Study of Periodontal Bacteria in Diabetic Wistar Rats: Assessing the Anti-Inflammatory Effects of Carvacrol and Magnolol Hydrogels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Micro-IDent Test
2.3. Chemicals/Extracts and Drugs Used
2.4. Periodontal Hydrogels
2.5. Induction of Periodontal Disease
2.6. Induction of Diabetes Mellitus
2.7. Treatment with the Periodontal Hydrogels
2.8. Tissue Sample Collection and Analyses
2.9. Determination of Inflammatory Biomarkers
2.10. Statistical Analysis
3. Results
3.1. Analysis of Periodontal Bacteria
3.2. Analysis of IL-6 and TNF-α Marker Levels
3.2.1. IL-6 Level Analysis
3.2.2. TNF-α Level Analysis
3.3. Scheffe Test Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghitea, T.C. Correlation of Periodontal Bacteria with Chronic Inflammation Present in Patients with Metabolic Syndrome. Biomedicines 2021, 9, 1709. [Google Scholar] [CrossRef] [PubMed]
- Gupta, G. Gingival crevicular fluid as a periodontal diagnostic indicator-II: Inflammatory mediators, host-response modifiers and chair side diagnostic aids. J. Med. Life 2013, 6, 7–13. [Google Scholar] [PubMed]
- Haddad, J.J. Redox regulation of pro-inflammatory cytokines and IκB-α/NF-κB nuclear translocation and activation. Biochem. Biophys. Res. Commun. 2002, 296, 847–856. [Google Scholar] [CrossRef]
- Flanagan, L.; Schmid, J.; Ebert, M.; Soucek, P.; Kunicka, T.; Liška, V.; Bruha, J.; Neary, P.; DeZeeuw, N.; Tommasino, M.; et al. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1381–1390. [Google Scholar] [CrossRef] [PubMed]
- André, P.; Laugerette, F.; Féart, C. Metabolic Endotoxemia: A Potential Underlying Mechanism of the Relationship between Dietary Fat Intake and Risk for Cognitive Impairments in Humans? Nutrients 2019, 11, 1887. [Google Scholar] [CrossRef]
- Acar, B.; Gümüş, E.; Özcan-Bulut, S.; Özşin-Özler, C.; Boyraz, M.S.; Tan, Ç.; Yaz, I.; Özbek, B.; Cagdas, D.; Saltık-Temizel, N.; et al. Cytokine profile in serum and gingival crevicular fluid of children with inflammatory bowel disease: A case-control study. J. Periodontol. 2022, 93, 1048–1059. [Google Scholar] [CrossRef]
- Çalapkorur, M.U.; Alkan, B.A.; Tasdemir, Z.; Akcali, Y.; Saatçi, E. Association of peripheral arterial disease with periodontal disease: Analysis of inflammatory cytokines and an acute phase protein in gingival crevicular fluid and serum. J. Periodontal Res. 2017, 52, 532–539. [Google Scholar] [CrossRef]
- Potra Cicalău, G.I.; Ciavoi, G.; Scrobotă, I.; Marcu, A.O.; Romanul, I.; Marian, E.; Vicaș, L.G.; Ganea, M. Assessing the Antioxidant Benefits of Topical Carvacrol and Magnolol Periodontal Hydrogel Therapy in Periodontitis Associated with Diabetes in Wistar Rats. Dent. J. 2023, 11, 284. [Google Scholar] [CrossRef]
- Hassan, S.S.U.; Abbas, S.Q.; Muhammad, I.; Wu, J.-J.; Yan, S.-K.; Ali, F.; Majid, M.; Jin, H.-Z.; Bungau, S. Metals-triggered compound CDPDP exhibits anti-arthritic behavior by downregulating the inflammatory cytokines, and modulating the oxidative storm in mice models with extensive ADMET, docking and simulation studies. Front. Pharmacol. 2022, 13, 1053744. [Google Scholar] [CrossRef]
