.; et al. Stroke risk in arthritis: A systematic review and meta-analysis of cohort studies. PLoS ONE 2021, 16, e0248564. [Google Scholar] [CrossRef]
- Bailey, R.R.; Serra, M.C.; McGrath, R.P. Obesity and diabetes are jointly associated with functional disability in stroke survivors. Disabil. Health J. 2020, 13, 100914. [Google Scholar] [CrossRef]
- Malone, D.C.; Boudreau, D.M.; Nichols, G.A.; Raebel, M.A.; Fishman, P.A.; Feldstein, A.C.; Ben-Joseph, R.H.; Okamoto, L.J.; Boscoe, A.N.; Magid, D.J. Association of cardiometabolic risk factors and prevalent cardiovascular events. Metab. Syndr. Relat. Disord. 2009, 7, 585–593. [Google Scholar] [CrossRef]
- Yousefian-Jazi, A.; Sung, M.K.; Lee, T.; Hong, Y.H.; Choi, J.K.; Choi, J. Functional fine-mapping of noncoding risk variants in amyotrophic lateral sclerosis utilizing convolutional neural network. Sci. Rep. 2020, 10, 12872. [Google Scholar] [CrossRef] [PubMed]
- Georgakis, M.K.; Gill, D. Mendelian randomization studies in stroke: Exploration of risk factors and drug targets with human genetic data. Stroke 2021, 52, 2992–3003. [Google Scholar] [CrossRef] [PubMed]
- Hindy, G.; Engstrom, G.; Larsson, S.C.; Traylor, M.; Markus, H.S.; Melander, O.; Orho-Melander, M.; Stroke Genetics, N. Role of blood lipids in the development of ischemic stroke and its subtypes: A Mendelian randomization study. Stroke 2018, 49, 820–827. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Zhuang, Z.; Shao, C.; Zheng, J.; Zhou, Q.; Dong, E.; Huang, T.; Tang, Y.D. Roles of cardiometabolic factors in mediating the causal effect of type 2 diabetes on cardiovascular diseases: A two-step, two-sample multivariable Mendelian randomization study. Front. Cardiovasc. Med. 2022, 9, 813208. [Google Scholar] [CrossRef] [PubMed]
- Wan, E.Y.F.; Fung, W.T.; Schooling, C.M.; Au Yeung, S.L.; Kwok, M.K.; Yu, E.Y.T.; Wang, Y.; Chan, E.W.Y.; Wong, I.C.K.; Lam, C.L.K. Blood pressure and risk of cardiovascular disease in UK Biobank: A Mendelian randomization study. Hypertension 2021, 77, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Fatumo, S.; Karhunen, V.; Chikowore, T.; Sounkou, T.; Udosen, B.; Ezenwa, C.; Nakabuye, M.; Soremekun, O.; Daghlas, I.; Ryan, D.K.; et al. Metabolic traits and stroke risk in individuals of African ancestry: Mendelian randomization analysis. Stroke 2021, 52, 2680–2684. [Google Scholar] [CrossRef] [PubMed]
- Skrivankova, V.W.; Richmond, R.C.; Woolf, B.A.; Yarmolinsky, J.; Davies, N.M.; Swanson, S.A.; VanderWeele, T.J.; Higgins, J.P.; Timpson, N.J.; Dimou, N.; et al. Strengthening the Reporting of Observational Studies in Epidemiology using Mendelian Randomization (STROBE-MR) Statement. JAMA 2021, 326, 1614–1621. [Google Scholar] [CrossRef]
- Skrivankova, V.W.; Richmond, R.C.; Woolf, B.A.; Davies, N.M.; Swanson, S.A.; VanderWeele, T.J.; Timpson, N.J.; Higgins, J.P.; Dimou, N.; Langenberg, C.; et al. Strengthening the Reporting of Observational Studies in Epidemiology using Mendelian Randomisation (STROBE-MR): Explanation and Elaboration. BMJ 2021, 375, n2233. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ban, H.-J.; Lee, S.; Jin, H.-J. Exploring Stroke Risk through Mendelian Randomization: A Comprehensive Study Integrating Genetics and Metabolic Traits in the Korean Population. Biomedicines 2024, 12, 1311. https://doi.org/10.3390/biomedicines12061311
Ban H-J, Lee S, Jin H-J. Exploring Stroke Risk through Mendelian Randomization: A Comprehensive Study Integrating Genetics and Metabolic Traits in the Korean Population. Biomedicines. 2024; 12(6):1311. https://doi.org/10.3390/biomedicines12061311
Chicago/Turabian StyleBan, Hyo-Jeong, Siwoo Lee, and Hee-Jeong Jin. 2024. "Exploring Stroke Risk through Mendelian Randomization: A Comprehensive Study Integrating Genetics and Metabolic Traits in the Korean Population" Biomedicines 12, no. 6: 1311. https://doi.org/10.3390/biomedicines12061311
APA StyleBan, H.-J., Lee, S., & Jin, H.-J. (2024). Exploring Stroke Risk through Mendelian Randomization: A Comprehensive Study Integrating Genetics and Metabolic Traits in the Korean Population. Biomedicines, 12(6), 1311. https://doi.org/10.3390/biomedicines12061311