- Zhang, J.M.; An, J. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin. 2007, 45, 27–37. [Google Scholar] [CrossRef]
- Hotamisligil, G.S. Inflammation, metaflammation and immunometabolic disorders. Nature 2017, 542, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Szałabska-Rąpała, K.; Borymska, W.; Kaczmarczyk-Sedlak, I. Effectiveness of Magnolol, a Lignan from Magnolia Bark, in Diabetes, Its Complications and Comorbidities—A Review. Int. J. Mol. Sci. 2021, 22, 50. [Google Scholar] [CrossRef] [PubMed]
- Cid-Pérez, T.S.; Ávila-Sosa, R.; Ochoa-Velasco, C.E.; Rivera-Chavira, B.E.; Nevárez-Moorillón, G.V. Antioxidant and Antimicrobial Activity of Mexican Oregano (Poliomintha longiflora) Essential oil, Hydrosol and Extracts from Waste Solid Residues. Plants 2019, 8, 22. [Google Scholar] [CrossRef]
- Ghitea, T.C.; El-Kharoubi, A.; Ganea, M.; Bimbo-Szuhai, E.; Nemeth, T.S.; Ciavoi, G.; Foghis, M.; Dobjanschi, L.; Pallag, A.; Micle, O. The Antimicrobial Activity of Origanum vulgare L. Correlated with the Gastrointestinal Perturbation in Patients with Metabolic Syndrome. Molecules 2021, 26, 283. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, F.O.; Silva, É.R.; Gomes, I.A.; Santana, H.S.R.; do Nascimento Santos, D.; de Oliveira Souza, G.P.; de Jesus Silva, D.; Monteiro, J.C.M.; de Albuquerque Júnior, R.L.C.; de Souza Araújo, A.A.; et al. Anti-inflammatory and antioxidant activity of car-vacrol in the respiratory system: A systematic review and meta-analysis. Phytother. Res. 2020, 34, 2214–2229. [Google Scholar] [CrossRef]
- Yang, B.; Xu, Y.; Yu, S.; Huang, Y.; Lu, L.; Liang, X. Anti-angiogenic and anti-inflammatory effect of Magnolol in the oxy-gen-induced retinopathy model. Inflamm. Res. 2016, 65, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Cicalău, G.I.P.; Babes, P.A.; Calniceanu, H.; Popa, A.; Ciavoi, G.; Iova, G.M.; Ganea, M.; Scrobotă, I. Anti-Inflammatory and Antioxidant Properties of Carvacrol and Magnolol, in Periodontal Disease and Diabetes Mellitus. Molecules 2021, 26, 6899. [Google Scholar] [CrossRef]
- Cicalău, G.I.P.; Babeș, P.A.; Domocoș, D.; Pogan, M. The assessment of two-way relationship between periodontal diseases and diabetes mellitus. Acta Stomatol. Marisiensis J. 2021, 4, 18–24. [Google Scholar] [CrossRef]
- Cicalău, G.I.P.; Miere, F.; Mandal, A.K.; Ganea, M.; Scrobota, I.; Ciavoi, G.; Jurca, C.M. Formulation and Characterization of Hydrophilic Ointment Bases with Carvacrol and Magnolol for Periodontal Application. Pharmacophore 2022, 13, 26–32. [Google Scholar] [CrossRef]
- Iova, G.M.; Calniceanu, H.; Popa, A.; Szuhanek, C.A.; Marcu, O.; Ciavoi, G.; Scrobota, I. The antioxidant effect of curcumin and rutin on oxidative stress biomarkers in experimentally induced periodontitis in hyperglycemic Wistar rats. Molecules 2021, 26, 1332. [Google Scholar] [CrossRef]
- Vargas-Sanchez, P.K.; Moro, M.G.; Santos, F.A.d.; Anbinder, A.L.; Kreich, E.; Moraes, R.M.; Padilha, L.; Kusiak, C.; Scomparin, D.X.; Franco, G.C.N. Agreement, correlation, and kinetics of the alveolar bone-loss measurement methodologies in a ligature-induced periodontitis animal model. J. Appl. Oral Sci. 2017, 25, 490–497. [Google Scholar] [CrossRef]
- Ribeiro, D.d.S.F.; de Oliveira Freire, J.M.; Teixeira, A.H.; Val, D.R.D.; de Freitas, A.R.; Gomes, F.I.F.; e Silva, A.A.R.; Bandeira, P.N.; dos Santos, H.S.; dos Santos, W.P.; et al. Tocoyena sellowiana extract decreases bone loss in an experimental model of periodontitis in rats: Putative role for cyclooxygenase-2 and IL-1β inhibition. Biomed. Pharmacother. 2018, 98, 863–872. [Google Scholar] [CrossRef]
- Teixeira, A.H.; Freire, J.M.D.O.; De Sousa, L.H.; Parente, A.T.; de Sousa, N.A.; Arriaga, A.M.C.; da Silva, F.R.L.; Melo, I.M.; da Silva, I.I.C.; Pereira, K.M.A.; et al. Stemodia maritima L. extract decreases inflammation, oxidative stress, and alveolar bone loss in an experimental periodontitis rat model. Front. Physiol. 2017, 8, 988. [Google Scholar] [CrossRef]
- Marins, L.M.; Napimoga, M.H.; Malta, F.d.S.; Miranda, T.S.; Nani, E.P.; Franco, B.d.S.T.; da Silva, H.D.P.; Duarte, P.M. Effects of strontium ranelate on ligature-induced periodontitis in estrogen-deficient and estrogen-sufficient rats. J. Periodontal Res. 2020, 55, 141–151. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Norouzian, D.; Mehrabi, M.; Jamshidi, S.; Farhangi, A.; Verdi, A.A.; Mofidian, S.M.A.; Rad, B.L. Induction of diabetes by streptozotocin in rats. Indian J. Clin. Biochem. 2007, 22, 60–64. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Noruzian, D.; Jamshidi, S.; Farhangi, A.; Mehrabi, M.R.; Rad, B.L.; Mofidian, M.; Allahverdi, A. Treatment of streptozotocin induced diabetes in male rats by immunoisolated transplantation of islet cells. Indian J. Clin. Biochem. 2007, 22, 71–76. [Google Scholar] [CrossRef]
- Hosadurga, R.R.; Rao, S.; Jose, J.; Rompicharla, N.C.; Shakil, M.; Shashidhara, R. Evaluation of the efficacy of 2% curcumin gel in the treatment of experimental periodontitis. Pharmacogn. Res. 2014, 6, 326. [Google Scholar] [CrossRef]
- Duarte, P.M.; Tezolin, K.R.; Figueiredo, L.C.; Feres, M.; Bastos, M.F. Microbial profile of ligature-induced periodontitis in rats. Arch. Oral Biol. 2010, 55, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Wagner, W.E., III. Using IBM® SPSS® Statistics for Research Methods and Social Science Statistics; Sage Publications: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- Rat, L.A.; Moldovan, A.F.; Trifan, D.F.; Matiș, L.; Murvai, G.F.; Maris, L.; Ghitea, T.C.; Maghiar, M.A. Can the Correlation of Periodontopathies with Gastrointestinal Diseases Be Used as Indicators in Severe Colorectal Diseases? Biomedicines 2023, 11, 402. [Google Scholar] [CrossRef]
- da Silva Lima, M.; Quintans-Junior, L.J.; de Santana, W.A.; Kaneto, C.M.; Soares, M.B.P.; Villarreal, C.F. Anti-inflammatory effects of carvacrol: Evidence for a key role of interleukin-10. Eur. J. Pharmacol. 2013, 699, 112–117. [Google Scholar] [CrossRef]
- Landa, P.; Kokoska, L.; Pribylova, M.; Vanek, T.; Marsik, P. In vitro anti-inflammatory activity of carvacrol: Inhibitory effect on COX-2 catalyzed prostaglandin E2 biosynthesis. Arch. Pharmacal Res. 2009, 32, 75–78. [Google Scholar] [CrossRef]
- Wagner, H.; Wierer, H.; Bauer, R. Screening of Essential Oils and Phenolic Compounds for in vitro-Inhibition of Prostaglandin Biosynthesis. Planta Medica 1986, 52, 549. [Google Scholar] [CrossRef] [PubMed]
- Fachini-Queiroz, F.C.; Kummer, R.; Estevao-Silva, C.F.; Carvalho, M.D.D.B.; Cunha, J.M.; Grespan, R.; Bersani-Amado, C.A.; Cuman, R.K.N. Effects of thymol and carvacrol, constituents of Thymus vulgaris L. essential oil, on the inflammatory response. Evid.-Based Complement. Altern. Med. 2012, 2012, 657026. [Google Scholar] [CrossRef]
- Tabibzadeh Dezfuli, S.; Ehsani, M.; Lakzaei Azar, O. Carvacrol alleviated negative effects of diabetes on inflammation and oxidation by modulation in gene expression of inflammatory and antioxidant system in diabetic rat model. GMJ Med. 2017, 1, 15–20. [Google Scholar] [CrossRef]
- Zhao, W.; Deng, C.; Han, Q.; Xu, H.; Chen, Y. Carvacrol may alleviate vascular inflammation in diabetic db/db mice. Int. J. Mol. Med. 2020, 46, 977–988. [Google Scholar] [CrossRef]
- Kuo, P.J.; Hung, T.F.; Lin, C.Y.; Hsiao, H.-Y.; Fu, M.-W.; Hong, P.-D.; Chiu, H.-C.; Fu, E. Carvacrol ameliorates ligation-induced periodontitis in rats. J. Periodontol. 2017, 88, 120–128. [Google Scholar] [CrossRef]
- Rotariu, D.; Babes, E.E.; Tit, D.M.; Moisi, M.; Bustea, C.; Stoicescu, M.; Radu, A.-F.; Vesa, C.M.; Behl, T.; Bungau, A.F.; et al. Oxidative stress—Complex pathological issues concerning the hallmark of cardiovascular and metabolic disorders. Biomed. Pharmacother. 2022, 152, 113238. [Google Scholar] [CrossRef] [PubMed]
- Mączka, W.; Twardawska, M.; Grabarczyk, M.; Wińska, K. Carvacrol—A Natural Phenolic Compound with Antimicrobial Prop-erties. Antibiotics 2023, 12, 824. [Google Scholar] [CrossRef]
- Klein, A.H.; Carstens, M.I.; Carstens, E. Eugenol and carvacrol induce temporally desensitizing patterns of oral irritation and enhance innocuous warmth and noxious heat sensation on the tongue. PAIN 2013, 154, 2078–2087. [Google Scholar] [CrossRef]
Statistics | N | Mean | Std. Deviation | Skewness | Std. Error of Skewness | Kurtosis | Std. Error of Kurtosis | Range | |
---|---|---|---|---|---|---|---|---|---|
Valid | Missing | ||||||||
Peptostreptococcus micros | 124 | 0 | 0.6613 | 0.47519 | −0.690 | 0.217 | −1.549 | 0.431 | 1.00 |
Fusobacterium nucleatum | 124 | 0 | 1.0000 | 0.00000 | 0.782 | 0.217 | 1107 | 0.431 | 0.00 |
Campylobacter rectus | 124 | 0 | 0.6532 | 0.47787 | −0.652 | 0.217 | −1.601 | 0.431 | 1.00 |
Eubacterium nodatum | 124 | 0 | 0.17 | 0.377 | 1.785 | 0.217 | 1.205 | 0.431 | 1.00 |
Eikenella corrodens | 124 | 0 | 0.34 | 0.475 | 0.690 | 0.217 | −1.549 | 0.431 | 1.00 |
Capnocytophaga spp | 124 | 0 | 0.51 | 0.502 | −0.033 | 0.217 | −2.032 | 0.431 | 1.00 |
Aggregatibacter actinomycetemcomitans | 124 | 0 | 0.83 | 0.377 | −1.785 | 0.217 | 1.205 | 0.431 | 1.00 |
Prevotella intermedia | 124 | 0 | 0.34 | 0.475 | 0.690 | 0.217 | −1.549 | 0.431 | 1.00 |
Porphyromonas gingivalis | 124 | 0 | 0.52 | 0.502 | −0.065 | 0.217 | −2.029 | 0.431 | 1.00 |
Tannerella forsythia | 124 | 0 | 0.83 | 0.377 | −1.785 | 0.217 | 1.205 | 0.431 | 1.00 |
Treponema denticola | 124 | 0 | 0.83 | 0.377 | −1.785 | 0.217 | 1.205 | 0.431 | 1.00 |
Variable | Groups | IL-6 | TNF-α | ||||
---|---|---|---|---|---|---|---|
Mean Difference | χ2 | p | Mean Difference | χ2 | p | ||
PD | PDC | 8.16356 | 0.116 | 0.978 | 1.29990 | 0.153 | 0.691 |
PDM | 25.97870 | 1.886 | 0.199 | 1.68368 | 0.515 | 0.416 | |
PDCM | 33.77949 * | 3.865 | 0.040 * | 2.76074 * | 4.128 | 0.033 * | |
PDC | PD | −8.16356 | 0.036 | 0.978 | −1.29990 | 0.153 | 0.691 |
PDM | 17.81514 | 0.162 | 0.607 | 0.38378 | 0.028 | 0.998 | |
PDCM | 25.61593 | 1.462 | 0.212 | 1.46084 | 0.261 | 0.575 | |
PDM | PD | −25.97870 | 1.886 | 0.199 | −1.68368 | 0.515 | 0.416 |
PDC | −17.81514 | 0.162 | 0.607 | −0.38378 | 0.028 | 0.998 | |
PDCM | 7.80079 | 0.032 | 0.982 | 1.07706 | 0.107 | 0.831 | |
PDCM | PD | −33.77949 * | 3.865 | 0.040 * | −2.76074 * | 4.128 | 0.033 * |
PDC | −25.61593 | 1.462 | 0.212 | −1.46084 | 0.261 | 0.575 | |
PDM | −7.80079 | 0.032 | 0.982 | −1.07706 | 0.107 | 0.831 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potra Cicalău, G.I.; Marcu, O.A.; Ghitea, T.C.; Ciavoi, G.; Iurcov, R.C.; Beiusanu, C.; Trifan, D.F.; Vicaș, L.G.; Ganea, M. Study of Periodontal Bacteria in Diabetic Wistar Rats: Assessing the Anti-Inflammatory Effects of Carvacrol and Magnolol Hydrogels. Biomedicines 2024, 12, 1445. https://doi.org/10.3390/biomedicines12071445
Potra Cicalău GI, Marcu OA, Ghitea TC, Ciavoi G, Iurcov RC, Beiusanu C, Trifan DF, Vicaș LG, Ganea M. Study of Periodontal Bacteria in Diabetic Wistar Rats: Assessing the Anti-Inflammatory Effects of Carvacrol and Magnolol Hydrogels. Biomedicines. 2024; 12(7):1445. https://doi.org/10.3390/biomedicines12071445
Chicago/Turabian StylePotra Cicalău, Georgiana Ioana, Olivia Andreea Marcu, Timea Claudia Ghitea, Gabriela Ciavoi, Raluca Cristina Iurcov, Corina Beiusanu, Daniela Florina Trifan, Laura Grațiela Vicaș, and Mariana Ganea. 2024. "Study of Periodontal Bacteria in Diabetic Wistar Rats: Assessing the Anti-Inflammatory Effects of Carvacrol and Magnolol Hydrogels" Biomedicines 12, no. 7: 1445. https://doi.org/10.3390/biomedicines12071445
APA StylePotra Cicalău, G. I., Marcu, O. A., Ghitea, T. C., Ciavoi, G., Iurcov, R. C., Beiusanu, C., Trifan, D. F., Vicaș, L. G., & Ganea, M. (2024). Study of Periodontal Bacteria in Diabetic Wistar Rats: Assessing the Anti-Inflammatory Effects of Carvacrol and Magnolol Hydrogels. Biomedicines, 12(7), 1445. https://doi.org/10.3390/biomedicines12071445